Elektron-Paramagnetic Resonance Spectroscopy Basics & Applications to Biological Systems § Basics (What is EPR ?) § Historical Introduction (NMR/EPR) § Application Fields § Basic Principle § Technical Requirements § Advanced Methods § EPR Parameters § Applications to Proteins (What can we learn from EPR?) § Organic radicals in proteins Semiquinone radicals § Metal centres in protein complexes Mn+II, Cu+II , Mo V § Spin labels Mobility, Access, Distances
Elektron-Paramagnetic Resonance Spectroscopy What is EPR ?
EPR is a spectroscopical technique that detects: • unpaired electrons (electron spins : ESR) • identity of the molecule • and information of the molecular structure (structure, dynamics, bounding) • the molecular environment (< 0.8 nm for nuclear spins and up to 50 nm for other electron spins)
EPR is nondestructive, needs 100 µl sample (or less!), concentrations of >100 µmolar paramagnetic species
Elektron-Paramagnetic Resonance Spectroscopy Application fields
Ø Physics: Susceptibility, Semiconductors, Quantum Dots, Defect Centres ... Ø Chemistry: ET-Reaction Kinetics, Organo-Metallic, Catalysis, Molecular Magnets... ØIonization Radiation: Alanin radiation dosimetry, Radiation damage, Irradiated food .. Ø Material research: Polymers, Glases, Superconductors, Corrosion, Fullerenes, Dating ... Ø Biology: Enzyme Reaction, ET-Reaction, Folding&Dynamics, Metal centres ...
Paramagnetic metal ions (Cu, Mn, Ni, Co, Mo, Fe) and complexes in enzymes Hemes and FeS clusters in electron transfer reactions in protein Amino acid radicals of the protein backbone (as tyrosine, triptophane and glycil) protein bound cofactor radicals (as semiquinones and flavines) Transient paramagnetic chormophores in light driven processes Nitroxide spin labels attached to cysteines or nucleic acids
Elektron-Paramagnetic Resonance Spectroscopy
Energie E
Basic physics
+1/2
Magnetic Resonance Condition
∆E = g ⋅ µ B ⋅ B0 = h ⋅ν MW Under resonance conditons microwave gets absorbed -> Detection signal
-1/2 magnetic field B
0
Elektron-Paramagnetic Resonance Spectroscopy Instrumentation, Basic Principle
EPR Experiment
Elektron-Paramagnetic Resonance Spectroscopy Historical introduction
1897:
Pieter Zeeman Line splitting in external magnetic field
1922:
Otto Stern, Walter Gerlach Quantisation in external magnetic field
1925:
Goldsmith, Uhlenbeck Spin of electron
1945:
Zavojski First EPR experiment
1946:
Block, Purcell, Pound First NMR experiment
1950:
Erwin Hahn First pulse NMR experiment
1958:
Bill Mims First pulse EPR experiment
1965:
Richard Ernst First FT-NMR experiment
1976:
Richard Ernst First 2D-NMR experiment
1986:
Jack Freed First FT- & 2D EPR experiment
1994:
Wrachtrup, Köhler, Groenen, Borzyskowski First single molecule EPR experiment
Elektron-Paramagnetic Resonance Spectroscopy Instrumentation
Frequency: Factor 1000 larger in EPR ! (GHz instead of MHz) Coupling strength: Factor 1 000 000 larger in EPR ! (MHz instead of Hz) Relaxation Times: Factor 1000 000 smaller in EPR ! (ns instead of ms) a much higher techniqual requirements !!
Sensitivity : Factor 1 000 000 better than in NMR !! (1nM instead of 1mM )
Elektron-Paramagnetic Resonance Spectroscopy EPR Parameters : G-Tensor Reflects symmetry of the electronic orbital of unpaired electron
Spherical symmetric orbital
Cylinder symmetrical orbitalre
Lower symmetry orbital
Elektron-Paramagnetic Resonance Spectroscopy EPR Parameters : A-Tensor (HF-Tensor)
Electron spin density at nucleus: isotropic a
e
Spin density at n
n
Dipolare coupling to distant nucleus: anisotropic A Distance to n
n e
Elektron-Paramagnetic Resonance Spectroscopy Advanced Methods 0.1
0.3
1
3.4
6.4
Multifrequency-EPR
Magnetfeld [T] B ν Mikro360 wellen[subfrequenz mm] [GHz]
12.8
0
M
3 [S]
9 [X]
35 [Q]
180 [G]
95 [W]
Mikrowellen Pulse
t
Pulse-EPR
Pulsabstände
t
1
W
2
14.9
6.0
3.7
2.2
2.0
1.1
t
ENDOR (Electron Nuclear Double Resonance
KernZeeman Frequenz (im X-Band)
ν Radio-frequenz [MHz] R F
1 4
1 7
2
N O H
1 3
C
3 1
P
1
H
Elektron-Paramagnetic Resonance Spectroscopy Microwave frequency bands
m S= -1/2 0,11 T 3GHz (S-Band)
1 T/35GHz (Q-Band) 3,4 T/95GHz (W-Band)
6,4 T/180GHz (G-Band)
0,34 T 9,5GHz (X-Band) B0
m S= +1/2
High-field EPR Spectral resolution Resolution of G-anisotropy: Orientation selection mS = +½
O
gzz
CH3
gyy O
mS = -½
gxx
gxx
gyy gzz
X-Band
G-Band
Elektron-Paramagnetic Resonance Spectroscopy Field dependence of spectra
Distringuishes field dependent and field independent parameters
Nitroxid spectra as a function of magnetic field
Elektron-Paramagnetic Resonance Spectroscopy Instrumentation: 180 GHz Spectrometer
Pulsed EPR Hahn Echo sequence
Refocusing technique eliminates inhomogeneous linewidth
t
3
t
0
t microwave
1
t
π
π/2
2
ECHO
FID t
0
t
1
t
2
t
3
time
ESEEM Spectroscopy Small Hyperfine couplings
T
H O 3
4 5
2
Me O
1
O
C H3
6
H CH3
0
2
4
6
n
H
The semiquinone interacts with 14N nitrogen
8 T im e
1 0 1 2 (µ s )
1 4
1 6
1 8
FFT F F T A m p l i t u d e ( a. u. )
Me O
Echo Amplitude
Measure of the echo amplitude as a function of T
0
0
F
r
2 e
q
u
e
n
4
c
y
(
M
6 H
z )
8
E
Electron Nuclear Double Resonance (ENDOR) Anisotropic Hyperfine interactions
m
S
“NMR detected by EPR” Simultaneous irradiation of the sample with microwave and radio frequencies Enhanced spectral resolution Simplification of hyperfine spectra
m
I
Electron Nuclear Double Resonance (ENDOR) ENDOR spectra
6
x 10
-3
N H 17O P CH3
4 2 0 -2 -100
-80
-60
-40
-20
0
20
40
60
80
100
10
20
30
40
50
60
70
80
90
100
20
40
60
80
100
120
140
160
180
200
0.3 0.2 0.1 0 -0.1 0.3 0.2 0.1 0 -0.1
Pulsed Electron Double Resonance (PELDOR) Dipolare coupling between paramagnetic molecules
distances of r AB between 10Å - 50Å
rAB = 29.1Å O N
O
O
O
O
1.2
O
1.2
S-Band (3.6 GHz) X-Band (9.7 GHz)
1.1 Echoamplitude [a.u.]
N
1
1 0.8
0.9 0.6
0.8
ωDip = 2.1 MHz
0.4
0.7 0.2
0.6 0.5
0
0
1
2 3 Pump Pulse Position [µs]
4
5
r AB = 29.2 Å 0
5 10 Frequency [MHz]
15
Elektron-Paramagnetic Resonance Spectroscopy Instrumentation: Pulsed X-band EPR/ENDOR
The Theunpaired unpairedelectron electronas asaalocal localprobe probe
Puls-ESR,PELDOR
ENDOR, ESEEM
cw-ESR
Elektron-Paramagnetic Resonance Spectroscopy Detection methods
Microwave transmission detection:
sensitivity >1014 spins
Microwave bridge detection:
sensitivity >1011 spins (9 GHz) sensitivity >107 spins (100 GHz)
Electrical detection:
sensitivity >107 spins
Optical detection:
sensitivity >104 spins
Atomic force microscope
sensitivity >103 spins
Confocal microscope fluoreszenz:
sensitivity >1 spins
Elektron-Paramagnetic Resonance Spectroscopy Applications to Biological Systems
§
G-Protein complex
§ Photosynthesis § Cytochrome c oxidase
Photosynthetic bacterial reaction centre of rhodobacter spheroides (BChl)2* BPh QA QB 4 ps (BChl)2+ BPh- QA QB 200 ps (BChl)2+ BPh QA- QB 100 µs (BChl)2+ BPh QA QB-
(BChl)2 BPh QA QB
High-Field-EPR High-Field-EPRmeasurements measurementson on bRC bRC 9330 GHz GHz
QB 95 GHz
95 GHz
Structure Structureofofthe thechormophores chormophoresininPSI PSIby byEPR EPR
P700
Abstand und Orientierung der Chromophore zueinander und zur Membranebene
2.5 nm 27°
A1 1.48 nm
Fe/S
Semiquinone radical QA in bRC
2
T [µs]
echo intensity
Dynamics of protein bound molecules
1.6 1.2
echo detected spectrum
ϕ O
O
relaxation 190 K time
θ
ϕ
0.8
O
120 K
0.4
O
magnet field B
0
P21ras · MnII+ · GDP protein complex § Molecular switch for signal transduction "active state" Hydrolysis
GDP exchangek factor (GEF)
k
d is s
c a t
Effector / GAP
GTP
P
i
p21:GDP "inactive state"
Oncogenic mutation at glycin12 position ⇒ strongly reduced catalytic rate constants !
P21ras · MnII+ · GDP / GTP protein complex
C N
GDP
Inactive (GDP) state
loop L2 T35
loop L4
active (GDP) state
C N
GppNHp loop L2 T35
loop L4
2+ p21 --Mn 2+--GTP p21ras Mn GTPprotein proteinnucleotide nucleotidecomplex complex ras
Konformationsänderung bei
->
loop L2 loop L2
Thr 35
H O
Hydrolyse H O
NH
Thr 35
H 2O
Mn
NH O
H2O
H 2O
Ser 17
Ser 17
H2 O
Mn O
H 2O
O
H 2O
O
O
"Nukleophiler
O Angriff" H2O
Pγ O
O
Pβ
O
O Lys 16
NH
loop L4
GTP
Pα O
O
- Pi
Pβ O
Lys 16 NH
loop L4
O
Pα O
Mulitfrequency EPR of P21ras · MnII+ · GDP protein complex
180 GHz
δ
f
x 10
δ
1. Mn Hyperfine line
f
95 GHz x 10
9.5 GHz
Two states distinguishable by HF-EPR spectroscopy
2.7 GHz 5 mT
P21ras · MnII+ · GDP protein complex
No differences at active site for wt & oncogenic mutant by X-ray !
Thr35
Gly12
Lys16
Asp57
GDP
Mg
Ser17
[E. F. Pai et al. EMBO J. 9, 2351 (1990)]
HF- EPR of P21ras · MnII+ · GDP protein complex
4 H2O17 ligands
3 H2O17 ligands
-50
-25
0 25 relative magnetic field B [G]
50
HF- EPR of P21ras · MnII+ · GDP protein complex
G12V
wt x5
n=5
n=4
n=4
n=3
n=3
n=2
T35S
T35A
n=4 n=3
n=2
n=5 n=4 n=3
1 mT
Differences in ligand sphere determined by EPR spectroscopy !!
Cytochrom CytochromccOxidase Oxidaseof ofParaccocus Paraccocusdenitrificans denitrificans
Multifrequency-EPR Multifrequency-EPRon onCytochrom CytochromccOxidase Oxidase X -B a n d
3000
3500
Q -B a n d
11800
12000
12200
12400
W -B a n d
33200
33400
33600
M a g n e t fe ld [ G a u s s ]
33800
Application Application on on Cytochrome Cytochrome cc Oxidase: Oxidase: Distance and orientation between binuclear CuA centre and Mn binding site
Cys B216
CuA Ser B217
rAB Asp A404 Cys B220 Glu B218 H2O
Mn
His A403
H. Käß, F. MacMillan, B. Ludwig, T. Prisner Biochemistry 104, 5362-5371 (2000)
Structure determination by EPR spectroscopy 2D-ESEEM (HYSCORE) Experiment
15
F2 [MHz]
14
10
N
5
Experimental 1
H
Spectra
a Bestimmung der N und H Wechselwirkungen 1 4
0
1
-5 -10 2
4
6
8
10
F1 [MHz]
12
14
Parameters
MO-Calculations Molecular Structure
16
QM-Simulations
Electron ElectronParamagnetic ParamagneticResonance Resonance(EPR) (EPR) Multifrequency Multifrequencycw-EPR: cw-EPR: Identification Identificationand andCharacterisation CharacterisationofofRadicals Radicals
Structural StructuralInformation: Information:
PULSE-EPR PULSE-EPRand andENDOR: ENDOR: Identification IdentificationofofLigand LigandSphere Sphere(< (<0.8 0.8nm) nm) PELDOR: PELDOR: Distance Distancebetween betweenParamagnetic ParamagneticCentres Centres(< (<6nm) 6nm)
Time TimeResolvedResolved-and andFT-EPR: FT-EPR: Photoinduced PhotoinducedElectron-Transfer Electron-TransferKinetics Kinetics
Dynamic DynamicInformation: Information:
Pulsed-High-Field-EPR: Pulsed-High-Field-EPR: Librational LibrationalDynamics DynamicsofofProtein-Bound Protein-BoundQuinones Quinones PELDOR: PELDOR: Conformational ConformationalDynamics Dynamics
Literature
Methods: Carrington, McLauchlan
Introduction to Magnetic Resonance
Schweiger
Ang. Chemie (Int. Edit. Engl.) (1991) 30:265-92
Applications to Biology: Berliner
Biol. Magn. Reson.
Deligiannakis et al.
Coord. Chem. Rev. (2001) 204:1-112
Prisner et al.
Annu. Rev. Phys. Chem. (2001) 52:279-313
Prisner
in Essays in Contemporary Chemistry