Modul 8 (ann1)

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Modul 8 (ann1) as PDF for free.

More details

  • Words: 944
  • Pages: 23
Module 8 k-means RBF networks PNN SOM

Non-Hierarchical Cluster Analysis: k-means

+ +

1. 2. 3. 4.

A

B +: centroid

Select number of clusters (centroids) Calculate centroids µk of partitions Mk Assign cluster members x to centroids Minimize distance function K 2 D = ∑∑ ( xk − µ k ) → Min. k =1 x k

http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/kmeans.html

Example: k-means Clustering Data ID A1 A2 B1 B2 B3

x1 1 2 4 5 7

x2 1 1 5 7 7

B2

B3

B1

x2 A1

• 2 centroids (k = 2) • Euclidian Distance

+

+

A2

x1 Cluster Boundary (Classifier)

k-Nearest Neighbors • Pick k nearest objects to a reference point • Problem: reasonable choice of K

x2

k=3 k=6 x1

Kernel-based Nearest Neighbors • Pick nearest objects to a reference point according to a Kernel function • Problem: reasonable choice of the Kernel & parameters Kernel function f( A,B) → scalar value f( A,B) = 0 if A = B f( A,B) > 0 if A ≠ B

+ µB x2

Gaussian Kernel φ  x −µ j  Φ j ( x ) = exp − 2σ 2j  

2

   

Kernel Discrimination Methods

σB +µ

A

σA x1

Probabilistic Neural Network (PNN) one standardized Gaussian basis function placed on the location of each pattern (xi = µi)

yclass = f class (x) =

∑ j∈CLASS

 x−x 1 class , j  exp − D D 2σ 2j  M (2π ) σ j 

2

   

φ1 Optional: softmax y1

x1

yc

xd Inputs

φM Basis functions

Outputs

zclass =

exp( y class ) C

∑ exp( y

k

)

k =1

smoothed version of „winner-take-all“

Probabilistic Neural Network (PNN) cytoplasmic proteins (class1) secreted proteins (class2) property 2

fclass1(x) fclass2(x)

property 1

P(x)


ity >



decision boundary

Radial Basis Function (RBF) Network M

y ( x ) = ∑ w kj Φ j ( x ) + w k 0 j =1

Gaussian basis function φ

M basis functions φ

 x −µ j  Φ j ( x ) = exp − 2σ 2j  

φ1 y1

x1

w yc

xd Inputs

φM Basis functions

Outputs

2

  ( x − µ j )T ( x − µ j )     2  = exp −  2σ j   

Standardized Gaussian φ  x −µ 1 j  Φ j (x ) = exp − 2σ 2j  (2π )D σ Dj  D : dimension of X

2

   

The Self-Organizing Map (SOM)

Data Analysis by Self-Organizing Maps (Kohonen networks) Z

Y

X

SOM

Properties of Kohonen Networks • Projection of high-dimensional space • Self-organized feature extraction and cluster formation • Non-linear, topology-preserving mapping

Other Projection Techniques • Principal Component Analysis (linear) • Projection to Latent Structures (linear, non-linear) • Encoder networks (non-linear) • Sammon mapping (non-linear)

Architecture of Kohonen Networks w

Input

A=6 (A • B) neuron array

x1 x2 x3 x4

B=5

1/0

Output

One neuron fires at a time

Neighborhood Definition in Kohonen Networks

Square neuron array

Hexagonal neuron array

second neighborhood first neighborhood central (active) neuron

Toroidal Topology of 2D-Kohonen Maps

An “endless plane”

Competitive Learning 1. Randomly select an input pattern x 2. Determine the “winner” neuron (competitive stage)

dim  2 i* ← min  ∑ x j − wij ; i = 1,2, ... , n  j =1 

(

)

3. Update network weights (cooperative stage)

 wold + η x j  ij new  w old + η x wij =  i   wijold  4. Goto Step 1 or terminate

if i ∈ N i * if i ∉ N i *

(Normalization of w)

Scaling Functions

“connection kernel” h

• Neighborhood (N) correction

 d1 (r , s ) 2   h(t , r , s ) = exp  −  2σ 2 (t )     σ fin 

σ (t ) = σ ini 

  σ ini  

r h

t / t max s

r h

•Time-dependent learning rate

 η fin   η (t ) = ηini   η ini  

s

“Mexican Hat” (not in SOM)

t / t max r

s

Vectorial Representation of Competitive Learning

Neuron 2

x2

x2

Neuron 2

x1

x1

Neuron 1

Neuron 1

Learning Time

unit sphere

SOM Adaptation to Probability Distributions

t = 500

t = 400

t = 300

t = 200

t = 100

Learning time

0

B

Voronoi tesselation A

SOM - Issues • Neighboring neurons code for neighboring input positions, but the inverse does not hold • Best results: input dimensionality = lattice dimensionality • Neighborhood decay & shape

local minima

• Problems with capturing the fine-structure of input space (oversampling of low-probability regions) • “dead” or “empty” neurons • features are not invariant to, e.g., translations of the input signal

Mapping Chemical Space: “Drugs” and “Nondrugs”

120-dimensional data, Ghose & Crippen parameters 5’000 drugs, 5’000 nondrugs (Sadowski & Kubinyi, 1998)

Visualizing Combinatorial Libraries (UGI) R1

O

O

+

N C

+

R2

+

R3

R2

O

H

MeOH / RT

R1

H N

NH2

R4 OH

+

R4 O

+

R1

R3

R2

H N

NH R3

O

Thrombin binding assay

7 6

IC50 < 10 µM

PC2

5 4 3 2 1 PC1

PCA

1

2

3

4

5

6

7

Kohonen-Map

Self-organizing neural networks demo 1) University of Bochum http://www.neuroinformatik.ruhr-unibochum.de/ini/VDM/research/gsn/DemoGNG/GNG 2) SOMMER

Link on modlab software page www.modlab.de

Related Documents

Modul 8 (ann1)
June 2020 3
May Ann1
May 2020 2
Modul#8
October 2019 42
Modul 8
July 2020 40
Modul 8
June 2020 30