Moolecular Features Aml .pdf

  • Uploaded by: Jorge Ventura
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Moolecular Features Aml .pdf as PDF for free.

More details

  • Words: 2,504
  • Pages: 60
Leukemogenesis: acute myeloid leukemia (AML) Jordi Esteve Hospital Clínic, Barcelona

Acute  Myeloid  Leukemia  (AML) Concept  of  AML Leukemic  hierarchy:  leukemia  stem-­‐cell  model Muta:onal  landscape Biography  of  leukemogenic  muta:ons  of  AML:  from pre-­‐clonal  lesions  to  clonal  evolu:on • Epigene:c  disturbance • Role  of  microevironment • Transla:on  to  clinic:  risk-­‐adapted  therapy, unravelling  therapeu:c  targets • • • •

Acute leukemia: behind a name – Biological meaning • Enhanced cell kinetics- high proliferation • Origin in immature hematopoietic progenitors – Clinical meaning • Rapid onset of symptoms • Risk of threatening clinical events

Acute leukemia: main subtypes

– Acute Myeloid Leukemia (AML) – Acute Lymphoblastic Leukemia (ALL) – Acute Leukemia of ambiguous lineage - Acute indifferentiated leukemia - Mixed phenotype acute leukemia - Natural killer-cell leukemia WHO Classification, 2008

AML: operative definition (WHO 2008) • Clonal expansion of myeloid blasts in bone marrow (BM), peripheral blood (PB) or other tissue • Minimum threshold of blast cells for AML diagnosis (BM): – >20% blasts (WHO, 2008) – Any blast count in cases with RUNX1/RUNX1T1, CBFb/MYH11 or PML/RARA rearrangement

Hematopoiesis in AML patients B cell T cell NK cell DC

HSC

AML  BLASTS

Erythrocyte Platelet

Acute  Myeloid  Leukemia  (AML): behind  an  opera2ve  defini:on • Gene:cally  heterogeneous  clonal  disorder • Origin  in  hematopoie:c  progenitor  cells • Due  to  accumula:on  of  soma:c  acquired gene:c  &  epigene:c  altera:ons • Altered  mechanisms  of  self-­‐renewal  (↑), prolifera:on  (↑)  &  differen:a:on  (↓) • Resul:ng  in  an  impaired  leukemic hematopoie:c  hierarchy:  the  leukemia  stem-­‐ cell  model

Acute  Myeloid  Leukemia  (AML) Concept  of  AML Leukemic  hierarchy:  leukemia  stem-­‐cell  model Muta:onal  landscape Biography  of  leukemogenic  muta:ons  of  AML:  from pre-­‐clonal  lesions  to  clonal  evolu:on • Epigene:c  disturbance • Role  of  microevironment • Transla:on  to  clinic:  risk-­‐adapted  therapy, unravelling  therapeu:c  targets • • • •

WHO  classifica:on  of  AML  (II):  an  increasing repertoire  of  molecularly-­‐defined  en::es I. AML with recurring genetic abnormalities – – – – – – – – –

AML with t(8;21)(q22;q22)/RUNX1-RUNXT1 AML with inv(16) or t(16;16)(p13;q22)/CBFβ-MYH11 Acute promyelocytic leukemia [t(15;17) & PML-RAR-α] AML with t(9;11)(p22;q23)/AF9(MLLT3)-MLL AML with t(6;9)(p23;q34)/DEK-CAN(NUP214) AML with inv(3) or t(3;3)(q21;q26)/RPN1-EVI1 Megakaryoblastic AML with t(1;22)(p13;q13)/RBM15-MKL1 AML with mutated NPM1 AML with normal karyotype and CEBPA mutation WHO Classification, 2008

AML  muta:ons:  distribu:on  into  categories  of  related  genes

The Cancer Genome Atlas Research Network, NEJM 2013

AML  muta:ons:  categories  of  related  genes – Myeloid transcription factors • Gene fusions: PML-RARA, CBF-AML,… • Gene mutations: CEBPA, RUNX1,… – NPM1 – Activating signalling: FLT3, KIT, KRAS/NRAS,… – Tumor supressor genes: TP53, WT1, PHF6 – DNA methylation machinery: DNMT (3A,3B,1), IDH1/2, & TET1/2 – Histone modifiers: MLL-X fusions, MLL-PTD, NUP98-NSD1, ASXL1, EZH2,… – Splicing machinery – Cohesin complex: STAG2, SMC1A/3, RAD21,… The Cancer Genome Atlas Research Network, NEJM 2013

Gene  muta:ons  in  AML:  a  systema:c  (simplis2c?)  view MATURATION ARREST (type II)

PROLIFERATION (type I)

Initial leukemogenic events

Adcquired, evolutive events

Involve transcription factors Mutually exclusive

Involve cell signalling pathways

Fusion transcripts PML/RARA AML1(RUNX1)/ETO(RUNX1T1) CBFbeta/MYH11 MLL/partners Uncommon types (DEK/CAN, MOZ/CBP,HOXA9/NUP98) Other mutations NPM1 CEBPA RUNX1

Usually associated with diverse type II mutations

Gene mutations FLT3 (ITD, TKD) Kit Ras …

AML  genomic  landscape:  number  of  recurrent muta:ons  in  coding  sequence  per  sample

The Cancer Genome Atlas Research Network, NEJM 2013

Core-­‐binding  factor  AML:  loss  of  histone  acetyl  transferase (HAT)  ac:vity  leads  to  transcrip:on  repression

inv(16)(p13q22)/t(16;16)(p13;q11) CBFbeta/MYH11 t(8;21)(q22;q22) AML1(RUNX1)/ETO(RUNX1T1)

FLT3  (fms-­‐like  TK)  Internal  Tandem  Duplica:on  (ITD)

Downstream FLT3 signaling

Muta:ons  in  AML  -­‐  summary • Rela:vely  low  number  of  muta:ons  to  drive  AML • Unusual  genomic  inas:bility • Random  background  muta:ons  before  acquisi:on  of founding  muta:on • Only  one  or  two  coopera:ng  muta:ons  are  needed for  genera:on  of  malignant  founding  clone • Founding  clone  can  acquire  addi:onal  coopera:ng muta:ons  –  origin  of  subclones

Changer  le  monde...

Increasing  incidence  of  AML  with  age: a  work  of  years

Dores G M et al. Blood 2012 / SEER registry, 2001-2006

Normal,  self-­‐renewing  human  hematopoie:c  stem  cells accumulate  random  muta:ons  over  :me as  a  func:on  of  age  –  passenger  muta:ons

John S Welch, et al. Cell 2012

Origin of mutations in AML: pre-leukemic mutations in healthy hematopoietic stem cells (HSCs) • Detec:on  of  DNMT3A  muta:ons  in  non-­‐leukemic cells  (HSCs)  –  pre-­‐leukemic  HSCs • DNMT3Amut  HSCs  maintain  mul:lineage  (My-­‐Ly) differen:a:on  poten:al  –  non-­‐leukemic • DNMT3Amut  HSCs  show  clonal  expansion    -­‐ compe::ve  advantage • DNMT3Amut  HSCs  survive  chemotherapy,  are  found in  long-­‐survivors  &  expand  during  remission  – reservoir  for  clonal  evolu:on  –  relapse? • Should  pre-­‐leukemic  HSCs  be  therapeu:cally targeted? Liran I Slush, et al. Nature 2014

Clonal  hematopoiesis  is  found  in  elderly  persons  and  is  a strong  risk  factor  for  subsequent  hematologic  cancer  WGS  of  peripheral  blood  cells  in  a  cohort  of  >12300 persons  &  subsequent  follow-­‐up: • Clonal  hematopoiesis  with  soma:c  muta:ons  found in  10%  of  persons  >65  year-­‐old • Common  soma:c  muta:ons  in  3  genes  commonly involved  in  myeloid  neopl:  DNMT3A,  ASXL1,  &  TET2 • Clonal  hematopoiesis,  a  strong  risk  factor  for hematologic  cancer  (HR:  12.99,  5.6-­‐28.7) • 42%  of  hematologic  cancers  in  persons  with  previous detectable  clonality G Genovese, et al. N Engl J Med 2014

Clonal Expansion of pre-leukemic mutations

Genovese G et al. N Engl J Med 2014;371:2477-2487

Hematopoietic Clones and further Evolution

Genovese G et al. N Engl J Med 2014;371:2477-2487

Origin of relapse in AML: evolution from founding clone / subclone / ancestral clone?

L Ding et al. Nature 2011

Acute  Myeloid  Leukemia  (AML) Concept  of  AML Leukemic  hierarchy:  leukemia  stem-­‐cell  model Muta:onal  landscape Biography  of  leukemogenic  muta:ons  of  AML:  from pre-­‐clonal  lesions  to  clonal  evolu:on • Epigene:c  disturbance • Role  of  microevironment • Transla:on  to  clinic:  risk-­‐adapted  therapy, unravelling  therapeu:c  targets • • • •

AML  is  a  disease  with  deregulated  epigene:c  program: role  for  epigene2c  therapy

DNA methylation (CpG islands) – demethylating agents Histone deacetylation – HDAC inhibitors Histone methylation miRNA gene methylation

AML:  also  an  epigene:c  disease • Dis:nc:ve  CpG  methyla:on  paeerns • Frequent  muta:ons  in  genes  involved  in: – DNA  methyla:on:  DNMT3A,  IDH1-­‐2,  TET2 – Histone  modifiers:  MLL,  ASXL1-­‐PRC2 • Epigene:c  deregula:on  of  non-­‐coding  RNAs? • An:leukemic  ac:vity  of  hypomethyla:ng  agents – Azacy:dine – Decytabine

Dis:nc:ve  CpG  methyla:on  signatures  among  AML  subtypes

Figueroa ME, Cancer Cell 2010

AML  muta:ons:  distribu:on  into  categories  of  related  genes

The Cancer Genome Atlas Research Network, NEJM 2013

Decitabine in elderly AML – benefit in patients unfit, unsuitable for intensive chemotherapy

Decitabine

Control  arm

CR

16

7

CRp

2

0.4

CR  +  CRp

18

8

CRi

10

3

Stable disease

28

23

Kantarjian  H,    et  al.,  JCO  2012

Pre-­‐planned  OS  Sensi:vity  Analysis Censored  for  Subsequent  AML  Tx* Median  [95%  CI]  OS:  AZA  =  12.1  mos  [9.2,  14.2]  vs.  CCR  =  6.9  mos [5.1,  9.6]

Unstra:fied  HR=0.75  [95%CI  0.59,  0.95];  log-­‐rank  p=0.0147 Stra:fied†  HR=0.76  [95%CI:  0.60,  0.96];  log-­‐rank  p=0.0190

12.1  mos

6.9  mos

○  =  Censored

*67  AZA  pts  and  75  CCR  pts  in  this  sensi:vity  analysis  were  censored  at  the  :me  they  received  subsequent  AML  Tx †Stra:fied  by  ECOG  PS  and  cytogene:c  risk

31

TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients

Mutated  gene Adjusted  OR  (95%  CI) MutaPons  with  VAF  ≥10%  TET2-­‐mut  vs  TET2-­‐WT 1.98  (1.02,  3.85)  ASXL-­‐mut  vs  ASXL1-­‐WT 0.68  (0.38,  1.19)

P  value .044 .17

 TET2-­‐mut  +  ASXL1-­‐WT  vs  other

3.64  (1.35,  9.79)

.011

 TET2-­‐mut  +  ASXL1-­‐WT  vs  both  WT

3.36  (1.20,  9.38)

.013

Bejar R, et al. Blood 2014

AML cells disrupt normal hematopoietic niche

Lane SW et al, Blood 2009

Leukemic cells & bone marrow microenvironment: dangerous liaisons • Impairment  of  normal  hematopoie:c  niche  by: – Direct  invasion – Secre:on  of  substances  (SCF,…) • Alterna:ve  leukemic  niche,  deregulated  homing • Protec:ve  effect  of  stroma  on  leukemic  blasts (quiescence,  chemoresitance,…) • Drug  interference  with  stroma-­‐LSC:  a  new therapeu:c  opportunity  (the  plerixafor  paradigm)

Acute  Myeloid  Leukemia  (AML): lessons  from  biology • Defini:on  of  AML • Recogni:on  of  disease  diversity • Unraveling  the  underlying  complex  biology  of  AML: – Leukemic  hierarchy – Accumula:on  of  gene  muta:ons – Epigene:c  disturbance – Origin  of  leukemia  &  relapse – Role  of  microevironment • Biology  leads  to  refinement  of  prognosis,  risk-­‐ adapted  therapy  &  therapeu:c  targets

Risk-­‐adapted  therapy  …  what’s  in  a  concept? • Ini:al  risk  assignment – Biological  profiling  (gene:cs  of  disease) – Evidence  generated  on  op:mal  management • Dynamic  risk  assessment  –  minimal  residual  disease • Host-­‐adapted  therapy – Age – Evalua:on  of  comorbid  condi:ons

AML:  high  clinical  heterogeneity  due  to  biological diversity

Grimwade D, et al. Blood 2010

Recommended post-remission therapy for ELN-adapted genetic categories ELN genetic group Favorable

Molecular subsets

Recommended post-CR1 therapy

t(8;21)/RUNX1(AML)-RUNXT1(ETO)

HiDAC

inv(16)/CBFb-MYH11

Autologous HSCT?

NPM1mut w/o FLT3-ITD Intermediate-I

Double CEBPA mutation

Consider alloHCST if MRD(+)

Triple negative (NPM1,FLT3-ITD,CEBPA)

AlloHSCT? Consider autoHSCT if MRD(-)

Int-I’

NPM1mut or NPM1wt FLT3-ITD

AlloHSCT in CR1 AutoHSCT /HiDAC in FLT3-ITDlow ratio?

Int-II Adverse

t(9;11)/AF9-MLL

AlloHSCT in CR1

t(11;19)/MLL-ENL

AutoHSCT if MRD(-)?

inv(3)/t(3;3)/RPN1-EVI1

AlloHSCT in CR1

t(6;9)/DEK-NUP214(CAN)

AlloHSCT in advanced phase?

-5/del(5q), -7, abn(17p), complex or monosomal karyotype

Experimental therapy

t(v;11q23)/Other MLL-rearrangement

Therapy in AML: state-of the-art • Induc:on  therapy  based  on  combina:on  of  an anthracycline  &  ara-­‐C • High-­‐dose  ara-­‐C  benefits  pts  with  good-­‐prognosis AML  (cytogene:c  &  molecular  defini:on) • Early  alloHSCT  benefits  younger  high-­‐risk  pa:ents • The  APL  paradigm:  differen:a:ng  therapy  (ATRA, ATO) • Improved:  suppor:ve  therapy • Diverse  novel  strategies  are  being  explored

Therapy  of  AML  –  unmet  needs • “High-­‐risk”  presenta:on  forms  -­‐  a  “gentle  APL-­‐ like  approach”  with  differen:a:ng  agents? • Remission  is  based  on  highly  myelotoxic agents • Limited  target  popula:on  of  hematopoie:c stem-­‐cell  transplant

AML & age: rationale for a different biological background • AML is a disease of long-lived progenitor hematopoietic stem-cells • Multi-step leukemogenic model: increasing risk with age • Increasing proportion of multi-hit AML subtypes • Accumulation of pre-leukemic mutations • Stromal aging: a role in AML origin? • Failing inmune surveillance with age

On-going trials with novel agents in AML Drug

Target

Study phase

Dasatinib

Kit

3 (CBF-AML)

Crenolanib

PanFLT3mut inhibitor

2

ABT-199

Bcl-2 inhibitor

2

AG-221

IDH2 mutant

1

RG7388

MDM2 antagonist

1

OTX015

BET-Bromodomain inhibitor

1b

ABT-199

Bcl-2 inhibitor

1

Alisertib

Aurora kinase inhibitor

2

EPZ-5676

1 (MLL-AML)

CSL362

DOT1L inhibitor Anti-IL3Rα (CD123)

SGN-CD33A

Conjugated antiCD33 Ab

1

CAR(T)s

AntiCD123, antiWT1

Pre-clinical



...



1

Potential therapeutic targets within main AML entities AML subtype

Molecular target

Drug

APL

PML-RARA

ATRA, ATO

AML-CBF

Kit

TKIs (dasatinib)

Ras

PI3K + MEK inh

HOX overexpresion

DOT1L1 inh

DNMT3A

Hypomethilators

FLT3-ITD

FLT3 inhibitors

IDH2

IDH2 inh

AML-NPM1mut

MLL-r AML

Methyltransferase complex DOT1L1inh (EPZ5676) CDK6

Palbociclib

EVI1-r AML

Ras

PI3K + MEK inh

t(6;9) AML

FLT3

FLT3 inhibition

MRC-AML

TP53

MDM2 antagonist?

EZH2 mutation

Proteasome inh

MoAbs  in  AML:  Humanized  an:CD33  Ab Gemtuzumab  +  calicheamicin  (Mylotarg)

1-2. Binding to CD33 Ag 3-4. Internalization & calicheamicin activation 8. Antitumoral effect: induction of DNA breaks 7. Mechanisms of resistance: drug efflux 5. Rapid CD33 re-expression

Mylotarg/GO  in  AML  frontline  therapy:  impact  of cytogene:cs Favorable  cytogene:cs

Intermediate-­‐risk  cytogene:cs

FLT3  inhibitors:  diverse  an:-­‐TKI  poten:al

Sorafenib:  InhibiPon  of  MulPple  Kinases Serine/threonine kinases1,2

IC50 (nM)

Raf-1

6

B-Raf

25

Oncogenic b-raf V600E mutant

38

p38

38

Mnk-2 ERK-1, MEK- 1, PKA, PKB, PKC, cdk1/cyclinB, pim-1

Receptor tyrosine kinase1,2

150 >10,000 IC50 (nM)

VEGFR-13

26

VEGFR-2

90

VEGFR-3*

20

Flt-3

33

RET4

47

PDGFR-β*

57

c-KIT

68

FGFR-1 c-met, IGFR-1, EGFR, HER2, LCK

580 >10,000

Zarrinkar  et  al.,  Blood  2009,  Wilhelm  SM,  et  al. Cancer  Res  2004,  Riedl  B,  et  al.  AACR  2001, Carlomagno  F,  et  al.  J  Natl  Cancer  Inst

Event-­‐Free  Survival (ITT,  no  SCT  censoring) 100

Median  EFS  Placebo  vs  Sora: 9  m  vs  25  m

Probability (%)

80

60 Sorafenib 40

Placebo

20

p=0.01 0

0

12

24

36

60 46

38 25

Time (months) Sorafenib 134 Placebo 133

72 61

Median  follow-­‐up  36 months

C Röllig, et al./SAL (abst. 6, Plenary session)

FLT3  inhibitors:  current  evidence Limited activity in monotherapy (sorafenib, midostaurin,…) Possible synergy in combination with chemotherapy - Lestaurtinib: no benefit in relapsed AML - Midostaurin/PKC-412: on-going trial (front-line tx) Treatment of relapse after alloHSCT: prolonged responses in some pts. treated with sorafenib – induction of GvL effect after cytoreduction? AC220 (quizartinib): remarkable activity in monotherapy - Composite response rate (CR+CRp+CRi) of ≈45% - Differentiating potential in AML blasts Fischer T, JCO 2010 Levis M, Blood 2011 Cortes J, Haematologica 2011

Plk1: a key regulator of mitosis • Microtubule-kinetochore attachment • Mitotic progression

Plk1 deficiency • Spindle elongation

Midzone Kinetochores

Metaphase

Prometaphase

• Mitotic entry (Cdk1 activation) • Centrosomal microtubule nucleation

Anaphase

Plk1 NH2

• Cleavage furrow formation (cytokinesis)

COOH

Midbody Centrosomes

Telophase

Prophase

Plk1 localization Plk functions

• Checkpoint adaptation and recovery

Microtubules DNA Interphase

Modified from Takaki T, et al. Curr Opin Cell Biol 2008;20:650–60.

Epigenetics effects of IDH mutations (II) • IDH mutations lead to a neomorphic enzyme activity, converting alpha-ketoglutarate (α-KG) to 2-hydroxyglutarate (2HG) • 2HG is an oncometabolite which disrupts enzymes using α-KG: – TET2, resulting in a 5-OH-methylation block – Jumonji family of histone demethylase

Ari Melnick, et al (ASH 2011 Scientific Program)

IDH  mutants  are  a  poten:al  target  in  AML

52

AG-­‐221  for  AML  pa:ents  with  mutated  IDH-­‐2

Agresta  S,    et  al.,  EHA  2014

Mechanism of action of ATRA in APL: transcriptional reactivation by overcoming maturation block (“relieving repression induces remission”)

Hugues de Thé, Zhu Chen; Nature Review 2010

Treatment schedule Induction

Consolidation ATO

ATO arm

ATO

ATRA 2 weeks on / 2 weeks off

Estey et al, Blood 2006

Induction Chemo Arm

ATO

4 weeks on / 4 weeks off

Until CR

R

ATO

IDA

ATRA

Maintenance

Consolidation IDA

ATRA

Until CR Lo-Coco et al., Blood 2010

MTZ

ATRA

3 monthly cycles

IDA

ATRA

MTX + 6MP ATRA 2 years

U Platzbecker, et al. (abst. 12, session 615)

AG-­‐221  for  AML  pa:ents  with  mutated  IDH-­‐2 • AG-221 induces effective 2-HG inhibition in pts with R140Q IDH-2 mutation • Significant clinical activity:  14 of 25 responses  9 pts achieved CR/CRp/CRi  Durable responses: 5 pts with responses > 2.5 mos. • Responses observed in AML, MDS & CMML • Safe & well tolerated

Analyzing  causes  of  failure  -­‐  challenges  for developing  a  cura:ve  therapy  in  AML • Biological heterogeneity – not a unique target • Multi-step process – lessons from wholegenome sequencing • Quiescence of leukemia-stem cells confers chemoresistance – need to target LSCs • AML: a family of different subclones – preleukemic & evolutive clones • BM microenvironment – a protective milieu

Potential mechanisms for targeting Leukemia Stem Cells • Targeting

fusion proteins - High diversity in AML

• Signaling pathways (JAK/STAT, Wnt, Hedghog,…) - Diversity - Redundancy-overlapping • Self-renewal mechanisms - Similarity HSCs - LSCs • Inducing differentiation • MoAbs against specific LSC Ag (CD44,CD123,TIM-3,…)

New  agents  for  acute  leukemia  –  final considera:ons • Progress  in  AML/ALL  biology  knowledge  is essen:al  for  developing  new  therapies • Heterogeneity  of  disease  –  analysis  of  benefit in  specific  popula:ons • Mul:step  disease  –  need  of  combining  agents against  diverse  targets • Targe:ng  LSCs:  hope  for  cure

Marta  Pratcorona  (FCRB) Marina  Díaz  Beyá  (HCB,  FCRB  ) Ruth  M.  Risueño  (IRJC) Meritxell  Nomdedeu  (FCRB) Grup  de  recerca  mieloide, IDIBAPS,  IR  Josep  Carreras

University  of  Barcelona Alfons  Navarro Marià  Monzó

CETLAM  Group Salut  Brunet Jordi  Sierra Josep  Nomdedéu Josep  Ma.  Ribera Mar  Tormo David  Gallardo Olga  Salamero Carme  de  Pedro …. CETLAM  centers

Related Documents

Conceptmap (aml)
June 2020 14
Aml Trace
November 2019 21
Features
April 2020 41
Aml Overview
November 2019 20
Features
June 2020 26

More Documents from "api-3810182"