Given the Mean Annual Return of two investments (like Stocks and Bonds) and the annualized Volatility (or Standard Deviation) of each and a degree of Correlation between the two … the Monte Carlo (MC) sheet picks random annual returns* for each, over the next umpteen years and, assuming some split between the two investment types - like 75% of the former and 25% of the latter (and an annual rebalancing to maintain this split), sees how much would be left of your portfolio if you withdraw a given percentage of the original portfolio (this amount increasing annually with inflation) … and it does this hundreds of times to see what fraction of these iterations would yield a portfolio less than 10% of the original portfolio value, or less than 20% … or even more than 110% … or even 0% - meaning your portfolio went to $zero :^( (These percentages are the BreakPoints.) See: http://home.golden.net/~pjponzo/Monte-Carlo.htm for "the Math" P.S. You can also stick in a negative withdrawal rate and see what'd happen as you add to your portfolio, increasing annually with inflation … in which case you may want to carefully change the BreakPoints in T2 to T13. See the next sheet: Explain-2 Since it takes some time, you can ask for just ONE run (of umpteen hundred iterations… you decide how may hundreds or a collection of runs, using three different Stock/Bond splits and three different Withdrawal Rates (that makes NINE scenarios, eh?). There's also a chart of some sample portfolios. The red graph on this chart is the deterministic portfolio evolution: it uses an Annualized Return then sets both Standard Deviations to zero. The Monte Carlo simulations fluctuate about this graph. P.S. The software needs the Average (or Mean) annual returns. If you know the Annualized returns, you can Click a Button and get 'em changed to Average. * Note: the (random) returns are Log-normally distributed … but you can also ask for a Normal distribution. This spreadsheet began life as a child of Richard Pritz with help from Peter Van and Peter Ponzo.
ualized Volatility
n years and, of the latter -
ly with inflation)
to your portfolio, increasing akPoints in T2 to T13. you decide how may hundreds)
te about this graph. zed returns, you
a Normal distribution. Peter Ponzo.
If you should decide to use a negative withdrawal rate (meaning that you're adding annually to your portfolio) then it's unlikely that you'll be interested in how often the Final portfolio was greater than 0%, 500%,1000%, etc. of the Original portfolio. They MIGHT all be!!
So, you'll want to know how often your Final portolio was greater than (for example) 1000%, 3000%, etc. of your Original portfolio. To allow you to do this, change the percentage in cell T2 and the increment in cell R5 … like so: Now the spreadsheet will calculate how often the final portfolio was less than (for example) 1000%, 3000%, etc. Neat, eh?
Note: You can ask for Simple or Latin Hypercube sampling (when you choose Normal or Lognormal). Just enter S or H ... or even s or h. See: http://home.golden.net/~pjponzo/latin-hypercube.htm
se Normal or Lognormal). golden.net/~pjponzo/latin-hypercube.htm
Okay, here's another variant:
A standard Monte Carlo simulation uses a fixed Mean Return and Standard Deviation and Distribution (Normal? Log-norm over the 10, 20, 30, etc. years considered by the simulation You don't like that? Then how about selecting, for your Stock gain, at random, monthly gains from a collection of monthly gains of the S&P 50 from Jan, 1926 to May, 2001? (At last count, there's 905 of 'em and they live in column AI as "1+Monthly Return" You like that? Remember, that includes the 1929 crash!! You can put your own (1+MonthlyReturn) data in column AI. Just be sure to first delete the data that's there! If you'd like to see the effect of that choice (where you don't assume some fixed Mean, Standard Deviation or Distribution, but use real, live historical returns), then instead of typing N or L in cell B9, type S (for S&P, eh?) or T
The MC software will, when calculating an annual Stock gain, multiply together a dozen (consecutive) monthly selections (at random, of course) from the collection of S&P 500 gains (which live in column AI) or TSE gains (in column If you enter T in cell B9, then the bond component is selected from Cdn longBond gains (in column AM ... and twelve (consecutive) monthly gains from the same year are multiplied together to get the annual Bond gain. Otherwise, the annual Bond gain, will be the standard Log-normal distribution with your choice of Mean and Standard Deviation. P.S. For the past umpteen years (since 1926) appropriate, nominal (as opposed to inflation-adjusted) "annual" numbers ar Average U.S. Stock Return: 12.6% Standard Deviation: 20% Bonds - 5 year U.S. treasuries: Average Return: 5.5% Standard Deviation: 6% Correlation: 8% TSE average Stock Return (since 1948): 11.5% Standard Deviation: 15% See Richard's page for more data: http://www.geocities.com/snarkll/
d Distribution (Normal? Log-normal?)
n of monthly gains of the S&P 500, I as "1+Monthly Return")
ete the data that's there! andard Deviation or Distribution, &P, eh?) or T (for TSE).
consecutive) monthly selections SE gains (in column AK). (in column AM) get the annual Bond gain.
on-adjusted) "annual" numbers are:
Stocks Bonds ** If B2/C2 are Annualized Returns ** Average Annual Return = 12.6% 6.7% Annual Standard Deviation = 19.5% 8.4% Enter the Volatilities: Stocks & Bonds Correlation = 5% Enter the Correlation: Stocks & Bonds Annual Inflation = 2.0% Enter Inflation Rate (=Withdrawal increase) Years = 30 Enter the number of Years to consider Iterations/100 = 10 Enter just the number of Hundreds Simple or Hypercube? S Change only the data in the boxes
Enter N , L , S or T 5.0% Probability 95% Final exceeds 92% 87% 0% Original
120%
76%
80% 60%
55%
62%
77%
3500% 3000% 2500% 2000%
92%
87%
76%
50% 75% 100%
61%
40%
1000% 500% 0%
45% 40% 35% 30% 25% 20% 15% 10% 5% 0%
Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8 Row 9 Row 10 Row 11 Row 12 Row
20%
1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2
7.0% 6.0% 50% 55% 76% Stock Percentage 75% 62% 77% 100% 61% 76% Run ONE: just 50% Stock, 7.0% Withdrawal Rate Run all NINE Stock Percentages/Withdrawal Rates
95%
4000%
1500%
Annual Withdrawal (Investment)
100%
4500%
0 1 2 3 4 5 6 7 8 9
L
5000%
Percentage of Iterations
Normal, Log-normal, etc.?
5500%
0% 7.0%
6.0%
5.0%
Final portfolio
Avg Return = 12.66%
Created by Richard Pritz with the assistance of Peter Vann & Peter Ponzo.
some SAMPLE scenarios Average Annual Return = 12.6% 6.7% Annual Standard Deviation = 19.5% Correlation =
8.4%
5%
Annual Inflation = 2.0% Years =
30
Iterations/100 =
10
Change only the data in the Normal, Log-normal, etc.? S Annual Withdrawal (Investment)
8.0%
7.0%
6.0%
50%
59%
73%
89%
75%
62%
75%
84%
100%
65%
73%
82%
Stock Percentage
Normal, Log-normal, etc.?
T
Annual Withdrawal (Investment)
8.0%
7.0%
6.0%
50%
54%
72%
90%
75%
63%
76%
90%
100%
66%
75%
85%
Stock Percentage
Normal, Log-normal, etc.?
N
Annual Withdrawal (Investment) Stock Percentage
boxes
Enter N , L , S or T 8.0%
7.0%
6.0%
50%
28%
47%
73%
75%
40%
54%
73%
100%
47%
56%
69%
Std Dev = 18.65%
Normal, Log-normal, etc.?
L
Annual Withdrawal (Investment) Stock Percentage
Enter N , L , S or T 8.0%
7.0%
6.0%
50%
45%
68%
87%
75%
58%
72%
86%
100%
60%
70%
84%
100.0%
Iterations =
100
BreakPoints
Years
12.0%
0%
12
0
Expected Final Portfolio = 2238.29%
43.0%
500%
43
1
Suggested Increment = 230.00%
22.0%
1000%
22
2
Actual Increment Used = 500.00%
11.0%
1500%
11
3
SUGGESTED INCREMENT = 1100.00%
5.0%
2000%
5
4
2.0%
2500%
2
5
0.0%
3000%
0
6
2.0%
3500%
2
7
1.0%
4000%
1
8
0.0%
4500%
0
9
0.0%
5000%
0
10
2.0%
5500%
2
11
0.0%
0%
0
12
1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9
Annualized Return = 10.92%
13 14
Deterministic Gain = 10.9%
Current Stock Percentage
100.0%
15
Current Withdrawal Rate
5.0%
16
Annualized Stock Gain
10.9%
17
Annualized Bond Gain
6.3%
18
Mixed Annual Gain
10.9%
19
Err:504
Row 5 Row 6 Row 7 Row 8 Row 9 Row 10 Row 11 Row 12 Row 13 Row 14
9
Check Sum
Final portfolio
Average of 100 simulations
20
Number of Iterations vs Percentage of Original Portfolio
21
100% stock, 5.0% annual withdrawal
22
Probability Final portfolio exceeds 0% of Original portfolio (after 30 years)
23
Stock: Gain=12.6% SD=19.5% Bond: Gain=6.7% SD=8.4% Inflation=2.0% Correlation=5.0%
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53 54 55 56 57 58 59 60
Labels
Blanks
Table-Lookup Values: Deterministic Mean = 0, SD =Withdraw$ 1
Sample Portfolios
S&P Gains
<=0%
0.0025
-2.807
100.0%
5.0%
1.000
1.000
1.000
1.000
1.000
1.000
S&P data 905 10.9% 19.5% 12.6%
<=500%
0.0050
-2.576
105.8%
5.1%
1.015
0.912
1.083
1.065
0.810
0.962
<=1000%
0.0075
-2.432
112.2%
5.2%
0.859
1.054
1.202
1.293
0.852
0.943
<=1500%
0.0100
-2.326
119.1%
5.3%
0.638
1.149
1.041
1.364
0.987
1.025
<=2000%
0.0125
-2.241
126.7%
5.4%
0.607
1.353
1.267
1.373
1.113
1.018
Above:
<=2500%
0.0150
-2.170
135.0%
5.5%
0.592
1.340
0.991
1.552
1.260
1.046
Annual Return
<=3000%
0.0175
-2.108
144.1%
5.6%
0.466
1.295
1.085
1.408
1.268
1.048
Standard Dev
<=3500%
0.0200
-2.054
154.1%
5.7%
0.507
1.317
0.933
1.944
1.573
1.025
Mean Return
<=4000%
0.0225
-2.005
165.1%
5.9%
0.440
1.492
1.046
2.709
2.090
1.025
<=4500%
0.0250
-1.960
177.1%
6.0%
0.446
1.565
0.985
3.378
1.651
0.972
<=5000%
0.0275
-1.919
190.4%
6.1%
0.548
2.272
1.240
4.053
1.718
1.035
<=5500%
0.0300
-1.881
204.9%
6.2%
0.709
2.145
1.731
6.112
1.601
1.020
>5500%
0.0325
-1.845
220.9%
6.3%
0.842
2.551
2.003
7.516
1.840
0.981
0.0350
-1.812
238.6%
6.5%
0.776
2.332
1.756
7.096
2.474
1.054
0.0375
-1.780
258.0%
6.6%
0.971
2.480
1.834
7.661
2.352
1.009
0.0400
-1.751
279.5%
6.7%
1.042
2.603
1.603
9.113
2.503
1.020
0.0425
-1.722
303.1%
6.9%
1.079
2.697
1.499
11.224
3.114
1.061
0.0450
-1.695
329.2%
7.0%
1.118
2.725
1.449
12.174
3.299
0.993
0.0475
-1.670
358.0%
7.1%
1.060
4.047
1.574
17.829
3.525
1.067
0.0500
-1.645
389.8%
7.3%
1.161
4.082
1.525
16.314
4.287
1.052
0.0525
-1.621
425.0%
7.4%
1.656
3.596
2.048
11.922
5.224
1.045
0.0550
-1.598
463.8%
7.6%
2.124
2.927
1.879
13.682
5.787
0.950
0.0575
-1.576
506.7%
7.7%
2.399
3.183
1.456
12.890
7.338
1.072
0.0600
-1.555
554.1%
7.9%
2.643
2.837
1.239
14.846
7.532
1.028
0.0625
-1.534
606.5%
8.0%
2.696
2.840
1.254
19.740
6.563
0.996
0.0650
-1.514
664.5%
8.2%
2.773
3.051
1.013
17.110
6.236
0.988
0.0675
-1.495
728.7%
8.4%
3.038
3.784
1.194
20.888
6.605
1.110
0.0700
-1.476
799.7%
8.5%
3.873
4.479
1.090
23.336
8.673
1.035
0.0725
-1.457
878.3%
8.7%
3.584
4.808
1.239
39.126
11.827
1.020
0.0750
-1.440
965.4%
8.9%
3.967
6.107
1.491
42.574
12.105
0.962
0.0775
-1.422
1061.7%
9.1%
4.861
6.759
1.563
52.167
11.780
1.014
0.0800
-1.405
1168.4%
9.2%
0.0825
-1.388
1.026
0.0850
-1.372
1.017
0.0875
-1.356
1.129
0.0900
-1.341
1.005
0.0925
-1.326
1.058
0.0950
-1.311
0.998
0.0975
-1.296
0.999
0.1000
-1.282
1.018
0.1025
-1.267
0.964
0.1050
-1.254
1.114
0.1075
-1.240
1.047
0.1100
-1.227
1.103
0.1125
-1.213
0.952
0.1150
-1.200
0.803
0.1175
-1.188
0.875
0.1200
-1.175
1.028
0.1225
-1.163
1.064
0.1250
-1.150
1.026
0.1275
-1.138
1.081
0.1300
-1.126
0.992
0.1325
-1.115
0.990
1.080
0.1350
-1.103
0.838
0.1375
-1.092
1.039
0.1400
-1.080
1.014
0.1425
-1.069
0.872
0.1450
-1.058
0.915
0.1475
-1.047
0.991
0.1500
-1.036
0.929
0.1525
-1.026
1.050
0.1550
-1.015
1.119
0.1575
-1.005
0.933
0.1600
-0.994
0.907
0.1625
-0.984
0.872
0.1650
-0.974
1.142
0.1675
-0.964
0.928
0.1700
-0.954
1.018
0.1725
-0.944
0.703
0.1750
-0.935
1.090
0.1775
-0.925
0.920
0.1800
-0.915
0.860
0.1825
-0.906
0.973
0.1850
-0.896
1.057
0.1875
-0.887
0.884
0.1900
-0.878
0.800
0.1925
-0.869
0.780
0.1950
-0.860
0.998
0.1975
-0.851
1.382
0.2000
-0.842
1.387
0.2025
-0.833
0.965
0.2050
-0.824
0.865
0.2075
-0.815
0.958
0.2100
-0.806
1.057
0.2125
-0.798
1.009
0.2150
-0.789
0.823
0.2175
-0.781
1.035
0.2200
-0.772
1.426
0.2225
-0.764
1.168
0.2250
-0.755
1.134
0.2275
-0.747
0.914
0.2300
-0.739
1.121
0.2325
-0.731
0.888
0.2350
-0.722
0.915
0.2375
-0.714
1.113
0.2400
-0.706
1.025
0.2425
-0.698
1.107
0.2450
-0.690
0.968
0.2475
-0.682
1.000
0.2500
-0.674
0.975
0.2525
-0.667
0.926
0.2550
-0.659
1.023
0.2575
-0.651
0.887
0.2600
-0.643
1.061
0.2625
-0.636
0.997
0.2650
-0.628
0.971
0.2675
-0.620
1.094
0.2700
-0.613
0.999
0.2725
-0.605
0.959
0.2750
-0.598
0.966
0.2775
-0.590
0.971
0.2800
-0.583
1.098
0.2825
-0.575
1.041
0.2850
-0.568
1.070
0.2875
-0.561
1.085
0.2900
-0.553
1.028
0.2925
-0.546
1.026
0.2950
-0.539
1.078
0.2975
-0.532
1.047
0.3000
-0.524
1.039
0.3025
-0.517
1.067
0.3050
-0.510
1.022
0.3075
-0.503
1.027
0.3100
-0.496
0.925
0.3125
-0.489
1.055
0.3150
-0.482
1.033
0.3175
-0.475
1.070
0.3200
-0.468
1.015
0.3225
-0.461
1.003
0.3250
-0.454
1.078
0.3275
-0.447
1.013
0.3300
-0.440
0.997
0.3325
-0.433
1.039
0.3350
-0.426
1.019
0.3375
-0.419
0.992
0.3400
-0.412
0.919
0.3425
-0.406
0.998
0.3450
-0.399
0.950
0.3475
-0.392
1.105
0.3500
-0.385
0.952
0.3525
-0.379
0.860
0.3550
-0.372
0.902
0.3575
-0.365
0.913
0.3600
-0.358
0.954
0.3625
-0.352
1.015
0.3650
-0.345
1.067
0.3675
-0.338
0.751
0.3700
-0.332
1.145
0.3725
-0.325
0.967
0.3750
-0.319
1.250
0.3775
-0.312
1.074
0.3800
-0.305
0.977
0.3825
-0.299
1.017
0.3850
-0.292
1.078
0.3875
-0.286
0.973
0.3900
-0.279
1.040
0.3925
-0.273
0.933
0.3950
-0.266
1.039
0.3975
-0.260
0.866
0.4000
-0.253
0.997
0.4025
-0.247
1.073
0.4050
-0.240
0.939
0.4075
-0.234
1.111
0.4100
-0.228
0.935
0.4125
-0.221
1.167
0.4150
-0.215
0.988
0.4175
-0.208
0.960
0.4200
-0.202
1.027
0.4225
-0.196
0.966
0.4250
-0.189
1.013
0.4275
-0.183
1.012
0.4300
-0.176
0.998
0.4325
-0.170
0.771
0.4350
-0.164
1.081
0.4375
-0.157
1.034
0.4400
-0.151
1.035
0.4425
-0.145
1.012
0.4450
-0.138
1.042
0.4475
-0.132
0.968
0.4500
-0.126
1.001
0.4525
-0.119
0.954
0.4550
-0.113
0.994
0.4575
-0.107
1.007
0.4600
-0.100
0.939
0.4625
-0.094
1.018
0.4650
-0.088
1.058
0.4675
-0.082
1.058
0.4700
-0.075
1.001
0.4725
-0.069
0.993
0.4750
-0.063
0.934
0.4775
-0.056
0.972
0.4800
-0.050
0.959
0.4825
-0.044
1.016
0.4850
-0.038
0.984
0.4875
-0.031
0.935
0.4900
-0.025
0.960
0.4925
-0.019
1.080
0.4950
-0.013
1.022
0.4975
-0.006
1.034
0.5000
0.000
1.016
0.5025
0.006
1.029
0.5050
0.013
1.068
0.5075
0.019
0.998
0.5100
0.025
1.055
0.5125
0.031
1.074
0.5150
0.038
1.058
0.5175
0.044
1.055
0.5200
0.050
1.004
0.5225
0.056
1.055
0.5250
0.063
1.022
0.5275
0.069
0.947
0.5300
0.075
1.017
0.5325
0.082
1.026
0.5350
0.088
0.989
0.5375
0.094
0.935
0.5400
0.100
1.062
0.5425
0.107
1.017
0.5450
0.113
1.004
0.5475
0.119
1.020
0.5500
0.126
0.990
0.5525
0.132
1.051
0.5550
0.138
1.054
0.5575
0.145
0.981
0.5600
0.151
1.016
0.5625
0.157
0.999
0.5650
0.164
1.002
0.5675
0.170
1.013
0.5700
0.176
1.037
0.5725
0.183
1.016
0.5750
0.189
1.068
0.5775
0.196
0.956
0.5800
0.202
1.090
0.5825
0.208
1.020
0.5850
0.215
0.999
0.5875
0.221
0.982
0.5900
0.228
1.064
0.5925
0.234
1.044
0.5950
0.240
1.032
0.5975
0.247
1.040
0.6000
0.253
1.012
0.6025
0.260
1.071
0.6050
0.266
0.936
0.6075
0.273
1.048
0.6100
0.279
1.039
0.6125
0.286
1.029
0.6150
0.292
0.963
0.6175
0.299
0.976
0.6200
0.305
0.933
0.6225
0.312
0.900
0.6250
0.319
0.994
0.6275
0.325
0.997
0.6300
0.332
1.046
0.6325
0.338
1.026
0.6350
0.345
0.992
0.6375
0.352
0.985
0.6400
0.358
0.964
0.6425
0.365
1.001
0.6450
0.372
1.055
0.6475
0.379
1.038
0.6500
0.385
0.980
0.6525
0.392
0.989
0.6550
0.399
1.024
0.6575
0.406
0.983
0.6600
0.412
1.023
0.6625
0.419
0.962
0.6650
0.426
0.961
0.6675
0.433
1.079
0.6700
0.440
1.029
0.6725
0.447
1.088
0.6750
0.454
1.005
0.6775
0.461
0.949
0.6800
0.468
1.016
0.6825
0.475
0.972
0.6850
0.482
1.071
0.6875
0.489
0.904
0.6900
0.496
1.035
0.6925
0.503
1.004
0.6950
0.510
0.970
0.6975
0.517
1.033
0.7000
0.524
0.982
0.7025
0.532
0.974
0.7050
0.539
1.001
0.7075
0.546
1.065
0.7100
0.553
1.022
0.7125
0.561
1.026
0.7150
0.568
1.034
0.7175
0.575
1.018
0.7200
0.583
1.049
0.7225
0.590
1.020
0.7250
0.598
1.020
0.7275
0.605
1.007
0.7300
0.613
1.049
0.7325
0.620
1.051
0.7350
0.628
0.945
0.7375
0.636
1.012
0.7400
0.643
1.044
0.7425
0.651
1.059
0.7450
0.659
1.009
0.7475
0.667
1.017
0.7500
0.674
1.051
0.7525
0.682
1.064
0.7550
0.690
1.016
0.7575
0.698
0.984
0.7600
0.706
1.051
0.7625
0.714
0.970
0.7650
0.722
0.977
0.7675
0.731
1.071
0.7700
0.739
1.048
0.7725
0.747
1.001
0.7750
0.755
0.990
0.7775
0.764
1.010
0.7800
0.772
1.042
0.7825
0.781
1.018
0.7850
0.789
0.972
0.7875
0.798
1.050
0.7900
0.806
0.960
0.7925
0.815
1.034
0.7950
0.824
1.049
0.7975
0.833
1.020
0.8000
0.842
0.993
0.8025
0.851
0.982
0.8050
0.860
1.002
0.8075
0.869
1.057
0.8100
0.878
1.038
0.8125
0.887
0.995
0.8150
0.896
0.989
0.8175
0.906
0.979
0.8200
0.915
0.976
0.8225
0.925
1.008
0.8250
0.935
0.987
0.8275
0.944
1.027
0.8300
0.954
0.950
0.8325
0.964
1.003
0.8350
0.974
1.054
0.8375
0.984
1.020
0.8400
0.994
1.005
0.8425
1.005
1.054
0.8450
1.015
1.011
0.8475
1.026
1.033
0.8500
1.036
1.052
0.8525
1.047
1.042
0.8550
1.058
1.003
0.8575
1.069
1.059
0.8600
1.080
0.973
0.8625
1.092
1.085
0.8650
1.103
0.983
0.8675
1.115
1.091
0.8700
1.126
1.053
0.8725
1.138
1.020
0.8750
1.150
1.010
0.8775
1.163
0.997
0.8800
1.175
1.040
0.8825
1.188
1.006
0.8850
1.200
1.084
0.8875
1.213
1.062
0.8900
1.227
0.998
0.8925
1.240
1.013
0.8950
1.254
0.972
0.8975
1.267
1.083
0.9000
1.282
1.002
0.9025
1.296
0.965
0.9050
1.311
1.041
0.9075
1.326
1.071
0.9100
1.341
1.000
0.9125
1.356
0.941
0.9150
1.372
1.041
0.9175
1.388
1.053
0.9200
1.405
0.967
0.9225
1.422
0.956
0.9250
1.440
1.007
0.9275
1.457
0.995
0.9300
1.476
1.037
0.9325
1.495
0.960
0.9350
1.514
0.974
0.9375
1.534
1.022
0.9400
1.555
1.039
0.9425
1.576
1.044
0.9450
1.598
1.000
0.9475
1.621
1.013
0.9500
1.645
0.950
0.9525
1.670
0.940
0.9550
1.695
0.970
0.9575
1.722
1.023
0.9600
1.751
0.961
0.9625
1.780
1.045
0.9650
1.812
0.986
0.9675
1.845
1.033
0.9700
1.881
1.034
0.9725
1.919
1.021
0.9750
1.960
1.028
0.9775
2.005
1.045
0.9800
2.054
1.018
0.9825
2.108
1.050
0.9850
2.170
1.027
0.9875
2.241
1.028
0.9900
2.326
1.054
0.9925
2.432
1.005
0.9950
2.576
1.005
0.9975
2.807
1.002 1.040 1.024 0.998 1.036 0.990 0.956 1.013 1.019 1.029 0.930 1.015
0.988 0.984 1.033 1.021 0.977 1.032 0.941 0.999 1.047 1.048 1.065 1.032 1.027 1.005 1.024 0.973 1.034 1.024 0.982 1.030 1.045 1.005 0.963 1.021 0.995 0.939 0.919 0.920 1.065 1.021 0.954 1.006 1.109 1.015 1.051 0.976 1.037 1.050 1.019 0.981 0.998 1.054 0.990 1.034 0.995 1.026 1.028 1.015 1.017 1.008 1.016
1.018 1.020 0.988 1.030 1.010 1.001 1.006 1.035 1.003 0.987 1.036 0.997 0.953 1.015 1.027 1.033 1.029 0.997 1.011 1.006 0.987 0.980 1.022 0.951 0.985 0.988 0.928 0.995 1.049 1.010 1.000 1.080 1.007 1.041 1.044 0.952 1.019 1.047 0.993 1.034 0.972 1.007 1.028 0.958 0.974 1.011 1.083 1.016 1.011 0.983 1.016
1.040 1.009 1.053 0.960 0.993 0.957 1.036 1.023 1.003 0.946 0.941 1.045 0.976 1.046 0.970 0.982 0.926 1.059 1.003 0.911 0.945 0.952 1.075 1.051 1.035 0.990 1.054 1.058 1.042 1.014 1.038 1.038 0.963 1.002 0.960 1.041 0.994 0.960 1.003 1.088 1.019 1.030 1.007 1.006 1.022 0.980 1.004 1.039 0.996 1.011 1.051
1.013 0.984 0.967 1.000 0.961 0.986 0.995 1.039 0.968 1.042 1.000 0.892 1.018 0.992 1.002 0.978 0.963 0.973 0.987 0.924 0.917 0.883 1.166 0.955 0.982 1.125 1.067 1.024 1.049 1.051 1.046 0.934 0.986 0.967 1.064 1.031 0.990 1.120 0.994 1.033 0.990 0.993 1.043 0.993 1.001 1.025 0.979 0.999 1.054 0.951 0.985
0.988 1.001 0.985 1.048 0.985 0.987 1.000 0.959 1.037 1.005 0.940 0.984 1.028 1.087 1.014 0.985 1.056 1.034 0.995 0.911 1.026 1.017 1.042 0.972 1.058 1.004 0.983 1.041 1.011 1.061 1.003 0.934 1.051 1.019 1.061 1.003 0.901 1.043 1.056 1.030 1.068 1.013 1.028 1.019 1.110 0.969 0.956 1.021 1.038 0.979 1.006
0.992 1.001 0.945 0.950 1.053 1.044 0.974 0.984 0.949 0.994 1.041 0.971 0.983 0.979 1.127 1.011 1.113 1.044 1.017 1.035 1.026 1.037 1.076 0.995 1.038 0.969 1.017 1.014 0.987 1.023 0.994 0.994 0.967 1.017 1.007 0.947 1.022 0.986 1.113 1.000 1.003 0.990 1.025 1.077 1.014 1.002 0.997 1.062 1.016 0.997 0.994
0.968 1.045 1.072 1.047 1.004 1.076 1.055 0.988 1.055 1.017 0.943 1.075 0.918 1.056 1.026 0.974 1.134 1.041 1.027 0.991 1.010 1.050 1.050 1.039 0.978 0.785 0.918 1.074 1.043 1.047 0.970 1.011 1.008 1.046 0.996 0.967 1.042 1.027 0.986 1.018 1.072 0.975 1.024 1.052 1.040 0.995 1.090 1.019 0.996 0.977 1.021
1.024 0.933 1.013 1.026 0.975 1.098 0.993 0.997 0.910 0.951 0.996 1.064 1.027 1.044 1.072 1.024 1.003 1.043 0.954 1.047 1.024 0.984 1.013 0.960 1.114 0.981 1.013 0.980 1.029 1.005 0.986 1.040 0.980 1.012 1.004 1.034 1.013 1.007 1.014 1.022 0.976 1.027 1.003 0.995 1.038 0.993 1.020 0.991 1.012 1.034 0.973
0.957 1.013 1.016 0.975 1.033 1.041 0.976 1.023 0.963 1.015 1.026 1.039 1.030 1.029 1.040 1.024 1.033 1.003 1.042 0.997 1.044 1.019 1.034 1.010 1.010 1.015 1.026 1.004 0.956 1.021 1.056 1.027 1.076 0.980 1.062 1.008 0.958 1.060 1.061 1.045 1.079 0.944 1.055 0.967 1.046 1.017 1.011 1.072 1.051 1.010 0.983
1.041 0.989 0.855 1.064 1.081 1.061 1.058 1.042 0.969 1.040 1.039 0.976 1.056 0.969 0.995 0.973 1.063 1.020 1.059 0.950 0.981 1.098 0.970 0.980 1.025 0.984 1.062 0.947 0.996 0.921 1.005 1.036 0.909 0.937 1.078 1.007
TSE data 642 10.4% 15.4% 11.5%
long Bond
1.072
Above:
0.997
Above:
0.7
0.971
Annual Return
1.005
Annual Return
0.6
0.964
Standard Dev
0.997
Standard Dev
0.5
1.003
Mean Return
1.007
Mean Return
0.4
TSE Gains 0.981 0.933 1.046 1.084
1.002 0.977 1.003 1.010
Cdn Bond data 642 6.7% 8.4% 7.0%
1.0 0.9 0.8
0.972
1.000
0.3
1.065
1.008
0.2
0.994
1.002
0.1
0.986
1.000
0.0
0.981
1.005
0.950
1.004
1.028
1.004
0.979
1.002
0.943
1.001
1.014
1.005
1.052
1.004
1.039
1.013
1.029
1.009
1.073
0.998
1.017
1.002
1.043
0.997
0.991
1.005
1.023
1.001
1.023
1.002
1.060
1.004
1.048
1.000
0.964
0.989
1.008
1.019
1.119
0.998
1.033
1.005
1.032
0.984
0.995
0.996
1.051
1.004
1.117
1.001
1.008
0.975
0.982
1.001
1.043
1.001
0.981
1.003
0.963
1.004
1.053
1.003
1.043
1.001
1.022
1.003
0.976
0.980
0.978
0.994
1.010
1.004
0.993
0.998
0.960
1.002
1.015
1.007
0.942
1.008
1.001
0.993
RR RRR RR RRR RR RR RRR RR RRR RR RRR RR RRR RR RR RRR R oooooooooooooo oooooooooooooooooooo oooooo ww www ww www ww ww www ww www ww www ww www ww ww www w
1.026
0.994
1.032
0.998
0.997
1.003
0.962
1.008
0.996
1.004
1.020
1.002
1.002
0.994
1.010
1.004
0.988
1.002
0.981
1.002
0.972
0.998
1.005
0.999
0.983
1.004
1.024
1.001
0.983
1.003
0.983
1.012
1.039
1.009
0.992
1.008
1.011
1.011
0.965
1.024
1.014
1.040
1.043
0.997
1.015
1.004
1.062
1.005
0.994
1.007
1.053
1.004
1.002
0.999
1.017
1.001
0.996
1.003
1.087
1.001
1.043
1.003
1.009
1.012
1.018
1.008
0.983
0.997
1.065
1.003
1.045
1.004
1.047
1.024
1.050
0.963
0.997
0.999
1.004
1.003
0.941
0.987
1.036
0.995
1.016
1.016
0.980
1.005
1.039
0.986
1.084
0.986
0.993
1.006
0.961
1.018
1.032
0.978
1.076
0.979
0.979
0.992
0.943
1.003
0.979
0.997
0.948
0.998
1.084
0.983
1.008
1.023
0.962
1.001
1.038
0.996
1.047
0.982
1.030
1.006
0.982
0.998
0.976
0.995
0.903
1.007
0.934
1.029
0.929
1.034
1.024
1.007
0.951
0.992
1.043
0.993
0.992
1.003
1.035
1.006
0.995
1.019
1.043
0.982
1.029
0.995
1.052
0.996
1.015
0.985
1.037
0.993
1.013
0.982
1.006
0.996
1.019
1.001
1.030
0.995
1.009
0.991
0.997
1.001
1.012
0.997
1.003
0.993
1.011
1.006
1.047
0.972
0.951
0.984
0.956
1.026
1.002
1.004
0.996
0.988
1.037
0.993
0.957
1.020
0.969
1.017
1.004
1.006
0.985
1.016
1.031
1.025
0.980
0.995
0.981
1.038
1.068
1.005
0.954
0.973
1.002
0.976
1.040
1.006
1.055
1.012
1.059
1.022
1.035
0.993
1.023
1.000
1.048
1.010
1.021
1.029
1.011
1.003
1.020
1.002
1.017
1.001
0.987
1.013
1.008
1.008
1.031
1.001
1.028
1.000
0.977
1.008
1.007
1.013
1.002
1.012
0.975
0.981
0.918
0.970
0.940
0.989
1.027
1.009
1.026
1.007
0.956
1.035
1.018
1.008
1.079
1.002
1.011
1.010
1.052
0.997
0.969
1.007
1.034
1.014
1.051
1.011
1.017
1.002
0.967
0.986
0.976
0.986
1.008
1.024
1.034
1.007
1.011
0.997
0.991
1.001
1.040
1.005
1.030
1.004
0.993
0.995
1.043
1.005
1.039
1.008
1.036
1.004
1.002
1.003
1.026
1.003
0.995
1.007
1.047
1.010
1.006
1.010
1.005
1.013
1.009
1.012
1.059
0.996
0.998
1.001
0.995
1.005
1.027
0.996
0.999
1.000
0.935
0.991
0.992
0.997
1.027
1.008
1.021
0.999
1.020
1.001
0.973
1.005
1.025
1.003
1.044
0.983
0.977
1.008
0.990
1.002
1.012
1.004
0.968
0.999
0.999
0.996
0.986
0.984
0.928
1.025
0.980
1.009
1.023
0.983
0.995
1.021
1.030
1.022
1.072
1.000
1.012
1.022
1.038
0.996
1.023
0.987
0.964
0.989
1.030
1.004
1.035
0.993
0.990
0.984
1.024
0.988
0.944
1.000
1.027
0.992
1.014
1.005
0.975
0.987
0.958
0.987
0.980
1.035
1.092
0.971
0.992
1.041
1.057
1.019
0.997
1.012
1.028
0.988
1.052
0.983
1.018
0.994
1.039
0.972
1.025
1.020
1.029
1.002
0.954
1.004
1.035
0.999
1.030
0.988
1.027
1.004
0.896
1.004
0.946
1.005
1.052
0.980
0.997
1.006
1.017
0.976
1.027
0.991
0.994
1.009
0.964
1.023
1.028
1.025
1.004
0.997
0.914
0.989
0.904
1.020
0.984
1.023
1.050
0.998
1.028
1.018
1.049
1.001
0.975
1.049
1.045
1.056
1.033
1.038
1.033
0.988
1.001
1.015
1.044
0.985
0.990
0.966
0.981
1.014
1.022
0.988
0.989
1.039
0.995
1.024
0.968
1.032
0.937
1.021
1.029
1.005
1.098
0.988
1.092
0.989
1.037
0.973
0.977
1.003
1.013
0.999
1.019
0.996
0.991
1.002
1.027
1.011
1.049
1.004
0.988
1.026
0.965
1.024
1.067
1.002
1.028
1.002
1.020
1.001
0.985
0.997
1.012
0.997
0.961
0.975
0.956
1.005
1.016
1.007
1.064
0.998
0.983
1.016
1.048
1.018
1.066
1.003
0.891
1.001
1.014
1.002
1.026
1.007
1.030
0.966
0.971
0.953
0.911
0.999
0.937
0.961
0.983
0.994
1.020
0.991
0.900
1.022
0.910
1.048
1.099
1.036
0.935
1.016
1.001
1.050
1.165
1.019
1.030
0.980
0.988
0.958
1.023
1.037
1.024
0.992
1.029
0.969
1.002
1.004
0.990
0.981
0.944
1.041
0.958
0.987
1.056
1.016
0.978
1.025
1.096
1.009
1.035
0.998
0.985
1.012
1.024
1.009
1.003
1.005
0.986
1.006
1.000
1.019
1.000
1.014
0.985
1.014
0.967
1.031
0.932
1.039
1.106
1.003
0.993
0.998
1.017
0.989
1.018
1.006
0.975
1.014
0.990
1.012
1.058
1.009
1.004
1.019
0.974
1.004
1.002
0.999
0.972
1.004
1.053
1.005
1.049
0.982
0.944
1.000
1.011
1.006
1.064
1.003
1.019
1.007
1.048
1.008
1.004
1.013
1.062
1.009
1.035
1.008
1.048
0.980
0.948
1.003
1.050
0.996
1.039
0.997
1.036
0.996
1.025
1.013
1.064
1.029
1.014
1.006
1.028
1.004
1.071
0.999
0.965
0.983
1.093
0.990
1.037
0.950
0.903
1.026
1.082
0.981
1.073
0.952
1.120
0.957
1.085
0.975
0.824
1.115
1.042
1.054
1.059
1.019
1.051
0.937
1.069
1.005
1.012
0.971
1.023
0.995
0.993
1.025
1.076
1.034
0.949
0.991
0.983
0.983
0.982
1.005
1.075
0.915
0.990
1.019
1.032
1.008
1.001
0.900
0.957
1.031
0.969
0.966
0.869
1.071
0.980
1.162
1.097
0.955
0.977
0.974
0.916
1.070
0.939
1.009
0.957
1.032
0.977
1.014
0.990
0.937
0.904
1.038
1.036
1.120
1.147
1.043
0.999
1.070
1.109
1.043
1.042
1.046
1.071
0.968
1.039
1.045
1.033
1.017
1.036
1.049
1.088
1.000
1.037
0.990
1.015
0.976
1.014
0.988
1.005
1.053
1.010
1.012
0.946
1.005
1.083
0.994
1.009
1.017
0.969
0.976
0.983
0.966
0.989
0.994
0.977
0.971
0.963
1.019
1.001
1.038
0.966
1.047
1.119
1.029
1.005
1.043
0.985
1.037
1.009
1.021
1.018
1.031
1.083
0.945
1.002
1.037
1.012
1.042
1.010
1.067
1.042
1.000
0.995
1.007
1.026
1.018
1.017
0.996
0.937
1.028
1.018
1.039
1.071
1.031
1.020
0.975
0.981
1.052
1.006
1.043
1.072
1.027
1.012
0.991
1.016
1.016
0.992
1.013
0.953
1.025
1.034
0.983
0.987
1.001
1.021
1.031
1.005
1.010
1.011
1.033
1.093
0.994
1.046
1.018
1.072
0.939
0.995
1.000
0.994
1.020
1.018
0.972
1.079
0.992
0.992
0.956
0.980
1.084
0.775
0.986
0.989
1.021
1.065
1.058
0.969
1.019
1.050
0.966
1.038
0.990
1.009
1.007
0.976
1.029
1.063
0.986
0.983
0.991
0.977
1.024
1.003
1.035
1.036
0.993
0.973
1.005
1.034
1.023
1.070
0.980
0.989
1.014
1.007
1.033
1.015
1.036
1.026
1.029
1.019
1.006
1.058
1.008
1.013
0.984
0.987
1.039
0.996
0.987
1.009
1.017
1.011
0.980
0.935
0.962
0.997
0.988
0.991
0.963
0.919
1.062
1.076
1.020
0.994
1.004
1.007
1.005
0.943
0.957
0.948
1.039
0.977
1.044
1.026
1.024
1.039
1.032
1.007
1.035
1.061
1.009
1.014
1.006
0.995
1.008
1.027
0.973
0.982
1.024
1.023
1.025
0.997
1.040
0.967
1.048
1.039
1.002
0.983
1.026
1.024
1.012
1.026
1.003
0.998
0.981
0.957
0.989
0.985
1.037
1.012
1.034
1.004
1.067
1.018
1.009
0.991
0.977
0.973
1.025
1.013
0.978
0.987
1.018
1.025
0.996
0.988
1.051
1.046
1.000
1.048
1.007
1.053
1.021
1.028
1.022
1.025
1.023
1.001
1.044
1.045
0.992
0.967
1.026
1.067
0.997
0.984
1.038
1.037
1.032
1.055
0.960
0.973
0.923
0.982
1.013
0.986
0.974
1.016
0.944
0.933
0.990
1.039
1.061
1.043
0.995
1.004
0.986
0.986
1.012
0.956
1.015
1.033
0.987
0.954
1.056
1.028
1.021
1.049
1.031
0.993
1.037
1.042
1.015
1.021
0.964
1.020
1.031
0.981
1.019
1.006
1.007
0.985
1.071
1.047
1.007
1.014
1.014
1.055
0.961
0.995
0.997
1.010
0.995
1.036
1.021
1.021
1.001
0.964
1.018
0.978
1.031
1.045
1.018
1.031
1.073
1.059
1.046
1.076
0.970
0.987
0.976
1.032
1.035
1.009
0.987
0.952
1.006
1.022
1.008
1.070
1.053
1.011
1.045
1.069
0.977
0.963
1.047
1.067
1.025
0.973
1.007
0.953
1.003
1.031
1.023
1.001
1.004
1.060
1.016
1.068
0.994
1.015
1.021
0.991
1.009
0.973
0.993
0.942
0.981
0.799
1.076
1.017
0.991
1.107
0.996
1.023
1.035
1.025
1.004
1.038
0.972
0.939
1.020
1.047
0.992
1.064
0.983
0.977
0.995
1.027
0.993
1.011
1.010
0.986
0.980
1.000
0.958
1.044
1.033
1.038
0.992
1.120
0.994
1.008
1.046
1.077
1.007
1.038
0.998
0.988
1.015
0.991
1.009
1.104
1.012
1.021
1.009
1.082
1.001
0.924
1.009
0.929
1.022
0.916
1.009
1.015
0.992
1.044
1.013
0.867
0.993
0.944
0.984
1.045
0.990
1.028
1.017
0.950
1.001