6.002
CIRCUITS AND ELECTRONICS
http://electrical.globalautomation.info
MOSFET Amplifier Large Signal Analysis
Review
Amp constructed using dependent source control a a′ port
DS
b output b′ port
Dependent source in a circuit b
+ –
a + v
i = f (v )
a′ –
b′
Superposition with dependent sources: one way tleave all dependent sources in; solve for one independent source at a time [section 3.5.1 of the text]
Next, quick review of amp …
Reading: Chapter 7.3–7.7
http://electrical.globalautomation.info
Amp review VS RL
vO VCCS
vI
K 2 iD = (vI − 1) 2
+ –
for vI ≥ 1V = 0 otherwise vO = VS − iD RL K (vI − 1)2 2
http://electrical.globalautomation.info
Key device Needed: v A
B i = f (v )
voltage controlled current source
C
Let’s look at our old friend, the MOSFET …
http://electrical.globalautomation.info
Key device Needed: Our old friend, the MOSFET … First, we sort of lied. The on-state behavior of the MOSFET is quite a bit more complex than either the ideal switch or the resistor model would have you believe.
D G vGS < VT
D
S
S
?
G vGS ≥ VT
http://electrical.globalautomation.info
Graphically
Demo iDS
+ vGS –
iDS
egio n
iDS
vGS ≥ VT
vGS < VT
vDS
S MODEL
vGS < VT
vDS = vGS − VT vGS 1 Saturation region
vGS 2
vGS3 ...
vGS ≥ VT
Trio de r
iDS
v+DS –
vDS
SR MODEL
vGS < VT Cutoff
vDS
region
http://electrical.globalautomation.info
Graphically
+ vGS –
iDS
iDS
S MODEL
vGS 2
vGS3 ...
vGS < VT
Saturation region
Trio de r
vGS ≥ VT
vDS
vDS = vGS − VT vGS 1
egio n
iDS
vGS ≥ VT
vGS < VT
v+DS –
iDS
vDS
SR MODEL
vGS < VT
vDS
when
vDS ≥ vGS − VT Notice that MOSFET behaves like a current source
http://electrical.globalautomation.info
MOSFET SCS Model When
vDS ≥ vGS − VT
the MOSFET is in its saturation region, and the switch current source (SCS) model of the MOSFET is more accurate than the S or SR model
D G vGS < VT S
D
D
G S vGS
G ≥ VT
iDS = f (vGS ) K 2 = (vGS − VT ) 2 S
when
vDS ≥ vGS − VT
http://electrical.globalautomation.info
Reconciling the models… iDS
iDS
egio n
iDS
Trio de r
vGS ≥ VT
vGS < VT
vDS
S MODEL for fun!
vGS < VT
Saturation region
vGS 2
vGS3 ...
vGS ≥ VT
vDS = vGS − VT vGS 1
vDS
SR MODEL for digital designs
vGS < VT
v DS
SCS MODEL for analog designs
When to use each model in 6.002? Note: alternatively (in more advanced courses)
vDS ≥ vGS − VT vDS < vGS − VT
use SCS model use SR model
or, use SU Model (Section 7.8 of A&L)
http://electrical.globalautomation.info
Back to Amplifier VS vI
AMP
vO
VS RL vI
G
D S
vO K 2 iDS = (vI − VT ) 2 in saturation region
To ensure the MOSFET operates as a VCCS, we must operate it in its saturation region only. To do so, we promise to adhere to the “saturation discipline”
http://electrical.globalautomation.info
MOSFET Amplifier VS RL vI
G
D S
vO K 2 iDS = (vI − VT ) 2 in saturation region
To ensure the MOSFET operates as a VCCS, we must operate it in its saturation region only. We promise to adhere to the “saturation discipline.” In other words, we will operate the amp circuit such that vGS ≥ VT and vDS ≥ vGS – VT vO ≥ vI – vT
at all times.
http://electrical.globalautomation.info
Let’s analyze the circuit First, replace the MOSFET with its SCS model.
VS RL
vO G
vGS = vI
+ –
+ vI –
D
S
iDS
K 2 = (vI − VT ) 2
A
for vO ≥ v I − VT
http://electrical.globalautomation.info
Let’s analyze the circuit VS
RL
vO G
vGS = vI
+ –
+ vI –
D
S
iDS =
K (vI − VT )2 2
A
for vO ≥ v I − VT (vO = vDS in our example)
1
Analytical method: vO vs vI vO = VS − iDS RL B K 2 or vO = VS − (vI − VT ) RL for vI ≥ VT 2 vO ≥ vI − VT
vO = VS
v I < VT (MOSFET turns off) for
http://electrical.globalautomation.info
Graphical method vO vs vI K 2 From A : iDS = (vI − VT ) , 2 vO ≥ vI − VT 2
for
⇓ 2iDS vO ≥ K ⇓ K 2 iDS ≤ vO 2
B : iDS =
VS v0 − RL RL
http://electrical.globalautomation.info
2
Graphical method vO vs vI K 2 K 2 A : iDS = (vI − VT ) , for iDS ≤ vO 2 2 VS vO = − i B : DS RL RL iDS
VS RL
iDS B
Lo ad
K 2 ≤ vO 2 A
li n e
vI = vGS
VS Constraints
A
and
B
vO
must be met
http://electrical.globalautomation.info
2
Graphical method vO vs vI
iDS VS RL
iDS ≤
K 2 vO 2 A
B
vI
VI
I DS
VO
VS
vO
Constraints A and B must be met. Then, given VI, we can find VO, IDS .
http://electrical.globalautomation.info
Large Signal Analysis of Amplifier (under “saturation discipline”) 1
vO versus vI
2
Valid input operating range and valid output operating range
http://electrical.globalautomation.info
Large Signal Analysis vO versus vI
1
vO
K 2 VS − (vI − VT ) RL 2
VS
VT
vO = vI − VT gets into triode region vI
http://electrical.globalautomation.info
Large Signal Analysis What are valid operating ranges under the saturation discipline? vI ≥ VT Our K 2 iDS ≤ vO Constraints vO ≥ v I − VT 2 2
iDS VS RL
iDS ≤
K 2 vO 2
K (vI − VT )2 2 vI VS vO iDS = − RL R L
iDS =
VS
?
vO
vI = VT vO = VS and iDS = 0
http://electrical.globalautomation.info
2
Large Signal Analysis
What are valid operating ranges under the saturation discipline?
iDS
iDS
K 2 ≤ vO 2
K 2 iDS = (vI − VT ) 2 vI v V iDS = S − O RL R L vO − 1 + 1 + 2 KRLVS vI = VT + KRL − 1 + 1 + 2 KRLVS vO = KRL VS vO iDS = − RL RL
vI = VT vO = VS and iDS = 0
http://electrical.globalautomation.info
Large Signal Analysis Summary 1
vO versus vI vO = VS −
2
K (vI − VT )2 RL 2
Valid operating ranges under the saturation discipline? Valid input range: vI : VT
to
− 1 + 1 + 2 KRLVS VT + KRL
corresponding output range: vO : VS to
− 1 + 1 + 2 KRLVS KRL
http://electrical.globalautomation.info