Modul_semester_6b_update_23_april__2016 (2).pdf

  • Uploaded by: Roland Mahendra
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Modul_semester_6b_update_23_april__2016 (2).pdf as PDF for free.

More details

  • Words: 20,442
  • Pages: 138
Modul Praktikum Elektronika Daya II Semester 6

Penyusun: Sunu Pradana

Program Studi D3 Teknik Listrik

Jurusan Teknik Elektro

Politeknik Negeri Samarinda Kementerian Riset, Teknologi dan Pendidikan Tinggi 2015

HALAMAN PENGESAHAN

1. Nama / Judul

:

Modul Praktikum Maka Kuliah Laboratorium Elektronika Daya II

2. Jurusan / Perguruan Tinggi

:

Teknik Elektro/Politeknik Negeri Samarinda

Program Studi / Jenjang Program

:

Teknik Listrik / Diploma III

4. Semester

:

VI (enam)

5. Penyusun

:

Sunu Pradana

6. Tahun Anggaran

:

2015

3.

Samarinda, 4 November 2015 Ketua Jurusan Teknik Elektro,

Penyusun,

Dadang Suherman, S.S.T., M.T. NIP. 196504101991031002

Sunu Pradana, S.T., M.Eng. NIP. 197801082006041002

Mengetahui, Wakil Direktur Bidang Akademik Politeknik Negeri Samarinda

Drs. Surahman, M.M., Ph.D. NIP. 196505061990031005

ii

KATA PENGANTAR Upaya pendidikan adalah upaya universal umat manusia untuk terus-menerus memuliakan kemanusiaannya. Dengan formulasi yang terus menerus diperbaharui, pendidikan di berbagai tempat di dunia menglami kemajuan dan memperkaya peradaban. Tanpa pendidikan yang baik maka manusia akan kehilangan kemanusiaannya, keunggulannya di antara makhluk hidup yang lain, lalu peradaban akan mundur lalu musnah. Dengan semakin majunya peradaban, disadari bahwa pendidikan yang baik lebih dari sekadar pelatihan keterampilan motorik semata. Hal ini telah disadari juga oleh pemerintah yang terus menerus memperbaharui panduan upaya pendidikan di Indonesia. Pendidikan tidak lagi hanya menitikberatkan pada kemampuan kognitif maupun psikomotorik semata, melainkan juga telah memasukkan komponen afektif sebagai unsur yang sama pentingnya. Hal semacam ini memerlukan keterbukaan dan perubahan paradigma agar upaya pendidikan dapat berhasil dengan optimal. Sebagai negara yang masih mengejar ketertinggalan dalam sains, teknologi dan ekonomi, kemampuan untuk terus menerus belajar dan menyerap pengalaman negara maju adalah kemampuan yang sangat penting untuk dimiliki. Filosofi tersebut menjadi dasar penyusunan modul praktikum ini. Dari sejumlah ilmu teknik (engineering), Electrical & Electronics (EE) sebagai turunan dari ilmu Fisika telah menjadi pendorong utama kemajuan peradaban. Energi listrik dan kemampuan mendapatkan, mengolah, serta menyalurkan informasi telah membawa peradaban ke dalam bentuknya yang sekarang. Sebagai pendorong utama, maka sudah sewajarnya perkembagan EEE tergolong sangat pesat. Konteks dan cara pengajarannya pun terus menerus berubah sesuai kemajuan IPTEK. Hal-hal tersebut telah menjadi pertimbangan dalam penyusunan bentuk modul praktikum ini. Besar harapan agar modul praktikum ini dapat mendatangkan manfaat yang sebesarbesarnya kepada pengguna untuk mendapatkan keunggulan sebagai bagian dari umat manusia yang terus bergerak maju. Untuk menjadi bagian dari organisasi pembelajar, bekerja dengan cara-cara yang efektif dan efisien (sebagaimana tema utama dari ilmu elektronika daya) menuju kemajuan peradaban bangsa yang nyata.

Samarinda, 2 November 2015 Penyusun iii

DAFTAR ISI HALAMAN PENGESAHAN..............................................................................................................ii KATA PENGANTAR..........................................................................................................................iii DAFTAR ISI.......................................................................................................................................iv SILABUS.............................................................................................................................................v GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)......................................................viii RENCANA PEMBELAJARAN SEMESTER (RPS)..........................................................................x SATUAN ACARA PENGAJARAN (SAP)......................................................................................xiii BAGIAN I PENDAHULUAN.............................................................................................................1 1.1. Standar Acuan...........................................................................................................................1 1.2. Peralatan...................................................................................................................................4 1.3. Sumber Panduan Praktikum.....................................................................................................7 BAGIAN II LEMBAR PANDUAN PRAKTIKUM............................................................................8 Tugas 01. Penyearah terkendali setengah gelombang, beban resistor & induktor...........................9 Tugas 02. Penyearah terkendali gelombang penuh (center-tap), beban resistor & induktor.........15 Tugas 03. Penyearah terkendali gelombang penuh sistem jembatan, beban resistor & induktor.. 21 Tugas 04. Penyearah tiga-fase terkendali penuh sistem jembatan, beban resistor+induktor+kapasitor...........................................................................................................34 Tugas 05. Karakteristik SCR dengan beban resistor+induktor......................................................46 Tugas 06. Karakteristik TRIAC dengan beban resistor+induktor.................................................53 Tugas 07. Pensakelaran PWM pada MOSFET, beban resistor+induktor......................................58 Tugas 08. Pensakelaran PWM pada BJT, beban resistor+induktor...............................................68 Tugas 09. Pensakelaran PWM pada IGBT, beban resistor+induktor.............................................78 Tugas 10. Pensakelaran PWM pada rangkaian MOSFET sebagai pengendali motor DC............92

iv

SILABUS NAMA MATA KULIAH : Laboratorium Elektronika Daya II PROGRAM STUDI

: D3 Teknik Listrik

Kode Mata Kuliah

PTL312

Jumlah Total Jam

4

SKS

2

Tujuan Pengajaran : Memberikan kesempatan kepada mahasiswa untuk; benar-benar memahami topologi rangkaian & terampil mengoperasikan peralatan pengalih daya terkendali; AC-ke-DC, AC-ke-AC, DC-keDC, melatih dan meningkatkan kemampuan analisis mahasiswa melalui pemahaman terhadap korelasi dan kausalitas antara tegangan listrik, arus listrik, karakteristik komponen, topologi rangkaian dan unjuk kerja (sub-)sistem.

Silabus Mata Kuliah Topik 1. Penyearah terkendali setengah gelombang, beban resistor dan induktor. Topik 2. Penyearah terkendali gelombang penuh (center-tap), beban resistor & induktor. Topik 3. Penyearah terkendali gelombang penuh sistem jembatan, beban resistor & induktor. Topik 4. Penyearah tiga-fase terkendali penuh sistem jembatan, beban resistor+induktor+kapasitor. Topik 5. Karakteristik SCR dengan beban resistor+induktor. Topik 6. Karakteristik TRIAC dengan beban resistor+induktor. Topik 7. Pensakelaran PWM pada MOSFET, beban resistor+induktor. Topik 8. Pensakelaran PWM pada BJT, beban resistor+induktor. Topik 9. Pensakelaran PWM pada IGBT, beban resistor+induktor. Topik 10. Pensakelaran PWM pada rangkaian MOSFET sebagai pengendali motor DC.

v

Prasyarat Mata Kuliah: -

Matematika Terapan.

-

Fisika Terapan.

-

Instrumentasi.

-

Rangkaian Listrik I & Rangkaian Listrik II.

-

Elektronika I.

-

Bahasa Inggris I & II.

-

Elektronika Daya I.

-

Laboratorium Elektronika Daya I.

Daftar Pustaka: [1] D. W. Hart, Power electronics, 1st ed. New York: McGraw-Hill Higher Education, 2010. [2] Dennis Fewson, Introduction to power electronics, 1st edition. London : New York: Butterworth-Heinemann, 1998. [3] W. Shepherd and L. Zhang, Power converter circuits. New York: Marcel Dekker, 2004. [4] M. H. Rashid, Ed., Power electronics handbook: Devices, circuits, and applications, 3rd ed. Oxford: Butterworth-Heinemann, 2010. [5] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics: converters, applications, and design, 3 rd. New York [etc.]: John Wiley & Sons, 2003. [6] S. L. Herman, Delmar’s standard textbook of electricity, 5th ed. United States: Delmar Cengage Learning, 2011. [7] J. Bird, Electrical circuit theory and technology, 5th ed. London: Routledge, 2013. [8] B. K. Bose, “The past, present, and future of power electronics [Guest Introduction],” IEEE Industrial Electronics Magazine, vol. 3, no. 2, pp. 7–11, 14, Jun. 2009. [9] J. D. van Wyk and F. C. Lee, “On a Future for Power Electronics,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 2, pp. 59–72, 2013. [10] J. D. van Wyk, “Power electronics quo vadis?,” in Power Electronics and Motion Control Conference (EPE/PEMC), 2012 15th International, 2012, pp. Session 1–1–Session 1–9. [11] B. K. Bose, “Global Energy Scenario and Impact of Power Electronics in 21st Century,” IEEE Transactions on Industrial Electronics, vol. 60, no. 7, pp. 2638–2651, Jul. 2013. [12] H. Shigekane, T. Fujihira, K. Sasagawa, Y. Seki, Y. Takahashi, and A. Takai, “Macro-trend and a future expectation of innovations in power electronics and power devices,” in Power Electronics and Motion Control Conference, 2009. IPEMC ’09. IEEE 6th International, 2009, pp. 35–39. [13] “Criteria for Accrediting Engineering Programs, 2015 – 2016.” ABET. [14] L. D. Feisel and A. J. Rosa, “The Role of the Laboratory in Undergraduate Engineering Education,” Journal of Engineering Education, vol. 94, no. 1, pp. 121–130, 2005. [15] R. R. Riehl, J. A. C. Ulson, A. L. Andreoli, and A. F. Alves, “A new approach for teaching power electronics in electrical engineering courses,” in 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 2014, pp. 3573–3578. [16] H. Hess, “Power Electronics Instruction: Topics, Curricula, And Trends,” presented at the 1997 Annual Conference, 1997, pp. 2.324.1–2.324.12. [17] Z. Raud, V. Vodovozov, and T. Lehtla, “Concept maps in Power Electronics education,” in 2013 8th International Conference on Compatibility and Power Electronics (CPE), 2013, pp. 280–285. vi

Visi Misi:

1. Mengajarkan dan melatih pemahaman, penghormatan dan penerapan sains dalam praktik kehidupan sehari-hari melalui kegiatan praktikum. 2. Melatih pemahaman terhadap prinsip korelasi dan kausalitas dengan contoh-contoh sederhana melalui kegiatan praktik di laboratorium. 3. Melatih kesadaran bersama akan pentingnya upaya konservasi energi dan pemanfaatan energi terbarukan. 4. Memperkuat science-based engineering education, sebagai inti dalam kegiatan proses belajar mengajar untuk menghadapi tantangan regional dan global. 5. Sebagai ilmu yang interdisiplin, elektronika daya (power electronics) dipakai untuk lebih memperkuat praktik keterhubungan antar bagian-bagian ilmu dalam teknik elektro. 6. Melatih keterampilan pencarian informasi sebagai bagian dari kemampuan belajar seumur hidup mahasiswa agar mampu menjadi sumber penyebar informasi di lingkungannya mengenai konversi dan konservasi energi listrik. 7. Memberikan kesempatan praktik agar mahasiswa memiliki pengalaman untuk mampu melakukan pengendalian penggunaan energi listrik dengan efektif dan efisien. 8. Melatih kemampuan analisis mahasiswa agar nantinya memiliki kemampuan yang sesuai untuk masing-masing tingkat lulusan D3 Teknik Listrik program pendidikan politeknik.

Samarinda, 2 November 2015 Penanggung jawab mata kuliah

Sunu Pradana, S.T., M.Eng. NIP. 197801082006041002

vii

FM-POLNES-04-01-013/R00

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) MATA KULIAH : Laboratorium Elektronika Daya PROGRAM STUDI : D3 Teknik Listrik

No

1

2

3

4

5

6

7

Materi

Penyearah terkendali setengah gelombang, beban R & L. Penyearah terkendali gelombang penuh (center-tap), beban resistor & induktor.

Penyearah terkendali gelombang penuh sistem jembatan, beban resistor & induktor.

Penyearah tiga-fase terkendali penuh sistem jembatan, beban resistor+induktor+kapas itor. Karakteristik SCR dengan beban resistor+induktor.

Karakteristik TRIAC dengan beban resistor+induktor.

Pensakelaran PWM pada MOSFET, beban resistor+induktor.

Kompetensi

Bakal Materi yang dibutuhkan

- Mengukur - Mencatat - Menganalisis - Troubleshooting

Metode Pembelajaran

Waktu (Menit)

- Praktik - PBL

180

- Lisan - Tulisan - Praktik

Di dalam SAP

Evaluasi

Referensi

- Mengukur - Mencatat - Menganalisis - Troubleshooting

- Sekering kaca (5x20 mm) 3.15 A, 250 VAC - Sekering kaca (5x20 mm) 1 A, 250 VAC

- Praktik - PBL

180

- Lisan - Tulisan - Praktik

Di dalam SAP

- Mengukur - Mencatat - Menganalisis - Troubleshooting

- Sekering kaca (5x20 mm) 3.15 A, 250 VAC - Sekering kaca (5x20 mm) 1 A, 250 VAC

- Praktik - PBL

180

- Lisan - Tulisan - Praktik

Di dalam SAP

- Mengukur - Mencatat - Menganalisis - Troubleshooting

- Sekering kaca (5x20 mm) 3.15 A, 250 VAC - Sekering kaca (5x20 mm) 1 A, 250 VAC

- Praktik - PBL

180

- Lisan - Tulisan - Praktik

Di dalam SAP

- Mengukur - Mencatat - Menganalisis - Troubleshooting

- Sekering kaca (5x20 mm) 3.15 A, 250 VAC - Sekering kaca (5x20 mm) 1 A, 250 VAC

- Praktik - PBL

180

- Lisan - Tulisan - Praktik

Di dalam SAP

- Mengukur - Mencatat - Menganalisis - Troubleshooting

- Sekering kaca (5x20 mm) 3.15 A, 250 VAC - Sekering kaca (5x20 mm) 1 A, 250 VAC

- Praktik - PBL

180

- Lisan - Tulisan - Praktik

Di dalam SAP

- Praktikum - PBL

180

- Lisan - Tulisan - Praktik

Di dalam SAP

- Mengukur - Mencatat - Menganalisis - Troubleshooting

- Sekering kaca (5x20 mm) 3.15 A, 250 VAC - Sekering kaca (5x20 mm) 1 A, 250 VAC

viii

8

9

10

Pensakelaran PWM pada BJT, beban resistor+induktor.

Pensakelaran PWM pada IGBT, beban resistor+induktor.

Pensakelaran PWM pada rangkaian MOSFET sebagai pengendali motor DC.

- Mengukur - Mencatat - Menganalisis - Troubleshooting

- Sekering kaca (5x20 mm) 3.15 A, 250 VAC - Sekering kaca (5x20 mm) 1 A, 250 VAC

- Praktik - PBL

180

- Lisan - Tulisan - Praktik

Di dalam SAP

- Mengukur - Mencatat - Menganalisis - Troubleshooting

- Sekering kaca (5x20 mm) 3.15 A, 250 VAC - Sekering kaca (5x20 mm) 1 A, 250 VAC

- Praktik - PBL

180

- Lisan - Tulisan - Praktik

Di dalam SAP

- Mengukur - Mencatat - Menganalisis - Troubleshooting

- Sekering kaca (5x20 mm) 3.15 A, 250 VAC - Sekering kaca (5x20 mm) 1 A, 250 VAC

- Praktik - PBL

180

- Lisan - Tulisan - Praktik

Di dalam SAP

Samarinda, 2 November 2015 Penanggung jawab mata kuliah

Sunu Pradana, S.T., M.Eng. NIP. 197801082006041002

ix

RENCANA PEMBELAJARAN SEMESTER (RPS) Mata Kuliah

: Laboratorium Elektronika Daya II

Kode Mata Kuliah

:

PTL312

Semester

: 6

SKS

:

2

Pendukung

Matematika Terapan, Fisika Terapan, Instrumentasi, : Rangkaian Listrik I, Rangkaian Listrik II, Elektronika I, Bahasa Inggris I & II, Elektronika Daya I, Lab Elektronika Daya I.

Capaian Pembelajaran

:

Rotasi ke I

Kemampuan Akhir yang Diharapkan

Bahan Kajian (materi ajar)

[A5] Mahasiswa mampu hadir pada waktu yang telah ditetapkan untuk kegiatan praktikum. Tingkat kehadiran per-siswa lebih tinggi dari 70%.

Single-phase half-wave converter with resistive load.

[C2, P3, A4] Mahasiswa mampu menjaga keselamatan, ketertiban dan kesopanan saat melaksanakan rangkaian kegiatan percobaan. Kejadian kerusakan komponen dan peralatan lebih rendah dari 30% pertemuan.

Single-phase fullwave converter with R-L load.

[C1, P2, A2] Mahasiswa mampu melakukan pengaturan yang sesuai pada sumber catu daya. Di bawah ambang batas, dengan tingkat keberhasilan 100%. [C2, P3, A2] Mahasiswa mampu melakukan pengukuran nilai numeris tegangan dan arus, menggunakan DMM & oscilloscope dengan benar. [C3, P2, A2] Mahasiswa mampu menentukan parameter karakteristik dari penyearah dengan benar.

Single phase fully controlled bridge B2C with R-L-C loads and load consisting of a DC motor. Three-phase fully-controlled bridge B6C with R-L-C load in parallel, and motor load. Study of SCR with R-L load.

[C4, P2, A3] Mahasiswa mampu mengulas perbandingan parameter karakteristik penyearah, antara hasil perhitungan dengan hasil pengukuran.

Bentuk Pembelajaran (Kegiatan)

Kriteria Penilaian (Indikator)

Praktikum Ketepatan (serentak 5 tugas waktu praktik berbeda) kehadiran. Sikap selama kegiatan praktikum. Nilai tegangan masukan pada sistem sebagai hasil pengaturan oleh praktikan. Kebenaran data tegangan dan arus hasil pengukuran. Kebenaran hasil perhitungan. Keakuratan hasil analisis. Ketepatan dan kelengkapan kesimpulan.

[C2, P3, A2] Mahasiswa mampu melakukan pemilihan mode yang sesuai untuk pengamatan gelombang yang baik pada oscilloscope.

x

Bobot 40 %

[C2, P3, A2] Mahasiswa mampu melakukan pemilihan mode yang sesuai untuk penyimpanan gambar gelombang pada oscilloscope untuk kepentingan sebagai bagian dari laporan praktik yang tercetak. [C4, P2, A3] Mahasiswa mampu menganalisis gelombang tegangan dan arus dengan menghubungkannya dengan teori & hukum tentang karakteristik elemen/komponen dan rangkaian, yang dituangkan dalam bentuk laporan tertulis. [C4, P2, A3] Mahasiswa mampu menarik kesimpulan yang dituangkan dalam bentuk laporan tertulis, berdasarkan dasar teori dan data hasil kegiatan praktik. [C4, P3, A3] Mahasiswa mampu mengenali anomali pada sistem berdasarkan dasar teori yang dimilki. [C4, P3, A3] Mahasiswa mampu melakukan troubleshooting pada sistem jika terjadi kesalahan/kegagalan fungsi. I

Evaluasi kegiatan praktik rotasi I

II

[A5] Mahasiswa mampu hadir pada waktu yang telah ditetapkan untuk kegiatan praktikum. Tingkat kehadiran per-siswa lebih tinggi dari 70%. [C2, P3, A4] Mahasiswa mampu menjaga keselamatan, ketertiban dan kesopanan saat melaksanakan rangkaian kegiatan percobaan. Kejadian kerusakan komponen dan peralatan lebih rendah dari 30% pertemuan.

10 % Study of TRIAC with R-L load. Study of PWMMOSFET with RL load. Study of PWM BJT with R-L load.

Study of PWM [C1, P2, A2] Mahasiswa mampu IGBT with R-L melakukan pengaturan yang sesuai pada load. sumber catu daya. Di bawah ambang batas, dengan tingkat keberhasilan 100%. PWM-MOSFET circuit for the [C2, P3, A2] Mahasiswa mampu control of a DC melakukan pengukuran nilai numeris motor. tegangan dan arus, menggunakan DMM & oscilloscope dengan benar. [C3, P2, A2] Mahasiswa mampu menentukan parameter karakteristik dari sistem pengendali daya dengan benar.

Praktikum Ketepatan (serentak 5 tugas waktu praktik berbeda) kehadiran. Sikap selama kegiatan praktikum. Nilai tegangan masukan pada sistem sebagai hasil pengaturan oleh praktikan. Kebenaran data tegangan dan arus hasil pengukuran. Kebenaran hasil perhitungan. Keakuratan hasil analisis.

[C4, P2, A3] Mahasiswa mampu mengulas perbandingan parameter karakteristik konverter, antara hasil perhitungan dengan hasil pengukuran.

Ketepatan dan kelengkapan kesimpulan.

xi

40 %

[C4, P2, A3] Mahasiswa mampu melaporkan secara tertulis perbandingan parameter karakteristik penyearah antara hasil perhitungan, dan simulasi dengan hasil pengukuran. [C2, P3, A2] Mahasiswa mampu melakukan pemilihan mode yang sesuai untuk pengamatan gelombang yang baik pada oscilloscope. [C2, P3, A2] Mahasiswa mampu melakukan pemilihan mode yang sesuai untuk penyimpanan gambar gelombang pada oscilloscope untuk kepentingan sebagai bagian dari laporan praktik yang tercetak. [C4, P2, A3] Mahasiswa mampu menganalisis gelombang tegangan dan arus dengan menghubungkannya dengan teori & hukum tentang karakteristik elemen/komponen dan rangkaian, yang dituangkan dalam bentuk laporan tertulis. [C4, P2, A3] Mahasiswa mampu menarik kesimpulan yang dituangkan dalam bentuk laporan tertulis, berdasarkan dasar teori dan data hasil kegiatan praktik. [C4, P3, A3] Mahasiswa mampu mengenali anomali pada sistem berdasarkan dasar teori yang dimiliki. [C4, P3, A3] Mahasiswa mampu melakukan troubleshooting pada sistem jika terjadi kesalahan/kegagalan fungsi. II

Evaluasi kegiatan praktik rotasi II

10 %

xii

FM-POLNES-04-01-014/R00

SATUAN ACARA PENGAJARAN (SAP) Program Studi

: D3 Teknik Listrik

Mata Kuliah

: Laboratorium Elektronika Daya II

Kode mata kuliah

: PTL312

SKS

: 2

Waktu pertemuan

: 4 jam perkuliahan

Pertemuan ke

: 1&2

A. Tujuan 1. Kompetensi Utama

: • Mahasiswa mampu menjelaskan cara penggunaan alat ukur DMM dan oscilloscope yang benar sesuai keperluan praktikum yang akan dilakukan berdasarkan petunjuk penggunaan peralatan (user's guide). • Mahasiswa dapat mengenali dan menyebutkan potensi bahaya (risiko) keselamatan terhadap jiwa dan peralatan dalam rangkaian kegiatan praktikum. • Mampu menunjukkan kepatuhan terhadap pengaturan kerja praktik yang berdasarkan sains dan pemahaman terhadap teknologi. • Mahasiswa dapat memberi contoh-contoh sederhana penerapan prinsip korelasi dan kausalitas yang berkaitan dengan tugas praktik sebagaimana tercantum di dalam buku panduan.

2. Kompetensi Khusus

: • Mahasiswa mampu menjelaskan peran dan fungsi laboratorium elektronika daya sebagai laboratorium pendidikan teknik. • Mahasiswa mampu menyebutkan ulang tata tertib dan pengaturan kegiatan praktikum. • Mahasiswa mampu menunjukkan perilaku yang mewujudkan ketaatan terhadap prinsip-prinsip sains. • Mahasiswa mampu menjelaskan dengan baik pemahaman terhadap unsur-unsur utama penilaian kegiatan praktik: kognitif, psikomotorik dan afektif. • Mahasiswa mampu menjalankan simulasi pada perangkat lunak sebagai sarana bantu belajar kegiatan praktik dengan perangkat keras.

xiii

B. Pokok Bahasan

: Pengenalan laboratorium elektronika daya dan praktikum rotasi satu.

C. Sub Pokok Bahasan

: • Penerapan prinsip-prinsip sains dan teknologi dalam rangkaian kegiatan praktikum Laboratorium Elektronika Daya II. • Prinsip-prinsip dasar masing-masing tugas praktik (job) dalam kegiatan praktikum Laboratorium Elektronika Daya II. • Tata tertib laboratorium dan tata tertib kegiatan praktikum.

D. Kegiatan Belajar Mengajar Tahap Kegiatan Pengajar Kegiatan Pendahuluan

Penyajian

Penutup

Memeriksa kehadiran mahasiswa. • Menjelaskan secara singkat penerapan prinsip dasar sains. • Menjelaskan tata tertib laboratorium dan tata tertib kegiatan praktikum. • Menjelaskan pelaksanaan kegiatan praktikum rotasi I. • Memfasilitasi / menetapkan pembagian kelompok praktik. • Menjelaskan jadwal pelaksanaan dan pengaturan rotasi. • Menjelaskan tentang tugas yang akan dikumpulkan untuk kegiatan praktikum berikutnya. • Memberikan rangkuman bahasan. • Memberikan evaluasi terhadap kegiatan perkuliahan yang baru saja dilaksanakan. • Memberikan tugas.

Kegiatan Mahasiswa Menunjukkan kehadirannya dengan baik.

• • • • • •

Mendengarkan Mengamati Menyimak Mencatat Bertanya Menjawab pertanyaan

• • • •

Mendengarkan Menyimak Mencatat Menjawab pertanyaan

xiv

Media dan Alat Pengajaran Alat tulis.

Modul tugas praktikum Laptop LCD projector Projector screen White board Boardmarker Perangkat keras (hardware module) praktikum • Dokumen tata-tertib laboratorium dan paktikum • • • • • • •

• • • • • •

Modul tugas praktikum Laptop LCD projector Projector screen White board Boardmarker

E. Evaluasi

: Bertanya kepada mahasiswa untuk memantau penyerapan dan pemahaman.

F. Lain-lain bila perlu

:

G. Referensi

: • D. W. Hart, Power electronics, 1st ed. New York: McGrawHill Higher Education, 2010. • Dennis Fewson, Introduction to power electronics, 1st edition. London : New York: Butterworth-Heinemann, 1998. • N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics: converters, applications, and design, 3 rd. New York [etc.]: John Wiley & Sons, 2003. • B. K. Bose, “The past, present, and future of power electronics [Guest Introduction],” IEEE Industrial Electronics Magazine, vol. 3, no. 2, pp. 7–11, 14, Jun. 2009. • J. D. van Wyk and F. C. Lee, “On a Future for Power Electronics,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 2, pp. 59–72, 2013. • “Criteria for Accrediting Engineering Programs, 2015 – 2016.” ABET. • L. D. Feisel and A. J. Rosa, “The Role of the Laboratory in Undergraduate Engineering Education,” Journal of Engineering Education, vol. 94, no. 1, pp. 121–130, 2005. • R. R. Riehl, J. A. C. Ulson, A. L. Andreoli, and A. F. Alves, “A new approach for teaching power electronics in electrical engineering courses,” in 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 2014, pp. 3573–3578.

xv

Program Studi

: D3 Teknik Listrik

Mata Kuliah

: Laboratorium Elektronika Daya II

Kode mata kuliah

: PTL312

SKS

: 2

Waktu pertemuan

: 4 jam perkuliahan

Pertemuan ke

: 3 sampai 7 (Rotasi I)

A. Tujuan 1. Kompetensi Utama

: • Mahasiswa mampu melakukan pengaturan pada sumber catu daya sesuai kebutuhan sistem. • Mahasiswa mampu melakukan pengukuran nilai numeris tegangan dan arus, menggunakan DMM & oscilloscope dengan benar. • Mahasiswa mampu menentukan parameter karakteristik dari penyearah. • Mahasiswa mampu mengulas perbandingan parameter karakteristik penyearah, antara hasil perhitungan dengan hasil pengukuran. • Mahasiswa mampu melaporkan secara tertulis perbandingan parameter karakteristik penyearah antara hasil perhitungan, dan simulasi dengan hasil pengukuran. • Mahasiswa mampu menganalisis gelombang tegangan dan arus dengan menghubungkannya dengan teori & hukum tentang karakteristik elemen/komponen dan rangkaian, yang dituangkan dalam bentuk laporan tertulis. • Mahasiswa mampu menarik kesimpulan yang dituangkan dalam bentuk laporan tertulis, berdasarkan dasar teori dan data hasil kegiatan praktik.

2. Kompetensi Khusus

: • Mahasiswa mampu hadir pada waktu yang telah ditetapkan untuk kegiatan praktikum. • Mahasiswa mampu menjaga keselamatan, ketertiban dan kesopanan saat melaksanakan rangkaian kegiatan percobaan. • Mahasiswa praktikan mampu menjaga keselamatan sistem peralatan dan komponen. • Mahasiswa mampu melakukan pemilihan mode yang sesuai untuk pengamatan gelombang yang baik pada oscilloscope. • Mahasiswa mampu mengenali anomali pada sistem berdasarkan dasar teori yang dimiliki. • Mahasiswa mampu melakukan troubleshooting pada sistem jika terjadi kesalahan/kegagalan fungsi.

xvi

B. Pokok Bahasan

: • • • • •

Penyearah terkendali setengah gelombang. Penyearah terkendali gelombang penuh (center-tap). Penyearah terkendali gelombang penuh sistem jembatan. Penyearah tiga-fase terkendali penuh sistem jembatan Karakteristik SCR

C. Sub Pokok Bahasan

: • Penyearah terkendali setengah gelombang, beban R + L. • Penyearah terkendali gelombang penuh (center-tap), beban resistor & induktor. • Penyearah terkendali gelombang penuh sistem jembatan, beban resistor & induktor. • Penyearah tiga-fase terkendali penuh sistem jembatan, beban resistor+induktor+kapasitor. • Karakteristik SCR dengan beban resistor+induktor.

D. Kegiatan Belajar Mengajar Tahap Kegiatan Pengajar Kegiatan • Memeriksa kehadiran mahasiswa. • Memeriksa hasil pekerjaan mahasiswa berupa laporan tugas pendahuluan. • Meminta mahasiswa membaca kembali sasaran kompetensi yang dicapai selama dan setelah kegiatan praktik. Pendahuluan • Memberikan umpan balik berupa evaluasi terhadap laporan pendahuluan mahasiswa. • Menjelaskan kembali pentingnya membaca panduan praktikum dengan baik agar dapat melaksanakan praktik secara mandiri dengan benar. Penyajian • Mengawasi pelaksanaan kegiatan praktikum tugas (job) 1, tugas 2, tugas 3, tugas 4 dan tugas 5.

Kegiatan Mahasiswa

• Menunjukkan kehadirannya dengan baik • Menyerahkan tugas/laporan • Mendengarkan • Mengamati • Menyimak • Mencatat • Bertanya • Menjawab pertanyaan

• • • •

Mendengarkan Mencatat Bertanya Menjawab xvii

Media dan Alat Pengajaran

Alat tulis.

• Modul tugas praktikum • White board • Boardmarker

Penutup

• Memberikan umpan balik/instruksi secara proporsional sesuai filososi dan prosedur kegiatan praktik. • Memberikan evaluasi terhadap kegiatan praktik yang baru dilaksanakan. • Mengingatkan kembali tentang penulisan laporan yang baik.

pertanyaan • Melaksanakan praktik dengan mengoperasikan peralatan • • • • • •

Mendengarkan Mengamati Menyimak Mencatat Bertanya Menjawab pertanyaan

• Modul tugas praktikum • White board • Boardmarker

E. Evaluasi

: • Bertanya kepada mahasiswa tentang kesulitan yang dihadapi saat praktikum. • Bertanya kepada mahasiswa untuk mengetahui tingkat kemantapan pemahaman sebagai hasil dari pelaksanaan kegiatan praktikum. • Evaluasi terhadap hasil laporan lengkap kegiatan tugas praktik.

F. Lain-lain bila perlu

: • Laporan pendahuluan dikumpulkan per kelompok satu eksemplar pada awal jam pelajaran praktikum kepada instruktur. • Laporan lengkap kegiatan tugas praktik dikumpulkan pada pelaksanaan praktik berikutnya.

G. Referensi

: • D. W. Hart, Power electronics, 1st ed. New York: McGrawHill Higher Education, 2010. • Dennis Fewson, Introduction to power electronics, 1st edition. London : New York: Butterworth-Heinemann, 1998. • M. H. Rashid, Ed., Power electronics handbook: Devices, circuits, and applications, 3rd ed. Oxford: ButterworthHeinemann, 2010. • S. L. Herman, Delmar’s Standard Textbook of Electricity, 5th Edition, 5th edition. Clifton Park, NY: Delmar Cengage Learning, 2010. • J. Bird, Electrical and electronic principles and technology, 5th ed. United Kingdom: Routledge, 2013. • B. K. Bose, “The past, present, and future of power electronics [Guest Introduction],” IEEE Industrial Electronics Magazine, vol. 3, no. 2, pp. 7–11, 14, Jun. 2009.

xviii

• J. D. van Wyk and F. C. Lee, “On a Future for Power Electronics,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 2, pp. 59–72, 2013. • “Criteria for Accrediting Engineering Programs, 2015 – 2016.” ABET. • L. D. Feisel and A. J. Rosa, “The Role of the Laboratory in Undergraduate Engineering Education,” Journal of Engineering Education, vol. 94, no. 1, pp. 121–130, 2005. • R. R. Riehl, J. A. C. Ulson, A. L. Andreoli, and A. F. Alves, “A new approach for teaching power electronics in electrical engineering courses,” in 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 2014, pp. 3573–3578.

xix

Program Studi

: D3 Teknik Listrik

Mata Kuliah

: Laboratorium Elektronika Daya II

Kode mata kuliah

: PTL312

SKS

: 2

Waktu pertemuan

: 4 jam perkuliahan

Pertemuan ke

: 8 (Rotasi I)

A. Tujuan 1. Kompetensi Utama

: • Mahasiswa mampu mendemonstrasikan pengaturan pada sumber catu daya yang sesuai kebutuhan sistem berdasarkan panduan spesifik tugas (job). • Mahasiswa mampu mendemonstrasikan cara pengukuran nilai numeris tegangan dan arus, menggunakan DMM & oscilloscope dengan benar. • Mahasiswa mampu mendemonstrasikan perhitungan untuk menentukan parameter karakteristik dari penyearah. • Mahasiswa mampu menganalisis gelombang tegangan dan arus dengan menghubungkannya dengan teori & hukum tentang karakteristik elemen/komponen dan rangkaian, yang dikemukakan secara lisan kepada instruktur. • Mahasiswa mampu menarik kesimpulan yang dituangkan dalam bentuk penjelasan lisan, berdasarkan dasar teori dan data hasil kegiatan praktik.

2. Kompetensi Khusus

: • Mahasiswa mampu menjelaskan hal-hal yang berisiko membahayakan keselamatan saat melaksanakan rangkaian kegiatan percobaan. • Mahasiswa praktikan mampu mengidentifikasi bagian sistem atau komponen yang paling berisiko untuk rusak dalam kegiatan. • Mahasiswa mampu menunjukkan cara pemilihan mode yang sesuai untuk pengamatan gelombang yang baik pada oscilloscope. • Mahasiswa mampu menjelaskan bagian dari upaya troubleshooting pada sistem jika terjadi kesalahan/kegagalan fungsi.

B. Pokok Bahasan

: • • • • •

Penyearah terkendali setengah gelombang. Penyearah terkendali gelombang penuh (center-tap). Penyearah terkendali gelombang penuh sistem jembatan. Penyearah tiga-fase terkendali penuh sistem jembatan Karakteristik SCR

xx

C. Sub Pokok Bahasan

: • Penyearah terkendali setengah gelombang, beban R + L. • Penyearah terkendali gelombang penuh (center-tap), beban resistor & induktor. • Penyearah terkendali gelombang penuh sistem jembatan, beban resistor & induktor. • Penyearah tiga-fase terkendali penuh sistem jembatan, beban resistor+induktor+kapasitor. • Karakteristik SCR dengan beban resistor+induktor.

D. Kegiatan Belajar Mengajar Tahap Kegiatan Pengajar Kegiatan • Memeriksa kehadiran mahasiswa. • Mengingatkan kembali agar mahasiswa selalu membaca sasaran kompetensi yang dicapai selama dan setelah kegiatan praktik. • Menjelaskan kembali Pendahuluan pentingnya membaca panduan praktikum dengan baik agar dapat melaksanakan praktik secara mandiri dengan benar. • Menjelaskan prosedur dan tatatertib ujian praktik rotasi I.

Penyajian

Penutup

• Mengawasi pelaksanaan kegiatan ujian praktikum tugas (job) 1, tugas 2, tugas 3, tugas 4 dan tugas 5.

• Memberikan evaluasi terhadap kegiatan ujian praktik yang

Kegiatan Mahasiswa

• Menunjukkan kehadirannya dengan baik • Menyerahkan tugas/laporan • Mendengarkan • Mengamati • Menyimak • Mencatat • Bertanya • Menjawab pertanyaan

Mendengarkan Mencatat Bertanya Menjawab pertanyaan • Melaksanakan uji praktik dengan mengoperasikan peralatan • • • •

• Mendengarkan • Mengamati • Menyimak xxi

Media dan Alat Pengajaran

Alat tulis.

• Modul tugas praktikum • White board • Boardmarker

• Modul tugas praktikum • White board • Boardmarker

baru dilaksanakan.

• Mencatat • Bertanya • Menjawab pertanyaan

E. Evaluasi

: • Bertanya kepada mahasiswa tentang kesulitan yang dihadapi saat ujian praktikum rotasi I. • Bertanya kepada mahasiswa untuk mengetahui tingkat kemantapan pemahaman sebagai hasil dari pelaksanaan kegiatan ujian praktikum rotasi I. • Evaluasi terhadap hasil laporan lengkap kegiatan tugas praktik.

F. Lain-lain bila perlu

: • Pertemuan ke-8 (minggu ke-8) dijadwalkan sebagai ujian praktikum rotasi I.

G. Referensi

: • D. W. Hart, Power electronics, 1st ed. New York: McGrawHill Higher Education, 2010. • Dennis Fewson, Introduction to power electronics, 1st edition. London : New York: Butterworth-Heinemann, 1998. • M. H. Rashid, Ed., Power electronics handbook: Devices, circuits, and applications, 3rd ed. Oxford: ButterworthHeinemann, 2010. • S. L. Herman, Delmar’s Standard Textbook of Electricity, 5th Edition, 5th edition. Clifton Park, NY: Delmar Cengage Learning, 2010. • J. Bird, Electrical and electronic principles and technology, 5th ed. United Kingdom: Routledge, 2013. • B. K. Bose, “The past, present, and future of power electronics [Guest Introduction],” IEEE Industrial Electronics Magazine, vol. 3, no. 2, pp. 7–11, 14, Jun. 2009. • J. D. van Wyk and F. C. Lee, “On a Future for Power Electronics,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 2, pp. 59–72, 2013. • “Criteria for Accrediting Engineering Programs, 2015 – 2016.” ABET. • L. D. Feisel and A. J. Rosa, “The Role of the Laboratory in Undergraduate Engineering Education,” Journal of Engineering Education, vol. 94, no. 1, pp. 121–130, 2005.

xxii

Program Studi

: D3 Teknik Listrik

Mata Kuliah

: Laboratorium Elektronika Daya II

Kode mata kuliah

: PTL312

SKS

: 2

Waktu pertemuan

: 4 jam perkuliahan

Pertemuan ke

: 9 & 10

A. Tujuan 1. Kompetensi Utama

: • Mahasiswa mampu menjelaskan cara penggunaan alat ukur DMM dan oscilloscope yang benar sesuai keperluan praktikum yang akan dilakukan berdasarkan petunjuk penggunaan peralatan (user's guide). • Mahasiswa dapat mengenali dan menyebutkan potensi bahaya (risiko) keselamatan terhadap jiwa dan peralatan dalam rangkaian kegiatan praktikum. • Mampu menunjukkan kepatuhan terhadap pengaturan kerja praktik yang berdasarkan sains dan pemahaman terhadap teknologi. • Mahasiswa dapat memberi contoh-contoh sederhana penerapan prinsip korelasi dan kausalitas yang berkaitan dengan tugas praktik sebagaimana tercantum di dalam buku panduan. • Mampu menyelesaikan tiap kegiatan praktik dengan waktu lebih cepat minimal 5 menit dari waktu rata-rata rotasi satu tanpa penurunan mutu kegiatan dan laporan praktikum.

2. Kompetensi Khusus

: • Mahasiswa mampu menyebutkan ulang tata tertib dan pengaturan kegiatan praktikum. • Mahasiswa mampu menunjukkan perilaku yang mewujudkan ketaatan terhadap prinsip-prinsip sains. • Mahasiswa mampu menjelaskan dengan baik pemahaman terhadap unsur-unsur utama penilaian kegiatan praktik: kognitif, psikomotorik dan afektif. • Mahasiswa mampu menjalankan simulasi pada perangkat lunak sebagai sarana bantu belajar kegiatan praktik dengan perangkat keras.

B. Pokok Bahasan

: Pengenalan laboratorium elektronika daya dan praktikum rotasi dua.

C. Sub Pokok Bahasan

: • Prinsip-prinsip dasar masing-masing tugas praktik (job) dalam kegiatan praktikum Laboratorium Elektronika Daya II. • Perbandingan antara dasar teori dengan hasil simulasi untuk tugas praktik (job) rotasi dua. xxiii

• Tata tertib laboratorium dan tata tertib kegiatan praktikum. D. Kegiatan Belajar Mengajar Tahap Kegiatan Pengajar Kegiatan Pendahuluan

Memeriksa kehadiran mahasiswa.

Penyajian

• Menjelaskan secara singkat penerapan prinsip dasar sains untuk tugas praktik rotasi dua. • Menjelaskan ulang tata tertib laboratorium dan tata tertib kegiatan praktikum beserta evaluasi untuk pelaksanaanya pada rotasi I. • Menjelaskan pelaksanaan kegiatan praktikum rotasi II. • Memfasilitasi / menetapkan pembagian kelompok praktik. • Menjelaskan jadwal pelaksanaan dan pengaturan rotasi. • Menjelaskan tentang tugas yang akan dikumpulkan untuk kegiatan praktikum berikutnya.

Penutup

• Memberikan rangkuman bahasan. • Memberikan tugas.

Kegiatan Mahasiswa Menunjukkan kehadirannya dengan baik.

• • • • • •

Mendengarkan Mengamati Menyimak Mencatat Bertanya Menjawab pertanyaan

• • • •

Mendengarkan Menyimak Mencatat Menjawab pertanyaan

Media dan Alat Pengajaran Alat tulis.

Modul tugas praktikum Laptop LCD projector Projector screen White board Boardmarker Perangkat keras (hardware module) praktikum • Dokumen tata-tertib laboratorium dan paktikum • • • • • • •

• • • • • •

Modul tugas praktikum Laptop LCD projector Projector screen White board Boardmarker

E. Evaluasi

: Bertanya kepada mahasiswa untuk memantau penyerapan dan pemahaman.

F. Lain-lain bila perlu

: xxiv

G. Referensi

: • D. W. Hart, Power electronics, 1st ed. New York: McGrawHill Higher Education, 2010. • Dennis Fewson, Introduction to power electronics, 1st edition. London : New York: Butterworth-Heinemann, 1998. • W. Shepherd and L. Zhang, Power converter circuits. New York: Marcel Dekker, 2004. • N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics: converters, applications, and design, 3 rd. New York [etc.]: John Wiley & Sons, 2003. • B. K. Bose, “The past, present, and future of power electronics [Guest Introduction],” IEEE Industrial Electronics Magazine, vol. 3, no. 2, pp. 7–11, 14, Jun. 2009. • J. D. van Wyk and F. C. Lee, “On a Future for Power Electronics,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 2, pp. 59–72, 2013. • “Criteria for Accrediting Engineering Programs, 2015 – 2016.” ABET. • L. D. Feisel and A. J. Rosa, “The Role of the Laboratory in Undergraduate Engineering Education,” Journal of Engineering Education, vol. 94, no. 1, pp. 121–130, 2005.

xxv

Program Studi

: D3 Teknik Listrik

Mata Kuliah

: Laboratorium Elektronika Daya II

Kode mata kuliah

: PTL312

SKS

: 2

Waktu pertemuan

: 4 jam perkuliahan

Pertemuan ke

: 11 sampai 15 (Rotasi II)

A. Tujuan 1. Kompetensi Utama

: • Mahasiswa mampu melakukan pengaturan pada sumber catu daya sesuai kebutuhan sistem. • Mahasiswa mampu melakukan pengukuran nilai numeris tegangan dan arus, menggunakan DMM & oscilloscope dengan benar. • Mahasiswa mampu menentukan parameter karakteristik dari penyearah. • Mahasiswa mampu mengulas perbandingan parameter karakteristik penyearah, antara hasil perhitungan dengan hasil pengukuran. • Mahasiswa mampu melaporkan secara tertulis perbandingan parameter karakteristik penyearah antara hasil perhitungan, dan simulasi dengan hasil pengukuran. • Mahasiswa mampu menganalisis gelombang tegangan dan arus dengan menghubungkannya dengan teori & hukum tentang karakteristik elemen/komponen dan rangkaian, yang dituangkan dalam bentuk laporan tertulis. • Mahasiswa mampu menarik kesimpulan yang dituangkan dalam bentuk laporan tertulis, berdasarkan dasar teori dan data hasil kegiatan praktik.

2. Kompetensi Khusus

: • Mahasiswa mampu hadir pada waktu yang telah ditetapkan untuk kegiatan praktikum. • Mahasiswa mampu menjaga keselamatan, ketertiban dan kesopanan saat melaksanakan rangkaian kegiatan percobaan. • Mahasiswa praktikan mampu menjaga keselamatan sistem peralatan dan komponen. • Mahasiswa mampu melakukan pemilihan mode yang sesuai untuk pengamatan gelombang yang baik pada oscilloscope. • Mahasiswa mampu mengenali anomali pada sistem berdasarkan dasar teori yang dimiliki. • Mahasiswa mampu melakukan troubleshooting pada sistem jika terjadi kesalahan/kegagalan fungsi.

xxvi

B. Pokok Bahasan

: • Karakteristik TRIAC. • Pensakelaran PWM transistor.

C. Sub Pokok Bahasan

: • • • • •

Karakteristik TRIAC dengan beban resistor+induktor. Pensakelaran PWM pada MOSFET, beban resistor+induktor. Pensakelaran PWM pada BJT, beban resistor+induktor. Pensakelaran PWM pada IGBT, beban resistor+induktor. Pensakelaran PWM pada rangkaian MOSFET sebagai pengendali motor DC.

D. Kegiatan Belajar Mengajar Tahap Kegiatan Pengajar Kegiatan • Memeriksa kehadiran mahasiswa. • Mengingatkan kembali agar mahasiswa selalu membaca sasaran kompetensi yang dicapai selama dan setelah kegiatan Pendahuluan praktik. • Menjelaskan kembali pentingnya membaca panduan praktikum dengan baik agar dapat melaksanakan praktik secara mandiri dengan benar. • Mengawasi pelaksanaan kegiatan praktikum tugas (job) 6, tugas 7, tugas 8, tugas 9 dan tugas 10. Penyajian • Memberikan umpan balik/instruksi secara proporsional sesuai filososi dan prosedur kegiatan praktik. Penutup • Memberikan evaluasi terhadap kegiatan praktik yang baru dilaksanakan.

Kegiatan Mahasiswa

• Menunjukkan kehadirannya dengan baik • Menyerahkan tugas/laporan • Mendengarkan • Mengamati • Menyimak • Mencatat • Bertanya • Menjawab pertanyaan

Mendengarkan Mencatat Bertanya Menjawab pertanyaan • Melaksanakan praktik dengan mengoperasikan peralatan • • • •

• • • • •

Mendengarkan Mengamati Menyimak Mencatat Bertanya

xxvii

Media dan Alat Pengajaran

Alat tulis.

• Modul tugas praktikum • White board • Boardmarker

• Modul tugas praktikum • White board • Boardmarker

• Mengingatkan kembali tentang penulisan laporan yang baik.

• Menjawab pertanyaan

E. Evaluasi

: • Bertanya kepada mahasiswa tentang kesulitan yang dihadapi saat praktikum rotasi II. • Bertanya kepada mahasiswa untuk mengetahui tingkat kemantapan pemahaman sebagai hasil dari pelaksanaan kegiatan praktikum rotasi II. • Evaluasi terhadap hasil laporan lengkap kegiatan tugas praktik.

F. Lain-lain bila perlu

: • Pertemuan ke-11 sampai ke-15 adalah praktikum rotasi dua.

G. Referensi

: • D. W. Hart, Power electronics, 1st ed. New York: McGrawHill Higher Education, 2010. • Dennis Fewson, Introduction to power electronics, 1st edition. London : New York: Butterworth-Heinemann, 1998. • M. H. Rashid, Ed., Power electronics handbook: Devices, circuits, and applications, 3rd ed. Oxford: ButterworthHeinemann, 2010. • W. Shepherd and L. Zhang, Power converter circuits. New York: Marcel Dekker, 2004. • S. L. Herman, Delmar’s Standard Textbook of Electricity, 5th Edition, 5th edition. Clifton Park, NY: Delmar Cengage Learning, 2010. • J. Bird, Electrical and electronic principles and technology, 5th ed. United Kingdom: Routledge, 2013. • “Criteria for Accrediting Engineering Programs, 2015 – 2016.” ABET. • L. D. Feisel and A. J. Rosa, “The Role of the Laboratory in Undergraduate Engineering Education,” Journal of Engineering Education, vol. 94, no. 1, pp. 121–130, 2005.

xxviii

Program Studi

: D3 Teknik Listrik

Mata Kuliah

: Laboratorium Elektronika Daya II

Kode mata kuliah

: PTL312

SKS

: 2

Waktu pertemuan

: 4 jam perkuliahan

Pertemuan ke

: 16 (Rotasi II)

A. Tujuan 1. Kompetensi Utama

: • Mahasiswa mampu mendemonstrasikan pengaturan pada sumber catu daya yang sesuai kebutuhan sistem berdasarkan panduan spesifik tugas (job). • Mahasiswa mampu mendemonstrasikan cara pengukuran nilai numeris tegangan dan arus, menggunakan DMM & oscilloscope dengan benar. • Mahasiswa mampu mendemonstrasikan perhitungan untuk menentukan parameter karakteristik dari penyearah. • Mahasiswa mampu menganalisis gelombang tegangan dan arus dengan menghubungkannya dengan teori & hukum tentang karakteristik elemen/komponen dan rangkaian, yang dikemukakan secara lisan kepada instruktur. • Mahasiswa mampu menarik kesimpulan yang dituangkan dalam bentuk penjelasan lisan, berdasarkan dasar teori dan data hasil kegiatan praktik.

2. Kompetensi Khusus

: • Mahasiswa mampu menjelaskan hal-hal yang berisiko membahayakan keselamatan saat melaksanakan rangkaian kegiatan percobaan. • Mahasiswa praktikan mampu mengidentifikasi bagian sistem atau komponen yang paling berisiko untuk rusak dalam kegiatan. • Mahasiswa mampu menunjukkan cara pemilihan mode yang sesuai untuk pengamatan gelombang yang baik pada oscilloscope. • Mahasiswa mampu menjelaskan bagian dari upaya troubleshooting pada sistem jika terjadi kesalahan/kegagalan fungsi.

B. Pokok Bahasan

: • Karakteristik TRIAC. • Pensakelaran PWM transistor.

C. Sub Pokok Bahasan

: • Karakteristik TRIAC dengan beban resistor+induktor. • Pensakelaran PWM pada MOSFET, beban resistor+induktor. • Pensakelaran PWM pada BJT, beban resistor+induktor. xxix

• Pensakelaran PWM pada IGBT, beban resistor+induktor. • Pensakelaran PWM pada rangkaian MOSFET sebagai pengendali motor DC. D. Kegiatan Belajar Mengajar Tahap Kegiatan Pengajar Kegiatan • Memeriksa kehadiran mahasiswa. • Mengingatkan kembali agar mahasiswa selalu membaca sasaran kompetensi yang dicapai selama dan setelah kegiatan praktik. • Menjelaskan kembali Pendahuluan pentingnya membaca panduan praktikum dengan baik agar dapat melaksanakan praktik secara mandiri dengan benar. • Menjelaskan prosedur dan tatatertib ujian praktik rotasi II.

Penyajian

• Mengawasi pelaksanaan kegiatan ujian praktikum tugas (job) 6, tugas 7, tugas 8, tugas 9 dan tugas 10.

Penutup

• Memberikan evaluasi terhadap kegiatan ujian praktik yang baru dilaksanakan.

Kegiatan Mahasiswa

• Menunjukkan kehadirannya dengan baik • Menyerahkan tugas/laporan • Mendengarkan • Mengamati • Menyimak • Mencatat • Bertanya • Menjawab pertanyaan

Media dan Alat Pengajaran

Alat tulis.

Mendengarkan Mencatat Bertanya Menjawab pertanyaan • Melaksanakan uji praktik dengan mengoperasikan peralatan

• Modul tugas praktikum • White board • Boardmarker

Mendengarkan Mengamati Menyimak Mencatat

• Modul tugas praktikum • White board • Boardmarker

• • • •

• • • •

xxx

E. Evaluasi

: • Bertanya kepada mahasiswa tentang kesulitan yang dihadapi saat ujian praktikum rotasi II. • Bertanya kepada mahasiswa untuk mengetahui tingkat kemantapan pemahaman sebagai hasil dari pelaksanaan kegiatan ujian praktikum rotasi II. • Evaluasi terhadap hasil laporan lengkap kegiatan tugas praktik.

F. Lain-lain bila perlu

: • Pertemuan ke-16 (minggu ke-16) dijadwalkan sebagai ujian praktikum rotasi II.

G. Referensi

: • D. W. Hart, Power electronics, 1st ed. New York: McGrawHill Higher Education, 2010. • Dennis Fewson, Introduction to power electronics, 1st edition. London : New York: Butterworth-Heinemann, 1998. • M. H. Rashid, Ed., Power electronics handbook: Devices, circuits, and applications, 3rd ed. Oxford: ButterworthHeinemann, 2010. • W. Shepherd and L. Zhang, Power converter circuits. New York: Marcel Dekker, 2004. • S. L. Herman, Delmar’s Standard Textbook of Electricity, 5th Edition, 5th edition. Clifton Park, NY: Delmar Cengage Learning, 2010. • J. Bird, Electrical and electronic principles and technology, 5th ed. United Kingdom: Routledge, 2013. • B. K. Bose, “The past, present, and future of power electronics [Guest Introduction],” IEEE Industrial Electronics Magazine, vol. 3, no. 2, pp. 7–11, 14, Jun. 2009. • J. D. van Wyk and F. C. Lee, “On a Future for Power Electronics,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 2, pp. 59–72, 2013. • “Criteria for Accrediting Engineering Programs, 2015 – 2016.” ABET. • L. D. Feisel and A. J. Rosa, “The Role of the Laboratory in Undergraduate Engineering Education,” Journal of Engineering Education, vol. 94, no. 1, pp. 121–130, 2005.

xxxi

BAGIAN I PENDAHULUAN 1.1. Standar Acuan Seluruh kegiatan praktikum elektronika daya (Lab ELDA I dan Lab Elda II) merupakan bagian utuh dan tidak terpisahkan dari mata kuliah teori Elektronika Daya I dan Elektronika Daya II. Keempat kegiatan perkuliahan tersebut mengacu pada pokok-pokok acuan; acuan keilmuan, acuan peraturan nasional dan sasaran capaian lembaga. Salah satu acuan keilmuan yang umum dipergunakan untuk bidang engineering education (pendidikan teknik) secara internasional (termasuk beberapa perguruan tinggi terkemuka di Indonesia) adalah apa yang ditetapkan dalam standar oleh ABET (Accreditation Board for Engineering and Technology). Dalam standar yang dikeluarkan ABET (Criteria For Accrediting Engineering Programs), salah satu dari tiga kriteria adalah kriteria capaian oleh pelajar (student outcomes). Hal ini dimaksudkan agar pelajar (mahasiswa) setelah mengikuti rangkaian kegiatan belajar akan mampu mencapai hal-hal yang telah ditetapkan dalam standar. Adapun standar student outcomes adalah sebagai berikut: (a) an ability to apply knowledge of mathematics, science, and engineering (kemampuan menerapkan matematika, sains dan teknik) (b) an ability to design and conduct experiments, as well as to analyze and interpret data (kemampuan merancang dan melaksanakan percobaan, kemudian mampu menganalisis dan menginterpretasikan data) (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability (kemampuan merancang sistem, komponen atau proses dengan mematuhi batasan-batasan realistis seperti faktor ekonomi, lingkungan, sosial politik, etika, kesehatan, keselamatan, manufakturaturabilitas (dapat diproduksi), dan keberlanjutan) (d) an ability to function on multidisciplinary teams (kemampuan untuk berfungsi dalam tim yang terdiri dari multi-disiplin) (e) an ability to identify, formulate, and solve engineering problems (kemampuan untuk mengidentifikasi, memformulasikan, dan memecahkan permasalahan teknik) (f) an understanding of professional and ethical responsibility (pemahaman tentang tanggung jawab dan etika profesi) (g) an ability to communicate effectively (kemampuan untuk berkomunikasi secara efektif) (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context (memiliki cakupan pendidikan yang cukup luas yang diperlukan untuk memiliki wawasan sehingga mampu mengerti tentang pengaruh solusi teknik dalam kaitan dengan konteks global, ekonomi, lingkungan dan sosial)

1

(i) a recognition of the need for, and an ability to engage in life-long learning (dapat mengenali (memahami) perlunya terus menerus belajar sepanjang hidup dan memiliki kemampuan untuk melakukannya) (j) a knowledge of contemporary issues (memiliki pengetahuan tentang isu-isu terbaru) (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice (kemampuan menggunakan sejumlah teknik, keterampilan dan alat-alat bantu terbaru yang diperlukan dalam praktik kegiatan teknik)

Beberapa telaah mengenai aspek-aspek kependidikan teknik yang diformulasikan dalam bentuk tulisan telah sejak lama bersesuaian dengan sasaran capaian dalam standar ABET tersebut. Misalnya mengenai fungsi/peran laboratorium yang dikhususkan untuk pendidikan, Feisel & Rosa (2005) mengemukakan: “In my examination of the undergraduate engineering laboratory, I have identified three roles or objectives as major ones. First, the student should learn how to be an experimenter. Second, the laboratory can be a place for the student to learn new and developing subject matter. Third, laboratory courses help the student to gain insight and understanding of the real world.” Lebih lanjut dalam makalahnya, Feisel & Rosa (2005) menyampaikan hasil colloquy (konferensi) yang dilakukan oleh para ahli pendidikan teknik (engineering educators) dan para ahli berbagai disiplin ilmu lainnya pada Januari 2002. Sebagai hasil dari pertemuan itu didapatlah 13 sasaran capaian (objective) yang diberi nama The Fundamental Objectives of Engineering Instructional Laboratories dengan isi sebagai berikut: 1.

Objective 1: Instrumentation. Apply appropriate sensors, instrumentation, and/or software tools to make measurements of physical quantities.

2.

Objective 2: Models. Identify the strengths and limitations of theoretical models as predictors of real-world behaviors. This may include evaluating whether a theory adequately describes a physical event and establishing or validating a relationship between measured data and underlying physical principles.

3.

Objective 3: Experiment. Devise an experimental approach, specify appropriate equipment and procedures, implement these procedures, and interpret the resulting data to characterize an engineering material, component, or system.

2

4.

Objective 4: Data Analysis. Demonstrate the ability to collect, analyze, and interpret data, and to form and support conclusions. Make order of magnitude judgments and use measurement unit systems and conversions.

5.

Objective 5: Design.

6.

Objective 6: Learn from Failure. Identify unsuccessful outcomes due to faulty equipment, parts, code, construction, process, or design, and then re-engineer effective solutions.

7.

Objective 7: Creativity. Demonstrate appropriate levels of independent thought, creativity, and capability in realworld problem solving.

8.

Objective 8: Psychomotor. Demonstrate competence in selection, modification, and operation of appropriate engineering tools and resources.

9.

Objective 9: Safety. Identify health, safety, and environmental issues related to technological processes and activities, and deal with them responsibly.

10.

Objective 10: Communication. Communicate effectively about laboratory work with a specific audience, both orally and in writing, at levels ranging from executive summaries to comprehensive technical reports.

11.

Objective 11: Teamwork. Work effectively in teams, including structure individual and joint accountability; assign roles, responsibilities, and tasks; monitor progress; meet deadlines; and integrate individual contributions into a final deliverable.

12.

Objective 12: Ethics in the Laboratory. Behave with highest ethical standards, including reporting information objectively and interacting with integrity.

13.

Objective 13: Sensory Awareness. Use the human senses to gather information and to make sound engineering judgments in formulating conclusions about real-world problems.

Selain mengacu pada standar ABET untuk bidang engineering secara umum, kuliah elektronika daya mengacu pada; standar, definisi, makalah dan terbitan lainnya yang dikeluarkan oleh IEEE (Institute of Electrical and Electronics Engineers) untuk kekhususan dalam bidang ilmu interdisiplin elektronika daya (power electronics). Adapun kelompok kerja spesialis ilmu elektronika daya dalam organisasi IEEE dinamakan PELS (IEEE-Power Electronics Society).

3

Acuan keilmuan lainnya yang memberikan peta yang komprehensif mengenai pohon ilmu (body of knowledge) adalah buku-buku yang telah dipergunakan sebagai buku ajar di berbagai perguruan tinggi yang memiliki reputasi yang baik secara internasional. Buku-buku tersebut dicantumkan di dalam Satuan Acara Pembelajaran (SAP). Acuan nasional berupa peraturan yang menjadi dasar pelaksanaan kegiatan maupun sebagai pemberi informasi mengenai filosofi usaha pendidikan di Indonesia antara lain; Perpres no 8/2012 (KKNI), UUPT (UU DIKTI, no 12/2012), SNPT (SN DIKTI, Permen no 49/2014).

1.2. Peralatan Pada kuliah praktikum Laboratorium Elektronika Daya I dan Laboratorium Elektronika Daya II, kegiatan praktik meliputi konversi daya, tegangan dan arus dari AC-ke-DC dan dari ACke-AC. Sedangkan untuk konversi DC-ke-DC (linear dan SMPS) dan DC-ke-AC (inverter) direncanakan akan dilaksanakan pada kegiatan mini lab pada kuliah Elektronika Daya I dan Elektronika Daya II. Hal ini dapat dilakukan karena kedua kuliah teori tersebut dilaksanakan dengan paradigma baru yaitu penerapan SCL (student centered learning), PBL (problem based learning) dan LBE (laboratory based education). Seluruh praktikum pada Laboratorium Elektronika Daya II mempergunakan perangkat keras yang diproduksi oleh ElecttronicaVeneta. Untuk Laboratorium Elektronika Daya, cara pengaturan penggunaan keseluruhan peralatan dilakukan untuk terutama melatih kemampuan praktikan untuk melakukan pengambilan data, melakukan analisis, menarik kesimpulan dan menuangkannya ke dalam bentuk laporan yang sesuai. Hal ini mengacu pada pengaturan kompetensi lulusan untuk tingkat D3.

Gambar 1.1. Contoh modul perangkat keras praktikum

4

Gambar 1.2. Modul kendali utama [M1R]

Gambar 1.3.a. Modul dasar [diode, M3R]

Gambar 1.3.a. Modul dasar [diode, M4R]

5

Gambar 1.4. Mask, pelapis pada modul dasar

Gambar 1.5. Modul beban R, L, C [MB1]

Gambar 1.6. Modul akuisisi data [MDAQ] 6

1.3. Sumber Panduan Praktikum Dikarenakan seluruh peralatan praktikum yang dipergunakan adalah produksi dari perusahaan ElecttronicaVeneta. Oleh karena itu panduan pelaksanaannya pun menggunakan panduan dari produsen yang sama sebagai dasar utama. Panduan dari ElecttronicaVeneta menggunakan bahasa pengantar bahasa Inggris. Untuk laboratorium Elektronika Daya, bahasa pengantar pada sumber asli tidak diterjemahkan ke dalam bahasa Indonesia dalam buku panduan praktikum ini. Adapun dasar-dasar pertimbangan telah dikemukakan pada buku panduan Laboratorium Elektronika Daya I dan karenanya tidak diulangi lagi di sini untuk alasan efisiensi.

REFERENSI: [1] Amar, K. (2014). The adoption of a laboratory-based education model as the foundation of a research university: Relevance to a university in Indonesia. Education Journal, 3(4), 229. http://doi.org/10.11648/j.edu.20140304.14 [2] Balog, R. S., Kimball, J. W., Sorchini, Z., Krein, P. T., & Chapman, P. L. (2003). "Blue Box" Power Electronics Control Modules for Laboratory-based Education. University of Illinois, Department of Electrical and Computer Engineering. [3] Balog, R. S., Sorchini, Z., Kimball, J. W., Chapman, P. L., Krein, P. T., & Sauer, P. W. (2005). Blue-box approach to power electronics and machines educational laboratories. In IEEE Power Engineering Society General Meeting, 2005.. Institute of Electrical and Electronics Engineers IEEE. [4] Criteria for Accrediting Engineering Programs, 2015 – 2016. (2014). ABET. Retrieved from http://www.abet.org/wp-content/uploads/2015/05/E001-15-16-EAC-Criteria-03-10-15.pdf [5] Feisel, L. D., & Rosa, A. J. (2005). The Role of the Laboratory in Undergraduate Engineering Education. Journal of Engineering Education, 94(1), 121–130. [6] Semuel Mige, G. E. (2014). Upaya Peningkatan Kompetensi Lulusan Pendidikan Teknik Elektro Lewat Laboratory Based Education. In A. G. Abdullah (Ed.), Prosiding Konvensi Nasional APTEKINDO VII dan Temu Karya XVIII FPTK/FT-JPTK Se-Indonesia (pp. 403–407). Bandung: Fakultas Pendidikan Teknologi dan Kejuruan Universitas Pendidikan Indonesia.

7

BAGIAN II LEMBAR PANDUAN PRAKTIKUM

Tim Kelompok Bidang Keahlian (KBK) Dosen Laboratorium Elektronika Daya II: •

Sunu Pradana, S.T., M.Eng.



Hari Subagyo, S.S.T., M.T.



Asep Megah T.H., S.T., M.T.



Erry Yadie, S.T., M.T.

8

BUKU PEDOMAN PRAKTIKUM LABORATORIUM ELEKTRO POLITEKNIK NEGERI SAMARINDA

TANGGAL REVISI TANGGAL BERLAKU KODE DOKUMEN

: 01 / 21/ 2016 : 10 / 02/ 2016 : LEDII-POLNES-04-LEL

POLITEKNIK NEGERI SAMARINDA JURUSAN TEKNIK ELEKTRO L ABOR ATORIUM Elektronika Daya II Tugas 01. Penyearah terkendali setengah gelombang, beban resistor & induktor.

9

Semester

:

VI

Waktu

:

4 jam

13

EXERCISE No.

TITLE:

Single-phase half-wave converter with resistive load E1CK-D.

NECESSARY COMPONENTS:

1 Microprocessor module M1R 1 Base module of SCR & diodes M3R + Mask 1 1 module of R, L and C loads MB1 1 signal acquisition module MDAQ 1 true RMS multimeter (2 instruments are preferable) 1 dual-trace oscilloscope Power supply unit: mod. AEP-1/EV

TARGETS: 1. Measuring voltages and currents. 2. Analysis of voltage and current waveforms.

STARTING PROCEDURE: 1. Arrange the corresponding modules in the vertical support to assemble the circuit shown on the diagram of Exercise 13 – Fig. 1. 2. Insert MASK 1 on module M3R. Insert the mask identification jumper. 3. Connect the corresponding modules as indicated in the diagram of Exercise 13 – Fig. 2. 4. Connect the jumpers with the power supply unit to attain 50 Vac at mask input. 5. The resistive load consists of a resistor of 100 Ω + 2 coils of 50 mH connected in series. 6. Turn the power supply unit on and adjust the variac until a voltage of 50 Vac is attained across the secondary winding between phase and neutral. TARGETS 1 AND 2: MEASUREMENT OF VOLTAGES AND CURRENTS AND ANALYSIS OF WAVEFORMS. Assemble the circuit shown in Exercise 13 - Fig. 1. Power the circuit from the source AEP-1/EV. Turn the unit M1R on and push the ON button (on the right side of the display) to enable the control circuit; the message "SCR: ON" appears on the display. Carry out the following measurements: 1. Root mean square value of supply voltage (2U2) (Tester in V1). Write down the value on Table 1. 2. With tester in position V2, varying the firing angle α (see Table 2) with the potentiometer of module M1R, measure the average value UdAV (VDC of the tester) and observe the waveforms of the voltage across the load. Write down the values on Table 2. 3. Use the tester as ammeter A (open the circuit and connect the tester), vary the firing angle α (see table 2) with the potentiometer of module M1R, measure the average value IdAV and observe the waveforms of the current crossing the load. Write down the values on Table 2. 4. Measure the waveforms of the voltages across the SCR (CH1) and across the load (CH2) for a firing angle α =135°. Connect probe CH1 with jack 3B (2V/div) and probe CH2 with jack 1B (1V/div) of module MDAQ. See Photo 7. 5. Display the waveforms of voltage A-K with the probe (CH1) and G-K with the other prbe (CH2) for different firing angles. Connect probe CH1 with jack 3B (2V/div) and probe CH2 with jack 9A (1V/div) of module MDAQ. See Photos 8 (0°), 9 (90°) and 10 (150°). At the end of the exercise push the OFF button (on the right side of the display) to turn the control circuit off; the message "SCR:OFF" appears on the display.

10

TABLE 1: SUPPLY VOLTAGE (Vac) Root-mean-square value (2U2) of supply voltage (Tester in position V1).

TABLE 2: VALUES AND PHOTOS ON LOAD α (°)

UdAV (VDC of the tester) (V)

CH1 MDAQ Jack

IdAV (IDC of the tester) (A)

CH2 MDAQ Jack

See photo

0

1B (1V/div)

1A (1V/div)

1

60

1B (1V/div)

1A (1V/div)

2

120

1B (1V/div)

1A (0.5V/div)

3

150

1B (1V/div)

1A (0.5V/div)

4

170

1B (0.5V/div)

1A (0.2V/div)

5

180

1B (0.5V/div)

1A (0.2V/div)

6

EXERCISE 13 - FIGURES

Exercise 13 – Fig. 1 Half-wave converter with R-L load E1CK and connected instruments

11

Exercise 13 – Fig. 2 Connection diagram of modules

12

EXERCISE 13 - PHOTOS

Exercise 13 – Photo 1: Firing angle of 0°

Exercise 13 – Photo 2: Firing angle of 60°

Exercise 13 – Photo 3: Firing angle of 120°

Exercise 13 – Photo 4: Firing angle of 150°

Exercise 13 – Photo 5: Firing angle of 175°

Exercise 13 – Photo 6: Firing angle of 180°

13

Exercise 13 – Photo 7: Voltage on SCR (CH1) and on load (CH2)

VOLTAGES ACROSS THE SCR AND TRIGGERING SIGNALS

Exercise 13 – Photo 8 (0°)

Exercise 13 – Photo 9 (90°)

Exercise 13 – Photo 10(150°)

14

POLITEKNIK NEGERI SAMARINDA JURUSAN TEKNIK ELEKTRO L ABOR ATORIUM Elektronika Daya II Tugas 02. Penyearah terkendali gelombang penuh (center-tap), beban resistor & induktor.

15

Semester

:

VI

Waktu

:

4 jam

15

EXERCISE No. TITLE:

NECESSARY COMPONENTS:

Single-phase full-wave converter with R-L load M2CK (Forward bias)

1 Microprocessor module M1R 1 Base module of SCR & diodes M3R + Mask 3 1 module of R, L and C loads MB1 1 signal acquisition module MDAQ 1 true RMS multimeter (2 instruments are preferable) 1 dual-trace oscilloscope Power supply unit: mod. AEP-1/EV

TARGETS: 1. Measuring voltages and currents 2. Analysis of voltage and current waveforms.

STARTING PROCEDURE: 1. Arrange the corresponding modules on the vertical support to assemble the circuit shown in the diagram of Exercise 15 – Fig. 1. 5. Insert MASK 3 on the module M3R. Connect the mask identification jumper. 6. Connect the corresponding modules as indicated in the diagram of Exercise 15 – Fig. 2. 2. Connect the jumpers with the power supply unit to attain 50 Vac at mask input. 3. The resistive load consists of a resistor of 100 Ω + 2 coils of 50 mH connected in series. 4. Turn the power supply unit on and adjust the variac until a voltage of 50 Vca is attained across the secondary winding between phase and neutral. TARGETS 1 and 2: MEASUREMENT OF VOLTAGES AND CURRENTS AND ANALYSIS OF WAVEFORMS. Assemble the circuit shown in Exercise 15 - Fig. 1. Power the circuit from the source AEP-1/EV. Turn unit M1R on and push the ON button (on the right side of the display) to enable the control circuit; the message "SCR: ON" appears on the display. Carry out the following measurements: 1. Root mean square value of supply voltage (2U1) (Tester in V1). Write down the value in Table 1. 2. With tester in position V2, varying the firing angle α (see Table 2) with the potentiometer of module M1R, measure the average value UdAV (VDC of the tester) and observe the waveforms of the voltage across the load. Write down the values in Table 2. 3. Use the tester as ammeter A (open the circuit and insert the tester), vary the firing angle α (see Table 2) with the potentiometer of module M1R, measure the average value IdAV and observe the waveforms of the current crossing the load. Write down the values in Table 2. 4. Observe the waveforms of the voltages across the SCR (V1) with probe CH1 and across the load with probe CH2 for a firing angle α =135°. Connect probe CH1 with jack 3B (2V/div) and probe CH2 with jack 1B (1V/div) of module MDAQ. See Photo 7. 5. Display the waveforms of voltages A-K with (CH1) and G-K (CH2) of SCR (V1) for different firing angles. Connect probe CH1 with jack 3B (2V/div) and probe CH2 with jack 9A (2V/div) of module MDAQ. See Photos 8 (0°), 9 (90°) and 10 (150°). At the end of this exercise push the OFF button (on the right side of the display) to turn the control circuit off; the message "SCR:OFF" appears on the display.

16

TABLE 1: SUPPLY VOLTAGE (Vac) Root-mean-square value (2U2) of supply voltage (Tester in position V1).

TABLE 2: VALUES AND PHOTOS ON LOAD α (°)

UdAV (VDC of the tester) (V)

CH1 MDAQ Jack

IdAV (IDC of the tester) (A)

CH2 MDAQ Jack

See photo

0

1B (1V/div)

1A (0.5V/div)

1

60

1B (1V/div)

1A (0.5V/div)

2

120

1B (1V/div)

1A (0.5V/div)

3

150

1B (1V/div)

1A (0.5V/div)

4

170

1B (0.2V/div)

1A (0.1V/div)

5

180

1B (0.2V/div)

1A (0.1V/div)

6

17

EXERCISE 15 - FIGURES

Exercise 15 – Fig. 1 Full-wave converter with R-L load M2CK and connected instruments.

Exercise 15 – Fig. 2 Connection diagram of modules

18

EXERCISE 15 - PHOTOS

Exercise 15 – Photo 1: Firing angle of 0°

Exercise 15 – Photo 3: Firing angle of 120°

Exercise 15 – Photo 2: Firing angle of 60°.

Exercise 15 – Photo 4: Firing angle of 150°

Exercise 15 – Photo 5: Firing angle of 175°

19

Exercise 15 – Photo 7: Voltage across SCR (CH1) and across the load (CH2) VOLTAGES ACROSS SCR (V1) AND TRIGGERING SIGNALS

Exercise 15 – Photo 8-(0°)

Exercise 15 – Photo 9 (90°)

Exercise 15 – Photo 10 (150°)

20

BUKU PEDOMAN PRAKTIKUM LABORATORIUM ELEKTRO POLITEKNIK NEGERI SAMARINDA

TANGGAL REVISI TANGGAL BERLAKU KODE DOKUMEN

: 07 / 09/ 2015 : 10 / 02/ 2016 : LEDII-POLNES-04-LEL

POLITEKNIK NEGERI SAMARINDA JURUSAN TEKNIK ELEKTRO L ABOR ATORIUM Elektronika Daya II Tugas 03. Penyearah terkendali gelombang penuh sistem jembatan, beban resistor & induktor.

21

Semester

:

VI

Waktu

:

4 jam

18

EXERCISE No.

TITLE:

NECESSARY COMPONENTS:

Single phase fully controlled bridge B2C with R-L-C loads and load consisting of a DC motor 1 Microprocessor module M1R 1 Base module of SCR & diodes M3R + Mask 8 1 module of R, L and C loads MB1 1 signal acquisition module MDAQ 1 true RMS multimeter (2 instruments are preferable) 1 dual-trace oscilloscope Power supply unit: mod. AEP-1/EV

TARGETS: 1. Measuring voltages and currents 2. Analysis of voltage and current waveforms. STARTING PROCEDURE: 1. Arrange the corresponding modules in the vertical support to assemble the circuit shown in the diagram of Exercise 18 – Fig. 1. 2. Insert MASK 8 on module M3R. Connect the mask identification jumper. 3. Connect the jumpers with the power supply unit to attain 50 Vac at mask input. 4. FIRST LOAD: this load consists of a resistor of 100 Ω + 2 coils (each one of 50 mH) connected in series. SECOND LOAD: this load consists of a resistor of 100 Ω + 2 coils (each one of 50 mH) connected in series, and of a capacitor of 8 μF/ 400 V connected in parallel. 5. THIRD LOAD: the bridge load is a DC motor with separate excitation. 6. Turn the power supply unit on and adjust the variac until a voltage of 50 Vac is attained across the secondary winding between phase and neutral. TARGETS 1 and 2: MEASUREMENT OF VOLTAGES AND CURRENTS AND ANALYSIS OF WAVEFORMS. FIRST LOAD: Assemble the circuit shown in Exercise 18 - Fig. 1. Connect the corresponding modules as indicated in the diagram of Exercise 18 – Fig. 2. Power the circuit from the source AEP-1/EV. Turn unit M1R on and push the ON button (on the right side of the display) to enable the control circuit; the message "SCR: ON" appears on the display. Carry out the following measurements: 1. Root mean square value of supply voltage (2U1) (Tester in V1). Write down the value in Table 1. 2. With tester in position V2, varying the firing angle α (see Table 2) with the potentiometer of module M1R, measure the average value UdAV (VDC of the tester) and observe the waveforms of the voltage across the load. Write down the values in Table 2. 3. Use the tester as ammeter A (open the circuit and connect the tester), vary the firing angle α (see Table 2) with the potentiometer of module M1R, measure the average value IdAV and observe the waveforms of the current crossing load. Write down the values in Table 2. 4. Display the waveforms of voltage across SCR (V1) with probe CH1, and across the load with

22

probe CH2 for a firing angle α =135°. Connect probe CH1 with jack 4B (2V/div) and probe CH2 with jack 1B (2V/div) of module MDAQ. See Photo 7. 5. Observe the waveforms of voltage across the two SCRs of the circuit. For SCR (V1) connect probe CH1 (2V/div) with jack 4B of module MDAQ. For SCR (V4) connect probe CH2 (2V/div) with jack 8B of module MDAQ. Choose a firing angle α = 135°. The turning-on and turning-off periods of each SCR can be observed very clearly. See Photo 8. SECOND LOAD: Assemble the circuit shown in Exercise 18 - Fig. 3. Connect the components as indicated in Exercise 18 – Fig. 4. Power the circuit from the source AEP-1/EV. Turn unit M1R on and push the ON button (on the right side of the display) to enable the control circuit; the message "SCR: ON" appears on the display. Carry out the following measurements: 1. With tester in position V2, varying the firing angle α (see Table 3) with the potentiometer of module M1R, measure the average value UdAV (VDC of the tester) and observe the waveforms of the voltage acrosss the load. Write down the values in Table 3. 2. Use the tester as ammeter A (open the circuit and connect the tester), vary the firing angle α (see Table 3) with the potentiometer of module M1R, measure the average value IdAV and observe the waveforms of the current. Write down the values in Table 3. THIRD LOAD: 1. If available, connect a DC motor (e.g.: motor M-1/EV by Elettronica Veneta). Connect the motor excitation with the DC output of power supply unit AEP-1/EV (set the rotary selector to 160 Vdc). Connect the motor armature with the bridge output. See Exercise 18 – Fig. 5. SET THE FIRING ANGLE AT 180° SO THAT MOTOR CAN START WITHOUT VOLTAGE, THUS AVOIDING CURRENT BREAK-AWAY. Measure the values and the curves of armature voltage and current for the firing angles indicated in Table 4. At the end of this exercise push the OFF button (on the right side of the display) to turn the control circuit off; the message "SCR:OFF" appears on the display.

23

EXERCISE 18 Single-phase fully controlled bridge B2C FIRST LOAD: R-L TABLE 1: SUPPLY VOLTAGE (Vac) Root-mean-square value (2U1) of supply voltage (Tester in position V1).

TABLE 2: VALUES AND PHOTOSS ON LOAD

α (°)

UdAV (VDC of the tester) (V)

CH1 MDAQ Jack

IdAV (IDC of the tester) (A)

CH2 MDAQ Jack

See photo

0

1B (1V/div)

1A (1V/div)

1

60

1B (1V/div)

1A (1V/div

2

120

1B (1V/div)

1A (1V/div

3

150

1B (1V/div)

1A (1V/div

4

170

1B (0.2V/div)

1A (1V/div

5

180

1B (0.2V/div)

1A (0.2V/div)

------

24

EXERCISE 18 – FIGURES CORRESPONDING TO THE FIRST LOAD (R-L)

Exercise 18 – Fig. 1 Single-phase fully-controlled bridge B2C with R-L load and connected instruments

Exercise 18 – Fig. 2 Connection diagram of modules

25

SECOND LOAD: R-L-C

TABLE 3: VALUES AND PHOTOSS ON LOAD

α (°)

UdAV (VDC in the tester) (V)

CH1 MDAQ Terminal

IdAV (IDC in the tester) (A)

CH2 MDAQ Terminal

See photo

0

1B (1V/div)

1A (0.5V/div)

9

60

1B (1V/div)

1A (0.5V/div)

10

120

1B (1V/div)

1A (0.5V/div)

11

150

1B (1V/div)

1A (0.5V/div)

12

170

1B (0.2V/div)

1A (0.5V/div)

13

180

1B (0.2V/div)

1A (0.5V/div)

------

26

EXERCISE 18 – FIGURES OF THE SECOND LOAD (R-L-C)

Exercise 18 – Fig. 3 Single-phase fully-controlled bridge B2C with R-L-C load and connected instruments

Exercise 18 – Fig. 4 Connection diagram of modules

27

EXERCISE 18 – FIGURES OF THE THIRD LOAD (DC MOTOR WITH SEPARATE EXCITATION)

Exercise 18 – Fig. 5 Single-phase fully-controlled bridge B2C with DC motor load.

TABLE 4: VALUES AND PHOTOS WITH DC MOTOR LOAD (M-1/EV, SEPARATE FIXED EXCITATION = 160 Vdc) SET THE FIRING ANGLE α = 180° SO THAT THE MOTOR CAN START WITHOUT VOLTAGE, THUS AVOIDING ANY CURRENT BREAK-AWAY. ARMATURE VOLTAGE AND CURRENT α (°)

UdAV (VDC of the tester) (V)

180

--------

CH1 MDAQ Jack 1B (0.2V/div)

IdAV (IDC of the tester) (A) ------------

CH2 MDAQ Jack

See photo

RPM

1A (0.2V/div)

----------

0

----------

0 0

170

1B (0.2V/div)

1A (0.2/div)

150

1B (1V/div)

1A (0.5V/div)

14

120

1B (1V/div)

1A (0.5V/div)

15

60

1B (1V/div)

1A (0.5V/div)

16

0

1B (1V/div)

1A (0.5V/div)

17

REMARKS: 1- Motor speed depends linearly on the armature voltage (separate fixed excitation). 2- The current maintains values similar to the various values of α. This is due to the fact that the test has been performed with no load connected. (no torque is required). 3- When α = 150° the current value is higher because the motor is not running (there is no CounterElectromotive Force). For values lower than α (°) there is some CEMF.

28

EXERCISE 18 – MOTOR LOAD

MEASURED VALUES α (°) Udc (V across the load) 0 60 120 150 170 180

29

RPM

EXERCISE 18 – PHOTOS OF R-L LOADS

Exercise 18 – Photo 1: Firing angle of 0°

Exercise 18 – Photo 2: Firing angle of 60°

Exercise 18 – Photo 3: Firing angle of 120°

Exercise 18 – Photo 4: Firing angle of 150°

Exercise 18 – Photo 5: Firing angle of 170°

30

Exercise 18 – Photo 7: Voltages across SCR (CH1) and across the load (CH2) Firing angle: 135°

Exercise 18 – Photo 8: Voltages across SCRs V1 (CH1) and V3 (CH2) Firing angle: 135°

31

EXERCISE 18 – PHOTOS OF R-L-C LOADS

Exercise 18 – Photo 9: Firing angle of 0°

Exercise 18 – Photo 11: Firing angle of 120°

Exercise 18 – Photo 10: Firing angle of 60°

Exercise 18 – Photo 12: Firing angle of 150°

Exercise 18 – Photo 13: Firing angle of 170°

32

EXERCISE 18 – PHOTOS OF MOTOR LOAD

Exercise 18 – Photo 14- Firing angle of 150° (RPM = 0)

Exercise 18 – Photo 15: Firing angle of 120° (RPM = 290)

Exercise 18 – Photo 16- Firing angle of 60° (RPM = 665).

Exercise 17 – Photo 15: Firing angle of 0° (RPM = 665).

REMARKS: 1- Observe the negative and positive overvoltages due to the inductance of motor armature, in Photos 16 and 17. 2- The revolutions per minute (RPM) of the motor do not change for the firing angles of 60° and of 0° because the armature voltages are almost the same.

33

BUKU PEDOMAN PRAKTIKUM LABORATORIUM ELEKTRO POLITEKNIK NEGERI SAMARINDA

TANGGAL REVISI TANGGAL BERLAKU KODE DOKUMEN

: 07 / 09/ 2015 : 10 / 02/ 2016 : LEDII-POLNES-04-LEL

POLITEKNIK NEGERI SAMARINDA JURUSAN TEKNIK ELEKTRO L ABOR ATORIUM Elektronika Daya II Tugas 04. Penyearah tiga-fase terkendali penuh sistem jembatan, beban resistor+induktor+kapasitor.

34

Semester

:

VI

Waktu

:

4 jam

23

EXERCISE No.

Three-phase fully-controlled bridge B6C with R-L-C load in parallel, and motor load

TITLE:

1 Microprocessor module M1R 1 Base module of SCR & diodes M3R + Mask 10 1 module of R, L and C loads MB1 1 signal acquisition module MDAQ 1 true RMS multimeter (2 instruments are preferable) 1 dual-trace oscilloscope Power supply unit: mod. AEP-1/EV

NECESSARY COMPONENTS:

TARGETS: 1. Measuring voltages and currents 2. Analysis of voltage and current waveforms.

STARTING PROCEDURE: 1. Arrange the corresponding modules in the vertical support to assemble the circuit shown in the diagram of Exercise 23 – Fig. 1. 2. Insert MASK 10 on module M3R. Connect the mask identification jumper. 3. Connect the jumpers with the power supply unit to reach a voltage of 86 Vac between the phases, at mask input.. 4. FIRST LOAD: this load consists of a resistor of 100 Ω + 2 coils (each one of 50 mH, 100 mH as a whole) connected in series. 5. SECOND LOAD: this load consists of a resistor of 100 Ω + 2 coils (each one of 50 mH, 100 mH as a whole) connected in series, and of a capacitor of 8 μF/ 400 V connected in parallel. 6. THIRD LOAD: the bridge load is a DC motor with separate excitation. 9. Turn the power supply unit on and adjust the variac until a voltage of 86 Vac is attained across the secondary winding between phase and neutral. TARGETS 1 and 2: MEASUREMENT OF VOLTAGES AND CURRENTS AND ANALYSIS OF WAVEFORMS. FIRST LOAD: Assemble the circuit shown in Exercise 23 - Fig. 1. Connect the corresponding modules as indicated in Exercise 23 – Fig. 2. Power the circuit from the source AEP-1/EV. Turn unit M1R on and push the ON button (on the right side of the display) to enable the control circuit; the message "SCR: ON" appears on the display. Carry the following measurements: 1. Measure the root mean square value of supply voltage (2U1) (Tester in V1). 2. Write down the value in Table 1. 3. With tester in position V2, varying the firing angle α (see Table 2) with the potentiometer of module M1R, measure the average value UdAV (VDC of the tester) and observe the waveforms of the voltage across the load. Write down the values in Table 2.

35

4. Use the tester as ammeter A (open the circuit and connect the tester), vary the firing angle α (see Table 2) with the potentiometer of module M1R, measure the average value IdAV and observe the waveforms of the current crossing the load. Write down the values in Table 2. 5. Display the waveforms of voltages across SCR1 (V1) with probe CH1, and across the load with probe CH2, for a firing angle α =60°. Connect probe CH1 with jack 3B (2V/div) and probe CH2 with jack 1B (2V/div) of module MDAQ. See Photo 6. SECOND LOAD: Assemble the circuit shown in Exercise 23 - Fig. 3. Connect the corresponding modules as indicated in Exercise 23 – Fig. 4. Power the circuit from the source AEP-1/EV. Turn unit M1R on and push the ON button (on the right side of the display) to enable the control circuit; the message "SCR: ON" appears on the display. Carry out the following measurements: 1. With tester in position V2, varying the firing angle α (see Table 2) with the potentiometer of module M1R, measure the average value UdAV (VDC of the tester) and observe the waveforms of the voltage across the load. Write down the values in Table 3. 2. Use the tester as ammeter A (open the circuit and connect the tester), vary the firing angle α (see Table 2) with the potentiometer of module M1R, measure the average value IdAV and observe and record the waveforms of the current crossing the load. Write down the values in Table 3. THIRD LOAD: 1. If available, connect a DC motor (e.g.: motor M-1/EV by Elerttronica Veneta). Connect the motor excitation with the DC output of power supply unit AEP-1/EV (turn the rotary selector to 160 Vdc). Connect the motor armature with the threephase bridge output. See Exercise 18 – Fig. 5. SET THE FIRING ANGLE AT 180° SO THAT MOTOR CAN START WITHOUT VOLTAGE, THUS AVOIDING ANY CURRENT BREAK-AWAY. Measure the values and the curves of armature voltage and current for the firing angles indicated in Table 4. At the end of this exercise push the OFF button (on the right side of the display) to turn the control circuit off; the message "SCR:OFF" appears on the display.

36

EXERCISE 23 Three-phase fully controlled bridge B6C FIRST LOAD: R-L

TABLE 1: SUPPLY VOLTAGE (Vac) Root-mean-square value (2U2) of supply voltage (Tester in position V1).

TABLE 2: VALUES AND PHOTOs ON R-L LOAD α (°)

UdAV (VDC of the tester) (V)

CH1 MDAQ Jack

IdAV (IDC of the tester) (A)

CH2 MDAQ Jack

See photo

0

1B (2V/div)

1A (1V/div)

1

30

1B (2V/div)

1A (1V/div)

2

60

1B (2V/div)

1A (1V/div)

3

90

1B (2V/div)

1A (1V/div)

4

110

1B (1V/div)

1A (1V/div)

5

120

1B (1V/div)

1A (1V/div)

------

37

EXERCISE 23 – FIGURES OF THE FIRST LOAD (R-L)

Exercise 23 –Fig. 1 Three-phase fully controlled bridge B6C with R-L load and connected instruments.

Exercise 23 – Fig. 2 Connection diagram of modules

38

SECOND LOAD: R-L-C

TABLE 3: VALUES AND PHOTOS ON LOAD

α (°)

UdAV (VDC of the tester) (V)

CH1 MDAQ Jack

IdAV (IDC of the tester) (A)

CH2 MDAQ Jack

See photo

0

1B (2V/div)

1A (1V/div)

7

15

1B (2V/div)

1A (1V/div)

8

30

1B (2V/div)

1A (1V/div)

9

60

1B (2V/div)

1A (1V/div)

10

90

1B (2V/div)

1A (1V/div)

11

110

1B (2V/div)

1A (1V/div)

12

120

1B (2V/div)

1A (0.2V/div)

------

39

EXERCISE 23 – FIGURES OF THE SECOND LOAD (R-L-C)

Exercise 23 –Fig. 3 Three-phase fully controlled bridge B2C with R-L-C load and connected instruments.

Exercise 23 – Fig. 4 Connection diagram of modules

40

EXERCISE 23 – FIGURES OF THE THIRD LOAD (DC MOTOR WITH SEPARATE EXCITATION)

Exercise 23 – Fig. 5 Three-phase fully-controlled bridge B6C with DC motor load.

TABLE 4: VALUES AND PHOTOS WITH DC MOTOR LOAD (M-1/EV, FIXED SEPARATE EXCITATION = 160 Vdc) START WITH THE FIRING ANGLE SET AT 180° SO THAT MOTOR CAN START WITHOUT VOLTAGE, THUS AVOIDING ANY CURRENT BREAK-AWAY ARMATURE VOLTAGE AND CURRENT

α (°)

UdAV (VDC of the tester) (V)

CH1 MDAQ Jack

IdAV (IDC of the tester) (A)

CH2 MDAQ Jack

See photo

180

1B (2V/div)

1A (1V/div)

-----

120

1B (2V/div)

1A (1V/div)

-----

110

1B (2V/div)

1A (1V/div)

13

90

1B (2V/div)

1A (1V/div)

14

60

1B (2V/div)

1A (1V/div)

15

30

1B (2V/div)

1A (1V/div)

16

15

1B (2V/div)

1A (1V/div)

17

0

1B (2V/div)

1A (1V/div)

18

RPM

DO NOT EXCEED THE SUPPLY VOLTAGE OF 83 V ACROSS THE PHASES TO AVOID ANY DAMAGE OF THE COMPONENTS INSIDE THE CARD.

SEE "EXERCISE 23 – FIG. 1" MULTIMETER "V1".

41

EXERCISE 23 – MOTOR LOAD

α (°)

MEASURED VALUES Udc (V across the load)

RPM

180 120 110 90 60 30 15 0

MAX. VOLTAGE Udc α (0°)= ... · ... = ... Vdc

42

EXERCISE 23 – PHOTOS OF R-L LOADS

Exercise 23 – Photo 1: Firing angle of 0°

Exercise 23 – Photo 2: Firing angle of 30°

Exercise 23 – Photo 3: Firing angle of 60°

Exercise 23 – Photo 4: Firing angle of 90°

Exercise 23 – Photo 5: Firing angle of 110°

Exercise 23 – Photo 6: Voltages across SCR (CH1) and across the load (CH2) Firing angle: 60°

43

EXERCISE 23 – PHOTOS OF R-L-C LOADS

Exercise 23 – Photo : Firing angle of 0°

Exercise 23 – Photo 8: Firing angle of 15°

Exercise 23 – Photo 9: Firing angle of 30°

Exercise 23 – Photo 10: Firing angle of 60°

Exercise 23 – Photo 11: Firing angle of 90°

Exercise 23 – Photo 12: Firing angle of 110°

44

EXERCISE 23 – PHOTOS OF MOTOR LOAD

Exercise 23 – Photo 13: Firing angle of 110°

Exercise 23 – Photo 14: Firing angle of 90°

Exercise 23 – Photo 15: Firing angle of 60°

Exercise 23 – Photo 16: Firing angle of 30°

Exercise 23 – Photo 17: Firing angle of 15°

Exercise 23 – Photo 18: Firing angle of 0°

45

BUKU PEDOMAN PRAKTIKUM LABORATORIUM ELEKTRO POLITEKNIK NEGERI SAMARINDA

TANGGAL REVISI TANGGAL BERLAKU KODE DOKUMEN

: 07 / 09/ 2015 : 10 / 02/ 2016 : LEDII-POLNES-04-LEL

POLITEKNIK NEGERI SAMARINDA JURUSAN TEKNIK ELEKTRO L ABOR ATORIUM Elektronika Daya II Tugas 05. Karakteristik SCR dengan beban resistor+induktor.

46

Semester

:

VI

Waktu

:

4 jam

25

EXERCISE No.

Study of SCR with R-L load

TITLE:

NECESSARY COMPONENTS:

1 Microprocessor module M1R 1 module of power devices M4R 1 module of R- L-C loads MB1 1 signal acquisition module MDAQ 1 True RMS multimeter 1 dual-trace oscilloscope. Power supply unit: mod. AEP-1/EV

TARGETS: • Measuring voltages and currents. • Analysis of voltage and current waveforms.

STARTING PROCEDURE: 1. Arrange the modules onthe vertical support. 2. Connect the corresponding modules as indicated in the diagram of Exercise 25 – Fig. 2. Connect the jumpers with the power supply unit to attain a voltage of 80 Vac across L-N input of Module M4R. 3. Connect the white jumper with the Gate of SCR (module M4R). 4. The resistive-inductive load consists of a resistor of 100 Ω + 2 inductances [100 Ω + 2*(50 mH)] connected in series. The values of this impedance are: R = 100 Ω; X = 31.4 Ω; Z = 108.81 Ω; tg φ = X / R = 0.3114; φ = 17.41°; cos φ = 0.954. 5. Carry out the following preliminary operations: - Switch Module M1R on. The display is divided into two parts by a vertical line. - Pressing the arrow keys (← and →) enables to move between these two (right and left) sections of the display. - Pressing the arrow keys (↑ or ↓) enables to move from the top to the bottom of display lines. - Move with the keys (↑ or ↓) and select AC, on the left section of the display - Move with the arrow key (→) to the right section of the display, then move with the keys (↑ or ↓)and select SCR. - Make sure that the corresponding red LED in Module M4R is on. - Power the power supply unit and adjust the variac until a voltage of 80 Vac is attained across the L-N terminals of module M4R.

47

TARGETS 1 AND 2: MEASUREMENT OF VOLTAGES AND CURRENTS AND ANALYSIS OF WAVEFORMS Assemble the circuit shown in Exercise 25 - Fig. 1. After the preliminary operations have been carried out correctly, implement the following measurements: 1. Measure the root mean square value of supply voltage (L1-N). Write down the value on Table 1. 2. Measure the average value UdAV (VDC of the tester) and observe the waveforms of the voltage across the load for different firing angles (refer to Table 2) varying the potentiometer of module M1R. Write down the values on Table 2. 3. Using a tester configured as ammeter A (open the circuit and connect the tester), measure the average value IdAV and observe the waveforms of the current crossing the load for different firing angles (refer to Table 2) varying the potentiometer of Module M1R. Write down the values on Table 2. 4. Detect the waveforms of the voltages across the SCR (CH1) and across the load (CH2) for a firing angle α = 120°. Connect probe CH1 with jack 5B (2V/div) and probe CH2 with jack 13B (2V/div) of module MDAQ. See Photo 7. 5. Display the waveforms of voltages A-K. with probe CH1, and G-K with probe CH2, for different firing angles. Connect probe CH1 with jack 5B (2V/div) and probe CH2 with jack 11A (5V/div) of module MDAQ. See Photos 8 (0°), 9 (90°) and 10 (150°). At the end of the exercise push the OFF button of Module M1R (on the right of the display).

TABLE 1: SUPPLY VOLTAGE (Vac) Root-mean-square value (L1-N) of supply voltage: TABLE 2: VALUES AND PHOTOS ON LOAD

α (°)

UdAV (VDC of the tester) (V)

CH1 MDAQ Jack

IdAV (IDC of the tester) (A)

CH2 MDAQ Jack

See photo

0

13B (2V/div)

5A (0.2V/div)

1

60

13B (2V/div)

5A (0.2V/div)

2

90

13B (2V/div)

5A (0.2V/div)

3

120

13B (2V/div)

5A (0.2V/div)

4

150

13B (2V/div)

5A (0.2V/div)

5

180

13B (2V/div)

5A (0.2V/div)

6

48

NOTES ON PHOTOS: ? Photos 1 to 5 show the trends of voltage on current across the load; it is possible to observe that the current crossing the load is not cancelled in the precise moment when voltage crosses zero. ? The negative current peak is always the same and it does not depend on the value of the firing angle of SCR. This phenomenon is due to the charge storage (refer to the theoretical part). ? Photo 7 clearly shows that the voltages across the SCR and across the load are complementary. ? Photos 8 to 10 show the voltage across the SCR with respect to the firing angle. It is therefore clear that a SCR turns on in the leading edge of the triggering signal, while the trailing edge has no effect on the turning off of the SCR. ?

49

EXERCISE 25 - FIGURES

Exercise 25 – Fig. 1: Study of SCR with R-L load and connected instruments

Exercise 25 – Fig. 2: Connection diagram of modules

50

EXERCISE 25 - PHOTOS

Exercise 25 – Photo 1: Firing angle of 0°

Exercise 25 – Photo 2: Firing angle of 60°

Exercise 25 – Photo 3: Firing angle of 90°

Exercise 25 – Photo 4: Firing angle of 120°

Exercise 25 – Photo 5: Firing angle of 150°

Exercise 25 – Photo 6: Firing angle of 180°

51

Exercise 25 – Photo 7: Voltages across SCR (CH1) and across the load (CH2), with α =120° VOLTAGES ACROSS THE SCR AND TRIGGERING SIGNALS

Exercise 25 – Photo 8 (α = 0°)

Exercise 25 – Photo 9 (α = 90°)

52

BUKU PEDOMAN PRAKTIKUM LABORATORIUM ELEKTRO POLITEKNIK NEGERI SAMARINDA

TANGGAL REVISI TANGGAL BERLAKU KODE DOKUMEN

: 07 / 09/ 2015 : 10 / 02/ 2016 : LEDII-POLNES-04-LEL

POLITEKNIK NEGERI SAMARINDA JURUSAN TEKNIK ELEKTRO L ABOR ATORIUM Elektronika Daya II Tugas 06. Karakteristik TRIAC dengan beban resistor+induktor.

53

Semester

:

VI

Waktu

:

4 jam

26

EXERCISE No. TITLE:

NECESSARY COMPONENTS:

Study of TRIAC with R-L load 1 Microprocessor module M1R 1 module of power devices M4R 1 module of R-L-C loads MB1 1 signal acquisition module MDAQ 1 True RMS multimeter 1 dual-trace oscilloscope. Power supply unit: mod. AEP-1/EV

TARGETS: 5. Measuring voltages and currents. 6. Analysis of voltage and current waveforms. STARTING PROCEDURE: 1. Arrange the modules on the vertical support. 2. Connect the corresponding modules as indicated in the diagram of Exercise 26 – Fig. 2. Connect the jumpers with the power supply unit to attain a voltage of 80 Vac across L-N input of Module M4R. 3. Connect the white jack with the Gate of TRIAC (module M4R). 4. The resistive-inductive load consists of a resistor of 100 Ω + 2 inductances [100 Ω + 2*(50 mH)] connected in series. The values of this impedance are: R = 100 Ω; X = 31.4 Ω; Z = 108.81 Ω; tg φ = X / R = 0.3114; φ = 17.41°; cos φ = 0.954. 5. Carry out the following preliminary operations: - Switch Module M1R on. The display is divided into two parts by a vertical line. - Pressing the arrow keys (← and →) enables to move between these two (right and left) sections of the display. - Pressing the arrow keys (↑ or ↓) enables to move from the top to the bottom of display lines. - Move with the keys (↑ or ↓) and select AC, on the left section of the display - Move with the arrow key (→) to the right section of the display, then move with the keys (↑ or ↓) and select TRIAC. - Enable the component pressing the ON key and make sure that the corresponding red LED in Module M4R is on. - Power the power supply unit and adjust the variac until a voltage of 80 Vac is attained across the L-N terminals of Module M4R. IMPORTANT NOTE: -

Differently from SCRa, TRIACs are bidirectional devices: they turn on in both half periods of the sine wave of supply viltage. The Gate signal is unique for both half periods of the supply sine wave (the firing angle is the same). As TRIACs turn on in both half periods of the supply sine wave, measurements must consider the root mean square values (in AC) and not the average values (not in DC).

54

TARGETS 1 AND 2: MEASUREMENT OF VOLTAGES AND CURRENTS AND ANALYSIS OF WAVEFORMS Assemble the circuit shown in Exercise 26 - Fig. 1. After the preliminary operations have been carried out correctly, implement the following measurements: 1. Measure the root mean square value of supply voltage (L1-N). Write down the value on Table 1. 2. Measure the root mean square value Ueff with a tester, and observe the waveforms of thw voltage across the load (refer to Table 2), varying the potentiometer of Module M1R. Write down the values on Table 2. 13 Measure the root mean square value Ieff, with a tester configured as ammeter A (open the circuit and connect the tester), observe the waveforms of the current crossing the load for different firing angles (refer to Table 2) varying the potentiometer of Module M1R. Write down the values on Table 2. At the end of the exercise push the OFF button of module M1R (on the right of the display) to switch the control circuit off.

TABLE 1: SUPPLY VOLTAGE (Vac) Root-mean-square value (L1-N) of supply voltage:

TABLE 2: VALUES AND PHOTOS ON LOAD Ueff (V) α (°)

CH1 MDAQ Jack

0

12B (2V/div)

4A (2V/div)

1

60

12B (2V/div)

4A (2V/div)

2

90

12B (2V/div)

4A (2V/div)

3

120

12B (2V/div)

4A (2V/div)

4

150

12B (2V/div)

4A (2V/div)

5

180

12B (2V/div)

4A (2V/div)

------

Ieff, (A)

CH2 MDAQ Jack

See photo

NOTES ON PHOTOS: ? The analysis of waveforms of photos 1 to 5 can be clearer if TRIAC is considered as "two SCRs operating in phase incerted". Thata means that each half period should be analysed separately as if it were controlled by a SCR.

55

EXERCISE 26 - FIGURES

Exercise 26 – Fig. 1: Study of a TRIAC with R-L load and connected instruments

Exercise 26 – Fig. 2: Connection diagram of modules

56

EXERCISE 26 - PHOTOS

Exercise 26 – Photo 1: Firing angle of 0°

Exercise 26 – Photo 2: Firing angle of 60°

Exercise 26 – Photo 3: Firing angle of 90°

Exercise 26 – Photo 4: Firing angle of 120°

Exercise 26 – Photo 5: Firing angle of 150°

57

BUKU PEDOMAN PRAKTIKUM LABORATORIUM ELEKTRO POLITEKNIK NEGERI SAMARINDA

TANGGAL REVISI TANGGAL BERLAKU KODE DOKUMEN

: 22 / 04/ 2016 : 22 / 04/ 2016 : LEDII-POLNES-04-LEL

POLITEKNIK NEGERI SAMARINDA JURUSAN TEKNIK ELEKTRO L ABOR ATORIUM Elektronika Daya II Tugas 07. Pensakelaran PWM pada MOSFET, beban resistor+induktor.

58

Semester

:

VI

Waktu

:

4 jam

27

EXERCISE No.

Study of PWM-MOSFET with R-L load

TITLE:

1 Microprocessor module M1R 1 module of power devices M4R 1 module of R-L-C loads MB1 1 signal acquisition module MDAQ 1 True RMS multimeter 1 dual-trace oscilloscope. Power supply unit: mod. AEP-1/EV

NECESSARY COMPONENTS:

TARGETS: 1. Measuring voltages and currents. 2. Analysis of voltage and current waveforms. STARTING PROCEDURE: 1. Arrange the modules onthe vertical support. 2. Connect the corresponding modules as indicated in the diagram of Exercise 27 – Fig. 2. Connect all the jumpers with the power supply unit to attain 100Vdc max across (+) and (-) inputs of Module M4R. . 3. Connect the white jumper with the Gate of the MOSFET. 4. The resistive-inductive load consists of a resistor of 100 Ω + 2 inductances (100 Ω + 2*50 mH) connected in series. The values of this impedance are: R = 100 Ω; X = 31.4 Ω; Z = 108.81 Ω; tg φ = X / R = 0.3114; φ = 17.41°; cos φ = 0.954 5. Carry out the following preliminary operations: - Switch module M1R on. The display is divided into two parts by a vertical line (2 menus). - Pressing the arrow keys (← and →) enables to move between these two menus of the display. Pressing the arrow keys (↑ or ↓) enables to move from the top to the bottom of display lines. - Move with the keys (↑ or ↓) and select DC, on the left section of the display. - Move with the arrow key (→) to the right section of the display, then move with the keys (↑ or ↓) and select MOSFET. - Enable the component pressing the ON key and make sure that the corresponding red LED in Module M4R is on. - This exercises analyses two variables that are independent from each other: Frequency and Duty Cycle of PWM signals. In microprocessor module M1R these variables are identified by the lighting of the LEDs upon the control potentiometers. The value of each parameter can be read directly on the display (frequency range: 1 to 50 kHz; duty cycle range: 0 to 100%). - Power the power supply unit and adjust the variac until a voltage of 100 Vdc is attained across the (+) and (-) terminals of Module M4R. . IMPORTANT NOTE: - Circuits with PWM control enable to obtain a DC output voltage that is linearly variable with the control of ON time of a semiconductor device. And this semiconductor device operates in ON-OFF mode, in its turn. - In this exercise the semiconductor device is a power MOSFET that operates as chopper of direct supply voltage - terminals (+) and (-) of module M4R. - Frequency and duty cycle can be varied separately. The analysis will therefore include both variables.

66

TARGETS 1 and 2: MEASUREMENT OF VOLTAGES and CURRENTS and ANALYSIS OF WAVEFORMS Assemble the circuit shown in Exercise 27 - Fig. 1. After the preliminary operations have been carried out correctly, implement the following measurements: 1. Measure the direct input voltage across (+) and (-) terminals of module M4R. Write down the value on Table 1. 2. Set the tester to measure the average value Udc of the voltage across the load. Following the indications of "Table 2", turn the potentiometers of module M1R and observe the voltage waveforms for different values of frequency and duty cycle of PWM signals. Write down the values on Table 2. 3. Set the tester as ammeter A (open the circuit and connect the Tester), measure the average value Idc of the current crossing the load. Following the indications of "Table 2", turn the potentiometers of module M1R and observe the voltage waveforms for different values of frequency and duty cycle of PWM signals. Write down the values on Table 2. 4. Plot the curves Udc = f (Duty Cycle) for the different frequencies. At the end of the exercise push the OFF button of module M1R (on the right of the display) to switch the control circuit off.

TABLE 1: POWER SUPPLY VOLTAGE (Vdc) Direct voltage across the input terminals (+) and (-) of Module M4R:

NOTE: This DC voltage varies according to the applied load: the higher the load is, the lower the voltage is.

67

TABLE 2: VALUES AND PHOTOS ON R-L LOAD MOSFET WITH PWM CONTROL (constant R-L load) INPUT (NO-LOAD) DC VOLTAGE: 99.6 PWM FREQ kHz 1

10

25

50

R-L LOAD

DUTY CYCLE % 0 25 50 75 90 0 25 50 75 90 0 25 50 75 90 0 25 50 75 90

Udc V

CH1

Idc A

9B (1V/div) ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto

CH-2 1A (0.5V/div) ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto

PHOTO No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NOTES Observing the diagram leads to state that: (compare with BJT and IGBT) - the output voltages depend linearly on the duty cycle in the range of all analysed frequencies. - voltages show an elbow at 75% of Duty Cycle, that is similar for all frequencies. Photos show the waveforms across the load. Observe that for f = 1 kHz, Udc and Idc are stromgly deformed (current Idc is pulsating). That does not happen for the other frequencies.

68

(with freq. as parameter)

69

EXERCISE 27 - FIGURES

(POW. SUP.)

Exercise 27 – Fig. 1 : Study of PWM-MOSFET with R-L load and connected instruments

Exercise 27 – Fig. 2: Connection diagram of modules

70

EXERCISE 27 - PHOTOS PWM FREQUENCY: 1 kHz

Exercise 27 – Photo 1: Duty Cycle: 0 %

Exercise 27 – Photo 3: Duty Cycle: 50 %

Exercise 27 – Photo 2 : Duty Cycle: 25 %

Exercise 27 – Photo 4: Duty Cycle: 75 %

Exercise 27 – Photo 5: Duty Cycle: 100 %

71

EXERCISE 27 - PHOTOS PWM FREQUENCY: 10 kHz

Exercise 27 – Photo 6: Duty Cycle: 0 %

Exercise 27 – Photo 7: Duty Cycle: 25 %

Exercise 27 – Photo 8: Duty Cycle: 50 %

Exercise 27 – Photo 9: Duty Cycle: 75 %

Exercise 27 – Photo 10: Duty Cycle: 100 % 72

EXERCISE 27 - PHOTOS PWM FREQUENCY: 25 kHz

Exercise 27 – Photo 11: Duty Cycle: 0 %

Exercise 27 – Photo 12: Duty Cycle: 25 %

Exercise 27 – Photo 13: Duty Cycle: 50 %

Exercise 27 – Photo 14: Duty Cycle: 75 %

Exercise 27 – Photo 15: Duty Cycle: 100 % 73

EXERCISE 27 - PHOTOS PWM FREQUENCY: 50 kHz

Exercise 27 – Photo 16: Duty Cycle: 0 %

Exercise 27 – Photo 17: Duty Cycle: 25 %

Exercise 27 – Photo 18: Duty Cycle: 50 %

Exercise 27 – Photo 19: Duty Cycle: 75 %

Exercise 27 – Photo 20: Duty Cycle: 100 %

74

BUKU PEDOMAN PRAKTIKUM LABORATORIUM ELEKTRO POLITEKNIK NEGERI SAMARINDA

TANGGAL REVISI TANGGAL BERLAKU KODE DOKUMEN

: 07 / 09/ 2015 : 10 / 02/ 2016 : LEDII-POLNES-04-LEL

POLITEKNIK NEGERI SAMARINDA JURUSAN TEKNIK ELEKTRO L ABOR ATORIUM Elektronika Daya II Tugas 08. Pensakelaran PWM pada BJT, beban resistor+induktor.

68

Semester

:

VI

Waktu

:

4 jam

EXERCISE No.

28

TITLE:

Study of PWM BJT with R-L load 1 Microprocessor module M1R 1 module of power devices M4R 1 module of R, L and C loads MB1 1 signal acquisition module MDAQ 1 True RMS multimeter 1 dual-trace oscilloscope. Power supply unit: mod. AEP-1/EV

NECESSARY COMPONENTS:

TARGETS: 1. Measuring voltages and currents. 2. Analysis of voltage and current waveforms. STARTING PROCEDURE: 1. Arrange the modules onthe vertical support. 2. Connect the corresponding modules as indicated in the diagram of Exercise 28 – Fig. 2. Connect all the jumpers with the power supply unit to reach 100 Vdc max across (+) and (-) inputs of module M4R. 3. Connect the white jumper with the base of the BJT. 4. The resistive-inductive load consists of a resistor of 100 Ω connected in series with two inductances [(100 Ω + (2*50 mH)]; the values of this impedance are: R = 100 Ω; X = 31.4 Ω; Z = 108.81 Ω; tg φ = X / R = 0.3114; φ = 17.41°; cos φ = 0.954 5. Carry out the following preliminary operations: - Switch module M1R on. The display is divided into two parts by a vertical line (2 menus). - Pressing the arrow keys (← and →) enables to move between these two menus of the display. Pressing the arrow keys (↑ or ↓) enables to move from the top to the bottom of display lines. - Move with the keys (↑ or ↓) and select DC, on the left section of the display. - Move with the arrow key (→) to the right section of the display, then move with the keys (↑ or ↓) and select BJT. - Enable the component pressing the ON key and make sure that the corresponding red LED in Module M4R is on. - This exercises analyses two variables that are independent from each other: Frequency and Duty Cycle of PWM signals. In microprocessor module M1R these variables are identified by the lighting of the LEDs upon the control potentiometers. The value of each parameter can be read directly on the display (frequency range: 1 to 50 kHz; duty cycle range: 0 to 100%). - Power the power supply unit and adjust the variac until a voltage of 100 Vdc is attained across the (+) and (-) terminals of Module M4R. . IMPORTANT NOTE: - Circuits with PWM control enable to obtain a DC output voltage that is linearly variable with the control of ON time of a semiconductor device. And this semiconductor device operates in ON-OFF mode, in its turn. - In this exercise the semiconductor device is a BJT that operates as chopper of direct supply voltage - terminals (+) and (-) of module M4R. - Frequency and duty cycle can be varied separately. The analysis will therefore include both variables.

69

TARGETS 1 and 2: WAVEFORMS

MEASUREMENT OF VOLTAGES and CURRENTS and ANALYSIS OF

Assemble the circuit shown in Exercise 28 - Fig. 1. After the preliminary operations have been carried out correctly, implement the following measurements: 1. Measure the direct input voltage across terminals (+) and (-) of module M4R. Write down the value on Table 1. 2. Set the tester to measure the average value Udc of the voltage across the load. Following the indications of "Table 2", turn the potentiometers of module M1R and observe the voltage waveforms for different values of frequency and duty cycle of PWM signals. Write down the values on Table 2. 3. Set the tester as ammeter A (open the circuit and connect the Tester), measure the average value Idc of the current crossing the load. Following the indications of "Table 2", turn the potentiometers of module M1R and observe the voltage waveforms for different values of frequency and duty cycle of PWM signals. Write down the values on Table 2. 4. Plot the curves Udc = f (Duty Cycle) for the different frequencies. At the end of the exercise push the OFF button of module M1R (on the right of the display) to switch the control circuit off.

TABLE 1: SUPPLY VOLTAGE (Vdc)

Direct voltage across the input terminals (+) and (-) of Module M4R:

NOTE: This DC voltage varies according to the applied load: the higher the load is, the lower the voltage is.

70

TABLE 2: VALUES AND PHOTOS ON R-L LOAD BJT WITH PWM CONTROL (constant R-L load) INPUT (NO-LOAD) DC VOLTAGE: PWM FREQ DUTY CYCLE kHz % 0 1 25 50 75 90 0 10 25 50 75 90 0 25 25 50 75 90 0 50 25 50 75 90

Udc V

R-L LOAD CH1 Idc A 11B (1V/div) ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto

CH-2 3A (0.5V/div) ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto

PHOTO No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NOTES Observing the diagram leads to state that: (compare with MOSFET and IGBT) - the output voltages depend linearly on the duty cycle in the range of all analysed frequencies; - voltages shows various elbows; - curves diverge as Duty Cycle increases. Photos show the waveforms across the load. Observe that for f = 1 kHz, voltage Udc is strongly deformed (that is, a lot of harmonics are generated). That does not happen for the other frequencies.

71

(with freq. as parameter)

72

EXERCISE 28 - FIGURES

Exercise 28 – Fig. 1: Study of PWM-BJT with R-L load and connected instruments

Exercise 28 – Fig. 2: Connection diagram of modules

73

EXERCISE 28 - PHOTOS PWM FREQUENCY: 1 kHz

Exercise 28 – Photo 1: Duty Cycle: 0 %

Exercise 28 – Photo 2: Duty Cycle: 25 %

Exercise 28 – Photo 3: Duty Cycle: 50 %

Exercise 28 – Photo 4: Duty Cycle: 75 %

Exercise 28 – Photo 5: Duty Cycle: 100 %

74

EXERCISE 28 - PHOTOS PWM FREQUENCY: 10 kHz

Exercise 28 – Photo 6: Duty Cycle: 0 %

Exercise 28 – Photo 7: Duty Cycle: 25 %

Exercise 28 – Photo 8: Duty Cycle: 50 %

Exercise 28 – Photo 9: Duty Cycle: 75 %

Exercise 28 – Photo 10: Duty Cycle: 100 %

75

EXERCISE 28 - PHOTOS PWM FREQUENCY: 25 kHz

Exercise 28 – Photo 11: Duty Cycle: 0 %

Exercise 28 – Photo 12: Duty Cycle: 25 %

Exercise 28 – Photo 13: Duty Cycle: 50 %

Exercise 28 – Photo 14: Duty Cycle: 75 %

Exercise 28 – Photo 15: Duty Cycle: 100 %

76

EXERCISE 28 - PHOTOS PWM FREQUENCY: 50 kHz

Exercise 28 – Photo 16: Duty Cycle: 0 %

Exercise 28 – Photo 17: Duty Cycle: 25 %

Exercise 28 – Photo 18: Duty Cycle: 50 %

Exercise 28 – Photo 19: Duty Cycle: 75 %

Exercise 28 – Photo 20: Duty Cycle: 100 %

77

BUKU PEDOMAN PRAKTIKUM LABORATORIUM ELEKTRO POLITEKNIK NEGERI SAMARINDA

TANGGAL REVISI TANGGAL BERLAKU KODE DOKUMEN

: 07 / 09/ 2015 : 10 / 02/ 2016 : LEDII-POLNES-04-LEL

POLITEKNIK NEGERI SAMARINDA JURUSAN TEKNIK ELEKTRO L ABOR ATORIUM Elektronika Daya II Tugas 09. Pensakelaran PWM pada IGBT, beban resistor+induktor.

78

Semester

:

VI

Waktu

:

4 jam

29

EXERCISE No.

Study of PWM IGBT with R-L load

TITLE:

1 Microprocessor module M1R 1 module of power devices M4R 1 module of R-L-C loads MB1 1 signal acquisition module MDAQ 1 True RMS multimeter 1 dual-trace oscilloscope. Power supply unit: mod. AEP-1/EV

NECESSARY COMPONENTS:

TARGETS: 1. Measuring voltages and currents. 2. Analysis of voltage and current waveforms.

STARTING PROCEDURE: 1. Arrange the modules on the vertical support. 2. Connect the corresponding modules as indicated in the diagram of Exercise 29 – Fig. 2. Connect all the jumpers woth the power supply unit to attain 100 Vdc max across inputs (+) and (-)of module M4R. 3. Connect the white jumper with the base of the IGBT. 4. The resistive-inductive load consists of a resistor of 100 Ω connected in series with two inductances [(100 Ω + (2*50 mH)]; the values of this impedance are: R = 100 Ω; X = 31.4 Ω; Z = 108.81 Ω; tg φ = X / R = 0.3114; φ = 17.41°; cos φ = 0.954 5. Carry out the following preliminary operations: - Switch module M1R on. The display is divided into two parts by a vertical line (2 menus). - Pressing the arrow keys (← and →) enables to move between these two menus of the display. Pressing the arrow keys (↑ or ↓) enables to move from the top to the bottom of display lines. - Move with the keys (↑ or ↓) and select DC, on the left section of the display. - Move with the arrow key (→) to the right section of the display, then move with the keys (↑ or ↓) and select IGBT. - Enable the component pressing the ON key and make sure that the corresponding red LED in Module M4R is on. - This exercises analyses two variables that are independent from each other: Frequency and Duty Cycle of PWM signals. In microprocessor module M1R these variables are identified by the lighting of the LEDs upon the control potentiometers. The value of each parameter can be read directly on the display (frequency range: 1 to 50 kHz; duty cycle range: 0 to 100%). - Power the power supply unit and adjust the variac until a voltage of 100 Vdc is attained across the (+) and (-) terminals of Module M4R. . IMPORTANT NOTE: - Circuits with PWM control enable to obtain a DC output voltage that is linearly variable with the control of ON time of a semiconductor device. And this semiconductor device operates in ON-OFF mode, in its turn. - In this exercise the semiconductor device is an IGBT that operates as chopper of direct supply voltage - terminals (+) and (-) of module M4R.

79

-

Frequency and duty cycle can be varied separately. The analysis will therefore include both variables. TARGETS 1 and 2: MEASUREMENT OF VOLTAGES and CURRENTS and ANALYSIS OF WAVEFORMS Assemble the circuit shown in Exercise 29 - Fig. 1. After the preliminary operations have been carried out correctly, implement the following measurements: 1. Measure the direct input voltage across (+) and (-) terminals of module M4R. Write down the value on Table 1. 2. Set the tester to measure the average value Udc of the voltage across the load. Following the indications of "Table 2", turn the potentiometers of module M1R and observe the voltage waveforms for different values of frequency and duty cycle of PWM signals. Write down the values on Table 2. 3. Set the tester as ammeter A (open the circuit and connect the Tester), measure the average value Idc of the current crossing the load. Following the indications of "Table 2", turn the potentiometers of module M1R and observe the voltage waveforms for different values of frequency and duty cycle of PWM signals. Write down the values on Table 2. 4. Measure the voltages across the IGBT (Vce) vs. the control voltage (Vbe). See photos 21 and 22. 5. Plot the curves Udc = f (Duty Cycle) for the different frequencies. At the end of the exercise push the OFF button of module M1R (on the right of the display) to switch the control circuit off.

TABLE 1: SUPPLY VOLTAGE (Vdc)

Direct voltage across the input terminals (+) and (-) of Module M4R:

NOTE: This DC voltage varies according to the applied load: the higher the load is, the lower the voltage is.

80

TABLE 2: VALUES AND PHOTOS ON R-L LOAD IGBT WITH PWM CONTROL (constant R-L load) INPUT (NO-LOAD) DC VOLTAGE: 98.8 PWM DUTY FREQ CYCLE kHz % 0 1 25 50 75 90 0 10 25 50 75 90 0 25 25 50 75 90 0 50 25 50 75 90

R-L LOAD Udc V

CH1

Idc A

10B (1V/div) ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto

CH-2 2A (0.5V/div) ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto

PHOTO No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NOTES Observing the diagram leads to state that: (compare with MOSFET and bjt) - the output voltages depend linearly on the duty cycle in the range of all analysed frequencies; - IGBTs operate well at all frequencies; - the voltage drop (difference between the DC supply voltage and Udc across the load) across the IGBT, at 50 kHz, is lower with respect to the other frequencies, thus showing that this device works better at high PWM frequencies. Photos show the waveforms across the load. Observe that for f = 1 kHz, voltage Udc is strongly deformed (that is, a lot of harmonics are generated). That does not happen for the other frequencies.

81

(with freq. as parameter)

82

EXERCISE 29 - FIGURES

Exercise 29 – Fig. 1:Study of PWM-IGBT with R-L load and connected instruments

Exercise 29 – Fig. 2: Connection diagram of modules

83

EXERCISE 29 - PHOTOS PWM FREQUENCY: 1 kHz

Exercise 29 – Photo 1: Duty Cycle: 0 % %

Exercise 29 – Photo 2: Duty Cycle: 25

Exercise 29 – Photo 3: Duty Cycle: 50 %

Exercise 29 – Photo 4: Duty Cycle: 75 %

Exercise 29 – Photo 5: Duty Cycle: 100 %

84

85

EXERCISE 29 - PHOTOS PWM FREQUENCY: 10 kHz

Exercise 29 – Photo 6: Duty Cycle: 0 %

Exercise 29 – Photo 7: Duty Cycle: 25 %

Exercise 29 – Photo 8: Duty Cycle: 50 %

Exercise 29 – Photo 9: Duty Cycle: 75 %

Exercise 29 – Photo 10: Duty Cycle: 100 %

86

EXERCISE 29 - PHOTOS PWM FREQUENCY: 25 kHz

Exercise 29 – Photo 11: Duty Cycle: 0 %

Exercise 29 – Photo 12: Duty Cycle: 25 %

Exercise 29 – Photo 13: Duty Cycle: 50 %

Exercise 29 – Photo 14: Duty Cycle: 75 %

Exercise 29 – Photo 15: Duty Cycle: 100 %

87

EXERCISE 29 - PHOTOS PWM FREQUENCY: 50 kHz

Exercise 29 – Photo 16: Duty Cycle: 0 %

Exercise 29 – Photo 17: Duty Cycle: 25 %

Exercise 29 – Photo 18: Duty Cycle: 50 %

Exercise 29 – Photo 19: Duty Cycle: 75 %

Exercise 29 – Photo 20: Duty Cycle: 100 %

88

EXERCISE 29 - PHOTOS VOLTAGES ACROSS IGBT VS. PWM SIGNALS IN THE BASE CH 1: VCE across IGBT (terminal 2B of module MDAQ) CH 2: VBE control signal in the base (terminal 13A of module MDAQ) PWM FREQUENCY: 25 kHz NOTE: when the voltage across the IGBT is high, the device stops the current crossing the load, therefore there os no voltage across it. The following equation is valid: Vdc (power supply) = Vload + VIGBT

Exercise 29 – Photo 21: Duty Cycle: 25 %

Exercise 29 – Photo 22: Duty Cycle: 50 %

89

COMPARISON BETWEEN PWM DEVICES (MOSFET-BJT AND IGBT)

PWM

Udc- V

FREQ kHz

DUTY CYCLE %

1

0

MOSFET

BJT

IGBT

25 50 75 90 10

0 25 50 75 90

25

0 25 50 75 90

50

0 25 50 75 90

NOTES ON THE FOLLOWING DIAGRAMS: -

As mentioned above, the output voltage increases linearly with the Duty Cycle for all devices other than BJTs. It is better to use a PWM frequency f ≥ 10 kHz Therefore, the best devices for this PWM function are IGBTs and MOSFETs.

90

Comparison of PWM - f = 1 kHz

Comparison of PWM - f = 10 kHz

Comparison of PWM - f = 25 kHz

Comparison of PWM - f = 50 kHz

91

BUKU PEDOMAN PRAKTIKUM LABORATORIUM ELEKTRO POLITEKNIK NEGERI SAMARINDA

TANGGAL REVISI TANGGAL BERLAKU KODE DOKUMEN

: 07 / 09/ 2015 : 10 / 02/ 2016 : LEDII-POLNES-04-LEL

POLITEKNIK NEGERI SAMARINDA JURUSAN TEKNIK ELEKTRO L ABOR ATORIUM Elektronika Daya II Tugas 10. Pensakelaran PWM pada rangkaian MOSFET sebagai pengendali motor DC.

92

Semester

:

VI

Waktu

:

4 jam

EXERCISE No. TITLE:

NECESSARY COMPONENTS:

31 PWM-MOSFET circuit for the control of a DC motor 1 Microprocessor module M5R 1 Module of Power Circuits M6R + Mask 4 (MPC) 1 Signal acquisition module MDAQ 1 DC motor M-1/EV 1 Tachogenerator M-16/EV 2 True RMS multimeters 1 Multimeter (recommended for the measurement of RPM on tachogenerator mod. M-16/EV, thus avoinding the use of a specific instrument) 1 Dual-trace oscilloscope Power supply unit: mod. AEP-1/EV

TARGETS: 1. Measurement of the voltages and currents crossing the power circuit with a load represented by a motor in open-loop and closed-loop configuration. 2. Analysis of voltage and current waveforms. STARTING PROCEDURES : A specific starting procedure is applied to each experiment and it is available at the beginning of the description. EXPERIMENT No. 1: MEASUREMENT OF VOLTAGES AND CURRENTS AND ANALYSIS OF THE WAVEFORMS WITH A LOAD CONSISTING OF A DC MOTOR WITH SEPARATE EXCITATION (OPEN CONTROL LOOP) In this experiment the load is represented by a motor, consequently, as the open loop configuration is used, the tachogenerator is not necessary. STARTING PROCEDURE : 1. Arrange the corresponding modules on the vertical support. Insert Mask 4 (MPC) on module M6R. 2. Connect the jumpers with the power supply unit to assemble the circuit shown in Exercise 31 Fig. 2. Adjust the variac of the power supply unit to attain a max. input voltage of 220 Vdc across the terminals (+) and (-) of Module M6R (refer to the left side of Mask 4). CAUTION: do not exceed the voltage of 220 Vdc !!! 3. Connect the white jumper of mask identification. 4. Connect the white jumpers with the Gate of MOSFET. 5. Carry out the following preliminary operations: • Switch Module M5R on. • Pressing the arrow key ( ↓ ) move to SETUP (buttons of the central area of Module M5R). • Pressing the arrow key (→ ) move to FEEDBACK (buttons of the central area of Module M5R). • Pressing the keys (+ and -), near the display, select OL (open loop). • Confirm OK pressing the central button of Module M5R. • Enable the component by pressing the ON key (near the display). • IMPORTANT WARNING: BEFORE POWERING THE MOTOR ARMATURE, MAKE SURE TO HAVE POWERED THE FIELD (160 Vdc).

93

After the preliminary operations have been carried out correctly, implement the following measurements: 1. Set the tester to measure the average value Udc of the voltage across the motor. (See Exercise 31- Fig. 1). Observe the waveforms of voltage and following the indications of Table 1, turn the potentiometers of module M5R to obtain the different values of FREQUENCY, PWM and DUTY CYCLE. Write down the resulting data on Table 1. 2. Use the tester as an ammeter A (open the circuit and connect the Tester) to measure the average value Idc of the current crossing the motor. (See Exercise 31- Fig. 1). Observe the waveforms of voltage and following the indications of Table 1, turn the potentiometers of module M5R to obtain the different values of FREQUENCY, PWM and DUTY CYCLE. Write down the resulting data on Table 1. 3. Plot the curve of RPM vs. Duty Cycle for the analysed PWM frequencies. At the end of the exercise push the OFF button of module M5R (on the right of the display) to switch the control circuit off. MOREOVER, DISCONNECT THE EXCITATION VOLTAGE OF 160 Vdc FROM THE MOTOR ARMATURE. EXPERIMENT No. 2: MEASUREMENT OF VOLTAGES AND CURRENTS AND ANALYSIS OF THE WAVEFORMS WITH A LOAD CONSISTING OF A DC MOTOR WITH SEPARATE EXCITATION (CLOSED CONTROL LOOP) IMPORTANT REMARKS: - In this experiment the load is represented by a motor, consequently, as the closed loop configuration is used, the tachogenerator will be necessary. - This test is carried out at constant PWM frequency (5 kHz). Therefore the available control is the duty cycle that varies from 0% to 100 %. - The options appearing on the display of Module M5R are explained here below: “%VO” corresponds to the Output Variable of the controller (expressed in percentage); “%VP” corresponds to the Process Variable (expressed in percentage). For further explanations, read section 15.10 “Concept of feedback”. STARTING PROCEDURE : 1. Arrange the modules on the vertical support. Insert Mask 4 (MPC) on module M6R. 2. Connect the jumpers with the power supply unit to assemble the circuit shown in Exercise 31 Fig. 2. Adjust the variac of the power supply unit to attain a max. input voltage of 220 Vdc across the terminals (+) and (-) of Module M6R (refer to the left side of Mask 4). CAUTION: do not exceed the voltage of 220 Vdc !!! 3. Connect the white jumper of mask identification. 4. Connect the white jumpers with the Gate of MOSFET. 5. Carry out the following preliminary operations: • Switch Module M5R on. • Pressing the arrow key ( ↓ ) move to SETUP (buttons of the central area of Module M5R). • Pressing the arrow key (→ ) move to FEEDBACK (buttons of the central area of Module M5R). • Pressing the keys (+ and -), near the display, select TG (tachogenerator) for the test with closed-loop speed feedbak. • Confirm OK pressing the central button of Module M5R. • IMPORTANT WARNING: BEFORE POWERING THE MOTOR ARMATURE, MAKE SURE TO HAVE POWERED THE FIELD (160 Vdc). After the preliminary operations have been carried out correctly, implement the following measurements: 1. Set the tester to measure the average value Udc of the voltage across the motor. (See Exercise 31 - Fig. 3). Observe the waveforms of voltage and following the indications of Table 2, turn

94

the potentiometer of module M5R to obtain the different values of DUTY CYCLE. Write down the resulting data on Table 2. 4. Use the tester as an ammeter A (open the circuit and connect the Tester) to measure the average value Idc of the current crossing the motor. (See Exercise 31- Fig. 3). Observe the waveforms of voltage and following the indications of Table 1, turn the potentiometers of module M5R to obtain the different values of DUTY CYCLE. Write down the resulting data on Table 2. 1. Plot the curve of RPM vs. Duty Cycle. Compare the resulting data with those of the previous test with open loop control. At the end of the exercise push the OFF button of module M5R (on the right of the display) to switch the control circuit off. MOREOVER, DISCONNECT THE EXCITATION VOLTAGE OF 160 Vdc FROM THE MOTOR ARMATURE.

→MOSFET: ON

95

TABLE 1: VALUES AND PHOTOS WITH LOAD CONSISTING OF A MOTOR IN OPEN LOOP CONFIGURATION DC voltage for powering the MOSFET + MOTOR (in no-load condition):

Tchogenerator mod. M-16/EV: • K TG = 2 mV/RPM • MOTOR RPM = U TG / K TG • Connecting a multimeter with the terminals of tachogenerator mod. M-16/EV enables to measure UTG EXCITATION VOLTAGE OF MOTOR mod.M-1/EV: 160 Vdc

PWM DUTY FREQ CYCLE kHz % 1

0 25 50

CH1

Idc A

11B (2V/div) ditto ditto ditto

CH-2

PHOTO No 1 2 3 4

ditto ditto ditto ditto

ditto ditto ditto ditto

5 6 7 8

70

ditto ditto ditto ditto

ditto ditto ditto ditto

9 10 11 12

85

ditto

ditto

13

0 25 50 85

25

Udc V

TACHOGEN. UTG RPM V

1A (1V/div) ditto ditto ditto

85 10

LOAD: DC MOTOR (CLOSED LOOP)

0 25 50

CONCLUSIONS: The photos show that: 1- PWM frequency = 1 kHz is not very suitable for the control. In fact, both waveforms of voltage and current are “deformed”. In detail, as current waveform is almost “triangular”, a lot of harmonics are generated and they do not contribute to get any deflectinmg torque, but they provoke undesired overheating. 2- On the contrary, the other two PWM frequencies (10 kHz and 25 kHz) highlight the PWM control (voltage waveform). Moreover, current has an almost continuous trend. That avoids the problems described above. Comparing these two frequencies, f=10 kHz seems the most suitable one (compare the current waveforms for the same values of Duty Cycle). The current value will rise as Duty Cycle increases. This increase is small because no load is coupled to the motor (losses are partially electric and partially mechanic due to the increase of RPM).

96

Exercise 31 - Fig.1 Study of PWM-MOSFET with load consisting of a motor (open loop, and with connected instruments

Exercise 31- Fig. 2 Connection diagram of the Modules with load consisting of a motor (open loop)

97

EXERCISE 31 - PHOTOS WITH LOAD CONSISTING OF A MOTOR (OPEN LOOP) PWM FREQUENCY: 1 kHz

Exercise 31 – Photo 1 – D.CYCLE =0 %

Exercise 31 – Photo 2 – D. CYCLE =25 %

Exercise 31 – Photo 3 – D.CYLE =50 %

Exercise 31 – Photo 4 – D. CYLE =85 %

98

EXERCISE 31 - PHOTOS WITH LOAD CONSISTING OF A MOTOR (OPEN LOOP) PWM FREQUENCY:: 10 kHz

Exercise 31 – Photo 5 – D.CYLE =0 %

Exercise 31 – Photo 6 – D.CYLE =25 %

Exercise 31 – Photo 7– D.CYLE =50 %

Exercise 31 – Photo 8– D.CYLE = 85 %

99

EXERCISE 31 - PHOTOS WITH LOAD CONSISTING OF A MOTOR (OPEN LOOP) PWM FREQUENCY: 25 kHz

Exercise 31 – Photo 9 – D. CYLE = 0 %

Exercise 31 – Photo 10 – D.CYLE = 25 %

Exercise 31 – Photo 11 – D.CYLE = 50 % %

Exercise 31 – Photo 12 – D.CYLE = 70

Exercise 31 – Photo 12 – D.CYLE = 85 %

100

EXERCISE 31- DIAGRAMS OF THE LOAD WITH MOTOR (OPEN LOOP) FOR DIFFERENT VALUES OF PWM FREQUENCY AND OFDUTY CYCLE

DC VOLTAGE for MOSFET + MOTOR (NO-LOAD):

FREQ kHz 1

PWM DUTY CYCLE % 0 25 50

LOAD MOTOR Udc Idc V A

TACHOGENERATOR UTG RPM V

85 10

0 25 50 85

25

0 25 50 70 85

NOTES 1- the diagrams show that the lower PWM frequencies produce an output whose trend is almost linear with D.Cycle. 2- PWM frequency of 25 kHz already represents anoperating limit for this device

101

TABLE 2: VALUES AND PHOTOS WITH LOAD CONSISTING OF A MOTOR (CLOSED LOOP)

DC voltage for powering the MOSFET + MOTOR (in no-load condition):

PWM frequency (kHz):

Tachogenerator mod. M-16/EV: • K TG = 2 mV/RPM • MOTOR RPM = UTG / K TG • Connecting a multimeter with the terminals of tachogenerator mod. M-16/EV enables to measure UTG EXCITATION VOLTAGE OF MOTOR mod M-1/EV: 160 Vdc PWM DUTY CYCLE %

LOAD: DC MOTOR (CLOSED LOOP) Udc V

CH1

Idc A

CH-2

TACHOGENERATOR UTG RPM V PHOTO No -------

70

11B (2V/div) ditto ditto ditto

1A (2V/div) ditto ditto ditto

18 19 20

80 90 100

ditto ditto ditto

ditto ditto ditto

21 22 ------

0 20 50

The photos indicated in the following table show the relationship between the PWM signal on the Gate of MOSFET and voltage Udc across the load. Remember that: Vsupply = Vload + VMOSFET Moreover, as Vload = Udc, voltage VMOSFET is high when Vload is low, and vice versa. PWM DUTY CYCLE % 50 25

LOAD: DC MOTOR (CLOSED LOOP) CH1 Udc 11B (2V/div) ditto

CH2 PWM 7B (2V/div) ditto

PHOTOS No 23 and 24 25

102

Exercise 31 - Fig. 3 Study of PWM-MOSFET with load consisting of a motor (closed loo), and with connected instruments

Exercise 31 - Fig. 4 Connection diagram of the Modules with load consisting of a motor (closed loop)

103

EXERCISE 31 -PHOTOS WITH LOAD CONSISTING OF A MOTOR (CLOSED LOOP) PWM FREQUENCY: 5 kHz

Exercise 31 – Photo 18 – D. CYLE = 20%

Exercise 31 – Photo 19 – D.CYLE = 50 %

Exercise 31 – Photo 20 – D.CYLE = 70 %

Exercise 31 – Photo 21– D.CYLE = 80 %

Exercise 31 – Photo 22 – D.CYLE = 90 %

104

EXERCISE 31 -PHOTOS WITH LOAD CONSISTING OF A MOTOR (CLOSED LOOP) PWM FREQUENCY: 50 kHz VOLTAGE SIGNALS ACROSS THE MOTOR AND PWM SIGNAL

Exercise 31 – Photo 23 – D.CYLE = 50 %

Exercise 31 – Photo 24– D.CYLE = 50 %

Exercise 31 – Photo 25 – D.CYLE = 25 %

105

ECERCISE No. 31 - PWM MOSFET FOR THE CONTROL OF DC MOTOR CLOSED LOOP DC VOLTAGE for MOSFET + MOTOR (NO LOAD): PWM FREQUENCY OF MOSFET (kHz):

FREQ kHz 5

PWM DUTY CYCLE %

LOAD MOTOR Udc Idc V A

TACHOGENERATOR UTG RPM V

0 20 50 70 80 90 100

NOTE - The curve of RPM vs. Duty Cycle (%) – PWM freq. = 5 kHz – is almost linear. - That is due to the feedback of the tachogenerator.

106

Related Documents


More Documents from "Beatriz Cerqueira"