Moustaouli Mohamed

  • Uploaded by: Adamito
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Moustaouli Mohamed as PDF for free.

More details

  • Words: 556
  • Pages: 2
‫* ﺑﻌﺪ ﻣﺮاﺟﻌﺔ دروﺳﻚ اﺿﺒﻂ ﺳﺎﻋﺘﻚ و أﻧﺠﺰ هﺬا اﻟﻔﺮض ﻓﻲ ورﻗﺔ ﻧﻈﻴﻔﺔ ﻣﺤﺘﺮﻣﺎ اﻟﻮﻗﺖ اﻟﻤﺤﺪد‬ ‫ﻣﻊ اﺣﺘﺮام ﺿﻮاﺑﻂ و ﻃﻘﻮس إﻧﺠﺎز ﻓﺮض‪.‬‬ ‫* ﻋﻨﺪ اﻻﻧﺘﻬﺎء ﺿﻊ اﻟﻮرﻗﺔ ﻓﻲ ﻣﻠﻒ إﻟﻰ ﻳﻮم إدراج اﻟﺘﺼﺤﻴﺢ ﻓﻲ ﻧﻔﺲ اﻟﻤﻮﻗﻊ‪.‬‬ ‫* ﻳﻮم إدراج اﻟﺘﺼﺤﻴﺢ ﻓﻲ اﻟﻤﻮﻗﻊ هﻮ‪ 15 :‬ﻧﻮﻧﺒﺮ ‪2006‬‬

‫ﻓﺮض ﺷﻬﺮ أآﺘﻮﺑﺮ‬

‫‪ 2‬ﺳﻠﻚ ﺑﻜﺎﻟﻮرﻳﺎ ع ر‬ ‫ﺗﻤﺮﻳﻦ‪1‬‬ ‫‪1‬‬ ‫‪2 3 −1‬‬ ‫‪Arc tan + Arc tan‬‬ ‫‪ .1‬أﺣﺴﺐ اﻟﻌﺪد ‪:‬‬ ‫‪2‬‬ ‫‪3+2‬‬ ‫‪ .2‬ﺣﻞ ﻓﻲ ‪ IR‬اﻟﻤﻌﺎدﻟﺔ ‪Arc sin 2x = Arc cos x :‬‬ ‫ﺗﻤﺮﻳﻦ‪2‬‬

‫أﺣﺴﺐ اﻟﻨﻬﺎﻳﺎت اﻟﺘﺎﻟﻴﺔ‬ ‫‪x2 − 2 x‬‬

‫‪6‬‬

‫; ‪x3 + 1 − x 2 + 1‬‬

‫‪lim‬‬

‫‪x→+∞ 3 8 x + 1‬‬

‫)‬

‫(‬

‫‪arctan 1 − 3 x + 1‬‬ ‫‪x‬‬

‫‪lim‬‬

‫‪x →0‬‬

‫;‬

‫‪3‬‬

‫‪lim‬‬

‫∞‪x→+‬‬

‫; ‪x3 + 2 − x + 1‬‬

‫‪3‬‬

‫‪lim‬‬

‫∞‪x→+‬‬

‫‪‬‬ ‫‪3‬‬ ‫‪π‬‬ ‫‪arcsin  x‬‬ ‫‪ + arccos x −‬‬ ‫‪3‬‬ ‫‪ 2 ‬‬ ‫‪lim‬‬ ‫‪x→1‬‬ ‫‪x −1‬‬

‫ﺗﻤﺮﻳﻦ‪3‬‬ ‫‪/I‬‬

‫‪x x −1‬‬ ‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ ‪ f‬اﻟﻤﻌﺮﻓﺔ آﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫‪x x +1‬‬

‫)‬

‫= ) ‪f (x‬‬

‫(‬

‫‪ .1‬ﺣﺪد ‪ D f‬و ﺣﺪد داﻟﺔ ‪ g‬ﺑﺤﻴﺚ ‪∀x ∈ D f ; f ( x) = g x x‬‬ ‫‪ .2‬اﺳﺘﻨﺘﺞ اﺗﺼﺎل ورﺗﺎﺑﺔ ‪ f‬ﻋﻠﻰ ‪D f‬‬

‫‪ .3‬اﺳﺘﻨﺘﺞ أن ‪ f‬ﺗﻘﺎﺑﻞ ﻣﻦ ‪ D f‬ﻧﺤﻮ ﻣﺠﺎل ‪ J‬ﻳﺘﻢ ﺗﺤﺪﻳﺪﻩ وﺣﺪد )‪ f −1 ( x‬ﻟﻜﻞ ‪ x‬ﻣﻦ ‪.J‬‬

‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ ‪ h‬اﻟﻤﻌﺮﻓﺔ آﺎﻟﺘﺎﻟﻲ ‪h (x ) = Arc sin f (x ) :‬‬ ‫‪/ II‬‬ ‫‪ .1‬ﺣﺪد ‪Dh‬‬

‫‪π‬‬

‫)‬

‫‪∀x ∈ Dh ; h( x) = 2 Arc tan x −‬‬

‫‪ .2‬ﺑﻴﻦ أن ‪:‬‬ ‫‪2‬‬ ‫‪ .3‬أﻧﺸﺊ ﻣﻨﺤﻨﻰ اﻟﺪاﻟﺔ‬ ‫‪G G‬‬ ‫‪O ,i , j‬‬

‫(‬

‫‪ x 6 Arc tan x‬واﺳﺘﻨﺘﺞ ﻣﻨﺤﻨﻰ اﻟﺪاﻟﺔ ‪ h‬ﻓﻲ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ‬

‫ﺗﻤﺮﻳﻦ‪4‬‬ ‫اﻟﻤﺴﺘﻮى ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ وﻣﻤﻨﻈﻢ وﻣﺒﺎﺷﺮ )‪. (O; u; v‬‬

‫‪ z −1‬‬ ‫‪. z ' = 2‬‬ ‫ﻧﻌﺘﺒﺮ اﻟﺘﻄﺒﻴﻖ ‪ ϕ‬اﻟﺬي ﻳﺮﺑﻂ اﻟﻨﻘﻄﺔ ) ‪ M (z‬ﺑﺎﻟﻨﻘﻄﺔ ) ' ‪ M ' ( z‬ﺑﺤﻴﺚ‪ :‬‬ ‫‪ z ‬‬ ‫)أي ﺻﻮرهﺎ هﻲ ﻧﻔﺴﻬﺎ(‬ ‫‪ (1‬ﺣﻞ ﻓﻲ ‪ C‬اﻟﻤﻌﺎدﻟﺔ ‪ z ' = z :‬واﺳﺘﻨﺘﺞ اﻟﻨﻘﻂ اﻟﺼﺎﻣﺪة ﺑﺎﻟﺘﻄﺒﻴﻖ ‪. ϕ‬‬ ‫‪ (2‬اآﺘﺐ اﻟﺤﻠﻮل ﻋﻠﻰ اﻟﺸﻜﻞ اﻟﻤﺜﻠﺜﻲ ‪.‬‬ ‫‪8n‬‬ ‫‪8n‬‬ ‫‪4 n +1‬‬ ‫‪. z1 + z2 = 2‬‬ ‫‪ z1 (3‬و ‪ z 2‬هﻤﺎ ﺣﻠﻮل اﻟﻤﻌﺎدﻟﺔ اﻟﺴﺎﺑﻘﺔ ﺑﻴﻦ أن ‪; n ∈ IN :‬‬ ‫‪ (4‬ﻧﻌﺘﺒﺮ اﻟﻨﻘﻄﺘﻴﻦ ‪ A(1 + i ) :‬و ) ‪ B (1 − i‬وﻧﻀﻊ ‪ z A = 1 + i :‬و ‪. z B = 1 − i‬‬

‫‪Moustaouli Mohamed‬‬

‫‪http://arabmaths.ift.fr‬‬

‫‪z '− z B‬‬ ‫‪z − zB‬‬ ‫‪ (a‬اﺛﺒﺖ أن‪:‬‬ ‫‪=i‬‬ ‫‪z '− z A‬‬ ‫‪z − zA‬‬

‫} ‪. ∀z ∈ C /{z A ; z B‬‬

‫‪JJJG JJJJG‬‬ ‫‪JJJJJG JJJJJJG‬‬ ‫‪MA M ' A‬‬ ‫=‬ ‫و أﻋﻂ ﻗﻴﺎﺳﺎ ﻟﻠﺰاوﻳﺔ )‪ ( M ' A; M ' B‬ﺑﺪﻻﻟﺔ )‪. ( MA; MB‬‬ ‫‪ (b‬اﺳﺘﻨﺘﺞ أن‬ ‫‪MB M ' B‬‬ ‫‪ (c‬ﺣﺪد ﺻﻮرة اﻟﻤﺴﺘﻘﻴﻢ ) ‪ ( AB‬ﺑﺎﻟﺘﻄﺒﻴﻖ ‪. ϕ‬‬ ‫‪ (5‬ﻧﻀﻊ ‪. z = e iθ ;θ ∈ [0; π ] :‬‬ ‫‪ (a‬اآﺘﺐ ' ‪ z‬ﻋﻠﻰ اﻟﺸﻜﻞ اﻟﻤﺜﻠﺜﻲ‪.‬‬ ‫‪ (b‬ﺣﺪد ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ) ' ‪ M ' ( z‬ﻋﻨﺪﻣﺎ ﻳﺘﻐﻴﺮ ‪ θ‬ﻓﻲ اﻟﻤﺠﺎل ] ‪. [0; π‬‬ ‫ﺗﻤﺮﻳﻨﺎن ‪ 1‬و ‪ 3‬ﻣﻘﺘﺒﺴﺎن ﻣﻦ اﻟﻔﺮض اﻟﻤﻘﺘﺮح ﻣﻦ ﻃﺮف اﻷﺳﺘﺎذ ﺣﺴﻦ ﻃﻴﻮال ﺳﻨﺔ اﻟﺪراﺳﻴﺔ ‪05/06‬‬ ‫ﺗﻤﺮﻳﻦ‪ 4‬ﻣﻘﺘﺒﺲ ﻣﻦ اﻟﻔﺮض اﻟﻤﻘﺘﺮح ﻣﻦ ﻃﺮف اﻷﺳﺘﺎذ ﺻﻮﻓﻲ ‪06/05‬‬

‫‪Moustaouli Mohamed‬‬

‫‪http://arabmaths.ift.fr‬‬

Related Documents

Moustaouli Mohamed
November 2019 14
Mohamed
October 2019 49
Mohamed Ali
October 2019 37
Mohamed Yousfi
June 2020 9
Mohamed Ghazy
June 2020 5
Cv Mohamed
November 2019 20

More Documents from ""

Null
November 2019 16
Null
November 2019 9
November 2019 15
Null
November 2019 13
Null
November 2019 19
Null
November 2019 13