7.8
6
13.6
Wa 1N= E=
6.3MT 6300 9.81 N 9.81 210x10^3 N/mm^2
61803
24 964669665 210000
5000
Maximum deflection of c
Maximum deflection of c 6 964669665 210000
Deflection of load=
Deflection of load=
Allowable=
Allowable=
F.o.s.=
F.o.s.=
300 272.8 60
7
40
4 3
10
5
90
2 8
600
Ῡ= 10
1
230
KG N
61803 N
61803
61803 875
1750 10000
Maximum deflection of center=
Maximum deflection of center= Deflection of load=
eflection of load=
Span 300
Wa 24 EI
x
(3l^2-4a^2)
254937375 4.86194E+15
x
231937500
5.243537E-08
x
231937500
12.16172904
Wa^2
x
6EI
(3l-4a)
1.052E+12 1.215E+15
x
13500
0.0008652
x
13500
11.679979
Span=
10000 300
a=
33.33333333
Allowable Ineluced
2.740838348
Allowable= Ineluced=
33.33333 12.16173
MASS MOMENT OF INERTIA I
Σ(I+AiDi^2)
I total = Where I =
1⁄12*bxh^3
Ai= sum of area Di= Ῡ-Y I1= I2= I3= I4= I5= I6= I7=
19166.66751 144000006 19166.66751 10788.14927 826200.0364 826200.036 320000.0141
0.083333337 A1= A2= A3= A4= A5= A6= A7= ΣA=
2300 4800 2300 2127.84 1224 1224 2400 16375.84
Y1= Y2= Y3= Y4= Y5= Y6= Y7=
[(A1*Y1)+(A2*Y2)+(A3*Y3)+(A4*Y4)+(A5*Y5)+(A6*Y6)+ (A7*Y7)]/A1+A2+A3+A4+A6+A7
Ῡ=
439.43
I TOTAL
ΣI
Ii1= Ii2= Ii3= Ii4= Ii5= Ii6= Ii7=
434096844 230742846 70916264 72419440 25985467 25985467 104523337 964669665
4125
5 305 615 623.9 582.8 582.8 647.8
d1= d2= d3= d4= d6= d7= d8=
434.43 134.43 175.57 184.47 143.37 143.37 208.37
7.8
6
13.6
Wa 1N= E=
6.3MT 6300 9.81 N 9.81 210x10^3 N/mm^2
61803
24 964669665 210000
5000
Maximum deflection
Maximum deflection 6 964669665 210000
Deflection of load=
Deflection of load=
Allowable=
Allowable=
F.o.s.=
F.o.s.=
300 272.8 60
7
40
4 3
10
5
90
2 8
600
Ῡ= 10
1
230
KG N
61803 N
61803
61803 875
1750 10000
Maximum deflection of center=
Maximum deflection of center= Deflection of load=
eflection of load=
Span 300
Wa 24 EI
x
254937375 4.86193511E+15
x
231937500
5.24353717E-08
x
231937500
12.1617290352
Wa^2
x
6EI
(3l-4a)
1.052E+12 1.215E+15
x
13500
0.0008652
x
13500
11.679979
Span=
10000 300
(3l^2-4a^2)
a=
33.33333333
Allowable Ineluced
2.740838348
Allowable= Ineluced=
33.333333 12.161729
MASS MOMENT OF INERTIA I
Σ(I+AiDi^2)
I total = Where I =
1⁄12*bxh^3
Ai= sum of area Di= Ῡ-Y I1= I2= I3= I4= I5= I6= I7=
19166.66751 144000006.34 19166.66751 10788.149275 826200.03635 826200.036 320000.01408
0.083333337 A1= A2= A3= A4= A5= A6= A7=
2300 4800 2300 2127.84 1224 1224 2400 16375.84
Y1= Y2= Y3= Y4= Y5= Y6= Y7=
[(A1*Y1)+(A2*Y2)+(A3*Y3)+(A4*Y4)+(A5*Y5)+(A6*Y6)+ (A7*Y7)]/A1+A2+A3+A4+A6+A7
Ῡ=
439.43
I TOTAL
Ii1= Ii2= Ii3= Ii4= Ii5= Ii6= Ii7=
434096843.94 230742845.86 70916263.938 72419440.436 25985467.282 25985467.282 104523336.57 964669665.3
4125
5 305 615 623.9 582.8 582.8 647.8
d1= d2= d3= d4= d6= d7= d8=
434.43 134.43 175.57 184.47 143.37 143.37 208.37