Module 12- Matrices

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Module 12- Matrices as PDF for free.

More details

  • Words: 1,593
  • Pages: 14
MODULE 12 MATEMATIK SPM “ENRICHMENT” TOPIC : MATRICES TIME : 2 HOURS

1.

(a)

3  2  is m 5  4

The inverse matrix of 

 4   5

n  3 

Find the value of m and of n. (b)

Answer : (a)

(b)

Hence, using matrices, solve the following simultaneous equations : 3x – 2y = 8 5x – 4y = 13

2.

(a)

m 3  2 n  

Given that G =  

and the inverse matrix of G is

1  4  3  , 14   2 m 

find the value of m and of n. (b)

Hence, using matrices, calculate the value of p and of q that satisfies the following equation :

 p  1  G      q    8 Answer : (a)

(b)

3.

 1 2 1 0    , A  3 5 0 1    

(a)

Given that

(b)

Hence, using the matrix method, find the value of r and s which satisfy the simultaneous equations below. -r + 2s = -4 -3r + 5s = -9

Answer : (a)

(b)

find matrix A.

4.

 4 5  and matrix PQ = 6 8  

Given matrix P =   (a) (b)

Answer : (a)

(b)

1 0   0 1  

Find the matrix Q. Hence, calculate by using the matrix method, the values of m and n that satisfy the following simultaneous linear equations : 4m + 5n = 7 6m + 8n = 10

5.

 4  3  , 8  5  

Given the matrix P is  

1 0  0 1  

(a)

Find the matrix Q so that PQ = 

(b)

Hence, calculate the values of h and k, which satisfy the matrix equation:

 4  3  h    7        8  5 k  11      Answer : (a)

(b)

6.

 k 6 , find the value of k if matrix M has no inverse.  4 2  

(a)

Given matrix M =  

(b)

Given the matrix equations

 7  6  x    4          5 8  y   1  (i) (ii) Answer : (a)

(b)

 x

1  8 6   4 

and      y  h  5 7  1      

Find the value of h Hence, find the value of x and y.

7.

2 5   does not have an inverse matrix. k  2  

It is given that matrix P =   (a) (b)

Find the value of k. If k = 1, find the inverse matrix of P and hence, using matrices, find the values of x and y that satisfy the following simultaneous linear equations. 2x + 5y = 13 x - 2y = -7

Answer : (a)

(b)

8.

 2 4  2 4  M    1 3 1 3    

(a)

Find matrix M such that  

(b)

Using matrices, calculate the values of x and y that satisfy the following matrix equation.

 2 4  x   6         1 3  y   5 

Answer : (a)

(b)

9.

3 1  . 5  2  

(a)

Find the inverse of matrix  

(b)

Hence, using matrices, calculate the values of d and e that satisfy the following simultaneous equations : 2d – e = 7 5d – e = 16

Answer : (a)

(b)

10.

1  2  , find 2 5  

Given matrix M =   (a) (b)

the inverse matrix of M hence, using matrices, the values of u and v that satisfy the following simultaneous equations : u – 2v = 8 2u + 5v = 7

Answer : (a)

(b)

MODULE 12 - ANSWERS TOPIC : MATRICES

1.

m= 

(a)

1 2

1m

n =2 (b)  3

 5

1m

 2  x  8    =    4   y  13   x  1  4      y 2  5 x=3 y= 

2.

(a)

 2

2  8    3 13 

1 2

1m

1m 1m

3  p     4  q 

 1      8

 p  1  4  3  1         q  14   2 5   8  p=2 q = -3

3.

(a)

(b)

4.

(a)

5 3 

A=

1m

1m

n =4 m=5

(b)  5

1m

1m

1m

1m 1m

 2   1 

2m

  1 2  r    4         3 5  s    9

1m

 r  1  5  2   4         s  1  3  1   9 

1m

P=

r = -2

1m

s = -3

1m 1m

1  8  5   32  30   6 4 

(b)

5.

(a)

(b)

1  8  5   = 2   6 4 

1m

 4 5  m   7         6 8  n  10 

1m

 m  1  8  5  7         n  2   6 4 10 

1m

m=3

1m

n = -1

1m

  5 3  1m 1    20  (24)  8 4  1   5 3 1m    4  8 4 

P 

 4  3  h    7         8  5  k    11  h  1   5 3   7         k  2  8 4   11 

6.

1 2    2   100 

1m

1m

h=1 k = -50

1m 1m

(a)

k = -12

1m

(b)

(i)

h = 26

 x 1  8 6   4         y  26  5 7  1  1   26     26   13 

1m

(ii)

1m

1m

x = -1 y= 

7.

(a)

1m

1 2

- 4 – 5k = 0

1m

1m

5k = -4 k=  (b)

8.

4 5

1m

 2 5  x   13         1  2  y    7 

1m

 x 1   2  5  13         y  1 2 9      7 

1m

x = -1 y=3

1m 1m

1 0  0 1

(a)

M=  

2m

(b)

 x 1  3  4  6         y  6  4   1 2  5 

1m

1  3  4  6     2   1 2  5  1   2    2 4  

x = -1 y=2

1m

1m 1m

9.

(a)

1   2 1    6  5   5 3 

1m

1   2 1    1   5 3 

1m



 1  d   7         5  3  e  16   d  1   3 1  7         e   1   5 2 16 

(b)  2



1m

1m

1   5    1   3 

 5     3 d=5 e=3

10.

(a)

 5 2 1   5  (4)   2 1  1  5 2    9   2 1   2  u   8   2 5  v    7        u  1  5 2  8         v  9   2 1  7 

(b)  1

1m 1m

1m

1m

1m

1m

1  54     9   9 6      1 u6 v  1

1m 1m

Related Documents

Module 12- Matrices
May 2020 7
Module 12
May 2020 13
Matrices
November 2019 36
Matrices
May 2020 19
Matrices
June 2020 18
Matrices
December 2019 30