Model Building

  • Uploaded by: kamal hameed tayy
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Model Building as PDF for free.

More details

  • Words: 33,809
  • Pages: 186
‫ﺟﺎﻣﻌﺔ ﺍﻟﻤﻠﻚ ﺳﻌﻮﺩ‬ ‫ﻗﺴﻢ ﺍﻹﺣﺼﺎﺀ ﻭﺑﺤﻮﺙ ﺍﻟﻌﻤﻠﻴﺎﺕ‬

‫ﺑﻨﺎﺀﺍﻟﻨﻤﺎﺫﺝ‬ ‫ﺒﺈﺴﺘﺨﺩﺍﻡ‬

‫‪Excel and Vensim‬‬

‫ﺗﺄﻟﻴﻒ ﺩ‪ .‬ﻋﺪﻧﺎﻥ ﻣﺎﺟﺪ ﻋﺒﺪﺍﻟﺮﺣﻤﻦ ﺑﺮﻱ‬ ‫ﺃﺳﺘﺎﺫ ﺍﻹﺣﺼﺎﺀ ﻭﺑﺤﻮﺙ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﻤﺸﺎﺭﻙ‬

2

‫  ا ا  ا‬   ‫" ا!ف  ا  و‬# ‫ا  رب ا  واة وا م‬ .‫ و‬$%‫ و‬$& "#‫و‬ . ‫أ‬ Excel and Vensim ‫*)ام‬+ ‫*ب ء ا ذج‬/ "‫و‬0‫دة ا‬2 ‫ ا‬3‫ ه‬56‫ه‬ .‫س‬28‫ر‬2/‫ ا‬9 ‫ب‬: "‫ء أول – " و‬GH – 3@A‫ ا‬B*‫ق ا‬D " 9;  ‫ ا‬3*‫ آ‬9; 3= ‫وآ  ذآت‬ Excel, SIMAN, Arena and General ‫*)ام‬+ ‫ وا آة‬9H6 ‫ا‬ $;  ‫*ب آ‬/‫ا ا‬6‫" أن ه‬Purpose Simulation System (GPSS WORLD) 58JK‫ و‬582:* ‫م‬2L‫ف أ‬2 "K ‫ذن ا‬+ ‫ و‬30 ‫دة إ" !ء ا‬2  NO 9;*‫م وا‬2‫*; ان ا‬#‫ أ‬30 ‫ا‬6‫ ه‬3‫*و‬/A‫ ا‬$/P NO‫  *  و‬N/P $ K‫و‬ Q R*8S 3/K* H ‫ آ*ب‬3= TU‫ ان و‬V ‫ * رع‬N/P ‫ و‬28 ‫ر‬2:*K .X*A‫ت وا‬2 ‫رة ا‬2Y # 3= 9%‫ع و‬2U2 ‫ ا‬9/8‫د‬ .Model Building ‫ع ء ا ذج‬2U2  9‫و‬0‫ت ا‬0‫*ب ا‬/‫ا ا‬6‫ ه‬3:Z8 Dynamic Stochastic 3@‫ا‬2P# 9‫ آ‬O ‫  ذج‬3‫ ه ه‬T ‫ي‬6‫وا ذج ا‬ \ 9‫ آ‬9 O0 ]6‫ وآ‬9;;‫ ا‬9 O0‫ ا‬O N/PK 3*‫ ووا‬Systems ‫ اع‬A‫ ا‬3#  *K 3‫  وه‬#‫ = و‬9H6 ‫* ا‬K .‫ا‬H ‫ درة‬3‫ ه‬3*‫ وا‬9@‫ا‬2P# N= 3= D 6‫ أ‬2 ^ = ‫ ّق‬N # ‫ أي‬N^ T^ 98‫رات ا`د‬T ‫وا)ل وا‬ ‫ أدوات‬Q H ‫*)ام‬0 9T ‫ وا‬9 ‫ ا‬9`)‫ ا‬$8  ‫ه‬/= ‫رة‬J‫ * ا‬3‫درا‬ T ‫ وا‬N‫ آ‬a*0 ‫اد‬2 ‫ت وا‬Sb‫ ا‬c` T ‫ وا‬N‫ آ‬3:#‫ ا‬2 /‫رة و‬J‫ا‬ XU*‫ ا‬L‫ و‬.d;= ‫ض‬Z 3`8 b‫ وا‬9= 9:L ‫ن اه‬2/8 L `*) 3‫آ‬ ‫*ب و آن إ*ري‬/‫ا ا‬6‫ ه‬3= Vesim ‫ و‬Microsoft Excel ‫*)ام‬+ 9H6 ‫ا‬ "‫ إ‬9=UAf Q‫ا‬2‫ ا‬T‫ وإ*)ا‬9‫ ا‬TK‫د‬2H ‫ و‬/‫ره ا‬P*‫ إ‬2‫ ه‬a‫ اا‬56T .X*A‫" ا‬# Vesim a‫ب  ا‬: 9J 9)  ‫د‬2H‫و‬ ‫ا‬P* g%‫ وا آة ا‬9H6 ‫ ا‬3= Excel N^ P‫`ت ا‬% a‫إن إ*)ام ا‬ Spreadsheet P‫`ت ا‬% 9H6  X%‫ وا‬،‫ت‬J‫ آ^  ا‬3= $L ‫ و‬3J‫ ا* ا‬3= 98‫ور‬i‫ا وا‬H 9 T ‫ ا‬QU‫ا‬2 ‫  ا‬Modelling NL  ‫=ة‬2* /K  ‫رة‬2 T/!‫ أ‬N/ ‫ ات‬9J  9@T‫ ا‬TK‫وذ]  ;ر‬ .9b‫ر ات ا‬P*‫إ‬ Prototype Models 9‫و‬0‫*ب إ" إ*اض ا ذج ا‬/‫ا ا‬6‫ ه‬3= XL:K ; ‫ ا‬N^ K 3*‫^  ا ذج ا ;ة ا‬/‫ ء ا‬3= 9‫و‬0‫ت ا‬2/ ‫* ا‬K 3*‫ا‬ ‫ت‬S‫ ا د‬N^ ‫ ء ا ذج‬3= 9 T ‫ ا‬9U8‫دوات ا‬0‫ ا‬XU*‫ آ  إ‬،3;;‫ا‬ Difference Equations 9L‫ وا`و‬Differential Equations 9U`*‫ا‬ 9‫ء ا‬i= N^ K‫ و‬Matrix Algebra and Cagculus ‫=ت‬2` ‫و ب ا‬ ‫ إ*اض‬K ‫*ب‬/‫ة  ا‬0‫ء ا‬GJ‫ ا‬3=‫ و‬.State Space Representation .Case Studies 9‫ت درا‬S 3= 9`*) 9‫ آ‬9 O0 ‫ ا ذج‬j ‫ ء‬ 3

9*/ ‫اء ا‬YA‫ و‬8/‫ ا‬$TH2 N ‫ا ا‬6‫ز ه‬J‫ إ‬3= 3;=28 ‫ا  ا ان‬2H‫ا وار‬6‫ه‬ .‫*ب‬/‫ا ا‬6‫ ه‬N^ "‫ ا`;ة إ‬9 ‫ا‬ 3= X*A‫ ا‬9/! "# H‫ا‬2* ‫ن‬2/‫ و‬# RD ‫ي‬0 3J ‫*ب‬/‫ا ا‬6‫ن ه‬2/ http://www.abarry.ws/books/ModelBuildingBook.pdf QL2 ‫ا‬ .=2 ‫وا ا‬ lB ‫ا‬ ‫ ا  ي‬# H ‫ن‬# .‫د‬ ‫د‬2 ] ‫ ا‬9H ‫ هـ‬1423 RH‫ر‬ ‫ م‬2002  *

4

‫  ت اب‬ ‫;‪...................................................................................... 9‬‬

‫‪3‬‬

‫ا اول ‪..............................................................................‬‬

‫‪9‬‬

‫أت ا ‪ :9H6‬ا‪Z‬ض و ا‪2U2‬ح و ا ‪2‬ارد ‪..................................‬‬

‫‪9‬‬

‫‪ #‬ا;;‪ 9‬و‪ #‬ا ‪2‬ذج ‪.............................................................‬‬

‫‪10‬‬

‫ا*`‪ /‬ا‪ 3O‬وآ‪ 9‬ا‪O‬م ‪........................................................‬‬

‫‪14‬‬

‫‪K‬ر‪ l8‬أ‪........................................................................... 9‬‬

‫‪14‬‬

‫‪ l8K‬ا ‪2‬ذج  و‪ O 9TH‬ا*`‪ /‬ا‪.................................... 3O‬‬

‫‪15‬‬

‫‪ N^ K‬ا‪O‬م =‪ 3‬ا*`‪ /‬ا‪ 3O‬وآ‪ 9‬ا‪O‬م ‪...................................‬‬

‫‪19‬‬

‫ا ا ‪.............................................................................‬‬

‫‪20‬‬

‫ا د‪S‬ت ا*`‪.................................................................... 9U‬‬

‫‪20‬‬

‫ا د‪S‬ت ا*`‪  9U‬ار‪ 9H‬ا‪0‬و" ا)‪..................................... 9:‬‬

‫‪20‬‬

‫ا د‪S‬ت ا*`‪  9U‬ار‪H‬ت ا ‪..............................................‬‬

‫‪23‬‬

‫ا د‪S‬ت ا)‪ 9:‬ت ‪..................................................... 9* Y‬‬

‫‪23‬‬

‫ا‪ 9‬ا *‪.......................................................................... 9 J‬‬

‫‪23‬‬

‫ا‪ \ 9‬ا *‪.................................................................... 9 J‬‬

‫‪25‬‬

‫‪2‬اص ‪ N#‬ا*`‪............................................................. D NU‬‬

‫‪26‬‬

‫‪ 98O‬ا*‪2 N‬ا‪................................................................... N‬‬

‫‪26‬‬

‫ا‪6J‬ور ا `‪......................................................................... 9‬‬

‫‪27‬‬

‫ا‪6J‬ور ا ‪/‬رة ‪..........................................................................‬‬

‫‪28‬‬

‫ا‪6J‬ور ا آ‪ 9‬ا *;ر‪............................................................... 9‬‬

‫‪28‬‬

‫ا ا ‪.............................................................................‬‬

‫‪32‬‬

‫ا د‪S‬ت ا`و‪....................................................................... 9L‬‬

‫‪32‬‬

‫ا د‪S‬ت ا`و‪ 9L‬ا)‪  9:‬ار‪ 9H‬ا‪0‬و" ‪......................................‬‬

‫‪32‬‬

‫‪ N‬ا د‪S‬ت ا`و‪ 9L‬ا)‪  9:‬ار‪ 9H‬ا‪0‬و" ‪)*+‬ام ‪........... Excel‬‬

‫‪34‬‬

‫‪ R8;K‬د‪ 9U`K 9‬د‪= 9‬و‪............................................... 9L‬‬

‫‪40‬‬

‫ا د‪S‬ت ا`و‪ 9L‬ا)‪ 9:‬ت ‪.......................................... 9* Y‬‬

‫‪43‬‬

‫‪5‬‬

‫ا‪ N‬ام  د‪ 9‬ا *‪.......................................................... 9 J‬‬

‫‪44‬‬

‫ا‪ N‬ا)ص  د‪ 9‬ا‪.......................................................... 9/‬‬

‫‪47‬‬

‫ا*ف ا‪2 3@T‬ل ‪)*+‬ام ‪.......................................... Excel‬‬

‫‪51‬‬

‫ا اا ‪.............................................................................‬‬

‫‪56‬‬

‫‪ H‬و ب ا `‪=2‬ت ‪...............................................................‬‬

‫‪56‬‬

‫ا ت ا‪ "# 90‬ا `‪=2‬ت ‪..................................................‬‬

‫‪56‬‬

‫ ‪ j‬ا)‪2‬اص ا `ة  دات ‪......................................................‬‬

‫‪57‬‬

‫ا; ا ‪G‬ة ‪.......................................................... Eigenvalues‬‬

‫‪58‬‬

‫ا *‪TJ‬ت ا ‪G‬ة ‪.................................................. Eigenvectors‬‬

‫‪58‬‬

‫ر=‪2; 9  9=2` Q‬ة ‪...............................................................‬‬

‫‪60‬‬

‫ر=‪2; e Q‬ة `‪............................................................ 9  9=2‬‬

‫‪61‬‬

‫‪ ]/`K‬ا; ‪ 9‬ا‪P‬ذة ‪.............................................................. SVD‬‬

‫‪61‬‬

‫ ب ا `‪=2‬ت ‪......................................................................‬‬

‫‪61‬‬

‫‪ 9;*P‬ا `‪..........................................................................9=2‬‬

‫‪61‬‬

‫‪ N/K‬ا `‪.......................................................................... 9=2‬‬

‫‪61‬‬

‫‪ 9;*P‬ا ‪2/‬س ‪..........................................................................‬‬

‫‪61‬‬

‫ا ا  ‪...........................................................................‬‬

‫‪63‬‬

‫‪i= N^ K‬ء ا‪....................................................................... 9‬‬

‫‪63‬‬

‫د‪S‬ت =‪i‬ء ا‪ 9‬و‪ 3= T‬ا ‪J‬ل ا‪.................................... 3G‬‬

‫‪63‬‬

‫ا*‪ N82‬إ" !‪ N/‬ا‪................................................................ 9‬‬

‫‪64‬‬

‫‪ N82K‬ا د‪S‬ت ا*`‪  9U‬ار‪........................................... n 9H‬‬

‫‪64‬‬

‫‪O N82K‬م  ار‪ 3 9H‬إ" !‪ N/‬ا‪.......................................... 9‬‬

‫‪67‬‬

‫‪ 9‬ا د‪S‬ت ا*`‪ 9U‬وا‪ 98J‬ا )*‪....................................... 9:‬‬

‫‪67‬‬

‫‪ N82K‬ا‪ \ 9 O0‬ا)‪ 9:‬إ" ‪............................................... 9:‬‬

‫‪68‬‬

‫‪ N‬ا‪ 9 O0‬ا)‪ 9:‬ا *;ة ‪..........................................................‬‬

‫‪69‬‬

‫ا‪ 9 O0‬ا)‪ 9:‬ا *;ة ا *‪.................................................. 9 J‬‬

‫‪69‬‬

‫ا‪ 9 O0‬ا)‪ 9:‬ا *;ة \ ا *‪........................................... 9 J‬‬

‫‪70‬‬

‫‪i= N^ K‬ء ا‪  9‬د‪S‬ت ا`و‪............................................... 9L‬‬

‫‪71‬‬

‫‪6‬‬

‫ا‪)*+ N‬ام ‪.................................................................. Excel‬‬

‫‪72‬‬

‫‪i= N^ K‬ء ا‪  9‬د‪S‬ت ا`و‪2 9L‬ا‪....................... Vensim 9:‬‬

‫‪72‬‬

‫ا ادس ‪...........................................................................‬‬

‫‪73‬‬

‫ ‪ j‬ا ذج ا‪................................................................. 90‬‬

‫‪73‬‬

‫ ‪2‬ذج ا ‪) 2‬أو ا‪A‬ل( ا)‪................................................... 3:‬‬

‫‪73‬‬

‫ ‪2‬ذج ا ‪) 2‬أو ا‪A‬ل( ا‪.................................................... 30‬‬

‫‪74‬‬

‫ ‪2‬ذج ا ‪ 2‬وا‪A‬ل ا)‪........................................................ 3:‬‬

‫‪75‬‬

‫ ‪2‬ذج ا ‪ 2‬وا‪0‬ل ا‪......................................................... 30‬‬

‫‪75‬‬

‫ا ‪2‬ذج ا* ‪......................................................................... 3‬‬

‫‪76‬‬

‫ ‪2‬ذج ا‪S2‬دة وا ‪2‬ت ‪..................................................................‬‬

‫‪77‬‬

‫ ‪2‬ذج " ا ‪ 2‬ا‪......................................................... 3* H2‬‬

‫‪78‬‬

‫ ‪2‬ذج ا ‪ 2‬ا ود ‪P‬وط ) ‪........................................... (3* H2‬‬

‫‪79‬‬

‫ ‪2‬ذج ‪  l%28‬د‪S‬ت ا*`‪Z*  9U‬ي ‪............................... 9‬‬

‫‪80‬‬

‫ ‪2‬ذج ‪  l%28‬د‪S‬ت ا*`‪^ 9U‬ث *‪Z‬ات ‪....................... 9‬‬

‫‪81‬‬

‫ا ا ‪.............................................................................‬‬

‫‪83‬‬

‫‪S‬ت درا‪ 9‬ء ‪ j‬ا ذج ‪....................................................‬‬

‫‪83‬‬

‫‪ (1‬ء  ‪2‬ذج آ‪2 9‬ق ‪...........................................................‬‬

‫‪83‬‬

‫‪  K‬ا ‪2‬ذج ‪)*+‬ام ‪................................... Curve Expert‬‬

‫‪91‬‬

‫‪  K‬ا ‪2‬ذج ‪)*+‬ام ‪.................................... Excel Solver‬‬

‫‪91‬‬

‫‪2  (2‬ذج )‪G‬ون ;‪2‬ة ‪......................................................... 9#‬‬

‫‪96‬‬

‫ا‪L‬ت ا ‪ 3= 9‬ا ‪2‬ذج ‪...........................................................‬‬

‫‪97‬‬

‫دورات ا*‪ 986Z‬ا)`‪....................................... Feedback Loops 9‬‬

‫‪99‬‬

‫د‪S‬ت ا ‪2‬ذج ‪........................................................................‬‬

‫‪100‬‬

‫‪2  (3‬ذج ** ‪........................................................... 3P*2= 9‬‬

‫‪105‬‬

‫ ‪2‬ذج !‪i= N/‬ء ا‪)*+ 3P*2= 9 **  9‬ام ‪............... Vensim‬‬

‫‪105‬‬

‫‪ (4‬ا ذج اآ‪ 9‬ا‪2P‬ا@‪......................................................... 9‬‬

‫‪107‬‬

‫ا)‪ 9%‬ا رآ‪..................................................................... 9=2‬‬

‫‪107‬‬

‫‪ N^ K‬ا ذج اآ‪ 9‬ا‪2P‬ا@‪ 9‬ا رآ‪)*+ 9=2‬ام ‪.............. Vensim‬‬

‫‪107‬‬

‫‪7‬‬

112

..................................................... bifurcation RP*‫ذج ا‬2  (5

112

............................................ VenSim d:) RP*‫ذج ا‬2  N^ K

117

..................................................... RL 3= 9i 38;K ‫ذج‬2  (6

117

.................................................... Vensim a N^  ‫ذج‬2 ‫ا‬

123

................. Lorenz Attractors Models c*8‫ر‬2 ‫ذ ت‬H ‫ذج‬2  (7

123

..................................................... Vensim 9:‫ا‬2 ‫ذج‬2 ‫ ا‬N^ K

129

............... Prey and Predator Model 9i‫ذج ا `*س وا‬2  (8

129

.................................................... Vensim ‫*)ام‬+ ‫ذج‬2 ‫ ا‬N^ K

132

......................................................................... 9 ‫ت ا‬L‫أ‬

132

.......................................................................... 9`)‫اورات ا‬

134

....................................... 9;  ‫*رات ا‬A‫ ت ا‬H‫ وإ‬9‫( أ‬1) 

186

.................................................................................... QH‫ا ا‬

8

‫ا اول‪:‬‬ ‫أ&&‪%‬ت ا‪ : !"#$‬ا‪+‬ض و ا ) ح و ا‪ #‬ارد‬ ‫‪8‬ف ا‪ #$‬ذج ‪ "#‬ا‪# N 2 ^ = ، /%/  %#0 : $‬ة أ!)ص  ه‪ 2‬ا ‪2‬ذج ‪RJ8 L‬‬ ‫اه ‪ :‬ه‪ 2‬د‪ 9‬ر‪ ، 9U8‬و‪ : & RJ8 L‬ه‪:L 2‬ر ‪ 9‬و&‪2/K‬ن إ‪ : $* H‬ه‪2  2‬ذج‬ ‫ " ‪8‬اد إ‪ $@P‬و‪ : & RJ8‬د‪KK 9‬ي ‪2Y‬ب =‪ 3‬أ ت ا)‪.9D‬‬ ‫‪ fK 2‬ا‪ N‬ا ‪*P‬ك =‪ 3‬إ‪ H2 TK H‬ا‪ = ، "9;; N^ K " $‬د‪S‬ت ا‪N^ K 9U8‬‬ ‫‪) 9//‬آ‪ XK Q *J 2  (9‬ارا‪ ^ 9‬و ‪:L‬ر ا‪:L N^ 8 9‬ر ;;‪ 3‬و  ‪2‬ذج‬ ‫ا " ‪ N^ 8‬ا‪ N/P‬ا‪6‬ي و ‪ $#‬ا " ا;;‪  3‬إ‪ ، $@P‬ا‪ N/! N^ K 9‬ا ‪ c‬وآ‪l‬‬ ‫‪ # TO‬ر‪K‬ا@‪.$‬‬ ‫ا*‪ l8‬ا    ‪2‬ذج \ آ=‪ ;K / 8 l/= 3‬و;ر‪ 9‬ا ذج ا )*`‪9‬؟ =‪  N/‬ا‪9‬‬ ‫وا;‪:‬ر ا‪ 9;; N^ K 9‬و‪ /‬هك إ*ف آ ‪ T‬و‪; / 8S‬ر*‪d:) ^ = .T‬‬ ‫!‪2‬ارع ‪  98‬و)‪D d:‬ق ا ` =‪ 3‬اة ا*‪ T= Q;K 3‬ا ‪ 98‬آ‪9;; N^ K  T N‬‬ ‫و‪8‬وان *‪ T P‬و‪ / 8S /‬إ*)ام أه  ‪/‬ن ا‪ ، b‬إذا هك !‚ ‪2H‬هي *;‬ ‫ا ‪2‬ذج أ‪ S‬وه‪ 2‬ا‪+‬ض ‪ Purpose‬و ‪ l8K g8 3K‬ا‪ #$‬ذج ‪ "#‬ا‪ %#0 : $‬ذا ‪1‬ض‬ ‫‪ d:) = ، /%/ 2‬ا‪2P‬ارع ه‪ 9;; N^ K 2‬ا*‪K 3‬و ‪2! T‬ارع ‪ ]K‬ا ‪Z 98‬ض ا‪S*A‬ل‬ ‫‪2! "#‬ار‪ T#‬وه‪S*ƒ g8S D 2‬ل ‪D "#‬ق ا ` =‪ ]K 3‬اة و‪g8 "*S‬‬ ‫* ;ط إزدم ا ور =‪ ]K 3‬ا ‪ 98‬و‪ /‬ه‪6‬ا ‪ NJ8S‬ا ‪2‬ذج ‪ .‬هك أ‪2‬اع )*`‪9‬‬ ‫ ‪:L‬رات ا‪0‬ب ‪ Ti ،‬ص ‪ R‬ا‪`D0‬ل و ‪  Q H 3  Ti‬ذج ا;‪:‬رات )^‪N‬‬ ‫‪ Q H‬ا‪2:‬ا ‪ (Q‬وه‪6/‬ا ‪\„= ،‬اض ا )*`‪  a*K 9‬ذج )*`‪.9‬‬ ‫هك !‚ ‪2H‬هي & =‪ 3‬ا ‪2‬ذج و‪2‬ف  *‪^   $U‬ل ا*‪ 2 :3‬د‪#‬ك أ ا‪L%0‬ء‬ ‫ا‪J‬د إ" ‪0 $G‬ول ة وا‪KS D X‬ف ا‪ ];8 / = ، 8:‬أن ‪9# ] d)8‬‬ ‫)‪2P d:‬ارع ا*‪BK 3‬دي إ" ‪2/8 L ، $G‬ن )‪ ;* \ d d:‬أو ‪)8 L‬ج ] )‪d:‬‬ ‫ه‪ 9;:  O 3‬ا*‪ T= / 8 3‬أو )‪ N P8 d:‬ا ‪ T/ 98‬و‪، $G QL2 ] !B8‬‬ ‫ه‪ 56‬ا )‪::‬ت ‪2/8 L‬ن =‪ T‬در‪H‬ت )*`‪  9‬ا*`‪ N%‬و ;‪ c8‬ر )*`‪ ، 9‬وه‪6‬ا ‪B8‬دي‬ ‫إ" ‪ " 8‬ر‪ 9H‬ا‪2U2‬ح أو ا ) ح ‪  ^ = ، Resolution‬ا‪N%`K 8K R‬‬ ‫ا‪!0‬ء  ‪2%‬رة ا‪6‬ت …‪8  82K 9‬ل ه ا‪B‬ري ) ون =‪2‬آ‪ (Focus c‬و  =‪9‬‬ ‫ ة و‪2/* /‬ن ا*`‪ N%‬وا‪H 9U‬ا ودة إذا ا‪6‬ت …‪2  82K 9‬ع ‪ H‬و ‬ ‫!)† *)† =‪ 3‬ا*‪ 82‬و  ‪ = .R‬ذج ا‪ T i8‬در‪ 9H‬و‪2U‬ح وه‪6‬ا ‪*8‬‬

‫‪9‬‬

‫ ;ار ا*`‪ N%‬ا‪i‬ور‪ 98‬وا‪ 9T‬ا*‪ 3= NK 3‬ء ا ‪2‬ذج‪T= .‬ك  ذج ‪ 9L‬ا‪2U2‬ح‬ ‫‪ Low resolution‬و ذج ‪ 9#‬ا‪2U2‬ح ‪. High resolution‬‬ ‫ا‪ ‚P‬ا‪2J‬هي ا‪ 3= 0‬ء  ‪2‬ذج ه‪ 2‬ا‪ #‬ارد ‪ Resources‬وا‪/A‬ت و‪ N PK‬ا ‪2‬اد‬ ‫ا ‪:‬ة وا‪ G‬ا *ح وا)ة ا *‪=2‬ة أو ا ‪ /‬إآ*  ‪  U T‬ا‪ G‬ا *ح وا‪ #‬ا‪P‬ي‬ ‫وا ‪L "= ، 3‬ر ا ‪2‬ارد وا‪/A‬ت  *‪ Q:‬ان ‪2  3‬ذج ‪Z‬ض ا ‪2:‬ب و ‪2U2‬ح‬ ‫ا ‪ ^ = ، R‬إذا ا‪ X:#‬ور‪i 9L‬ء و‪ L‬ر‪%‬ص و ‪:‬ة =;‪ d‬و‪ ] RD‬ر )‪d:‬‬ ‫‪2P‬ارع وا ا= ‪2‬ل ‪ T)* 8 3/ ]*H‬ا‪:‬ب ا *‪ 8J‬وا‪ G‬ا *ح ]  ‪c‬‬ ‫د‪2 = ، @L‬ارد ا ‪:‬ة ‪2‬ف ‪2:) 9:8 K‬ط  *; ‪ 9‬أ‪2‬د ‪ "#‬ا ‪ j‬و‪j liK‬‬ ‫ات ا*‪K 3‬ل ‪ "#‬ا ا= ا ‪ ، 9 T‬ا‪b‬ن ‪ 2‬ا‪ ] 3:#‬أ‪L‬م ‪ * ]+= 92‬ا‪:‬ق‬ ‫ا@ ‪2 9‬ن وا`‪2 9#‬ن & وا ا= ‪2f‬ان ‪K‬ل ‪ ^ = T*#2 "#‬ا ‪2 H‬ن‬ ‫وا ‪2 #:‬ن وا ‪2 R#‬ن & وه‪6/‬ا ‪ 8GK‬ا*`‪ N%‬وا‪2U2‬ح ;ر ا‪T‬ف ا ‪2:‬ب‬ ‫وا ‪2‬ارد ا *‪ ^ = 9‬ر أر‪ 9`%‬أو أ!‪J‬ر أو زل ‪)KS‬م ا‪T‬ف ا ‪2:‬ب و‪„ K L‬‬ ‫ا)‪  N;K N%`* 9:8‬و‪ T2U‬آ  ا‪*K T‬ج ا" و‪ XL‬ا‪2D‬ل  ا *ح‪.‬‬ ‫ ا دئ ا ‪ 3= $ T‬ء ا ذج وا‪6‬ي *‪ JT 3= $‬ه‪89 2‬أ ا‪ 6 7%#‬ا& ‪3245‬‬ ‫‪ Bottom up design‬وه‪ 2‬اء  ‪2‬ذج ‪ NL d‬ا‪2U2‬ح ‪ Y‬ز‪8‬دة ا*`‪ N%‬ا ‪; 9‬ر‬ ‫‪ g K‬ا ‪2‬ارد و*" ‪ ;*8‬ا‪Z‬ض  ا ‪2‬ذج‪ .‬ه‪6‬ا ‪ c/#‬أ ا*   ا‪N`„ "#0‬‬ ‫‪ Top down design‬وا‪6‬ي ‪8‬أ *`‪ N%‬آ^ة و;ة ‪ T N8G8 Y‬ا*`‪ \ N%‬ا ‪، 9 T‬‬ ‫وا‪6‬ي  *‪ 5‬ه‪.‬‬ ‫=‪ 3‬درا* ‪2‬ف *‪:‬ق =;‪#$2 d‬ذج ا )‪ %‬وه‪  3‬ذج ‪)*+ "K‬ام ا‪:‬ق ا‪9U8‬‬ ‫)‪L#‬ت ‪L# ، 98H‬ت ‪2K ، 9;:‬ز‪8‬ت إ* ‪2 ، 9‬ارزت و ا‪ 9 2 a‬اˆ(‪.‬‬ ‫و‪2‬ف `‪f T‬ن ا ‪ 9H6‬ه‪ 9 # 3‬ء  ‪2‬ذج ر‪.3U8‬‬

‫‪ 74‬ا ‪ /%/‬و‪ 74‬ا‪ #$‬ذج ‪: Real World and Model World‬‬ ‫ا ا;;‪ 3‬ا‪6‬ي ‰ =‪H ; $‬ا ‪ "# 3* 8 N/P‬ا‪ S‬ن =‪ T‬ا ‪P‬آ‪ N‬ا;;‪N/P 9‬‬ ‫آ‪ N‬او *" ‪ 3@GH‬و‪6T‬ا ‪ fJ8‬ا‪ S‬ن ا" ا*;‪ R8‬وا* ‪P d‬ح ‪ 9D‬ه‪ 56‬ا ‪P‬آ‪3/ N‬‬ ‫‪8‬ول ‪ N^ K / 8 ، T‬ا ا;;‪ 9 U 9  N/P 3‬آ  =‪ 3‬ا‪ N/P‬ا*‪:3‬‬

‫‪10‬‬

Occam's razor

Real Worl

Model World

Interpreting and Testing Formulating model world problem

Model results

Model

Mathematical analysis

(‫م‬T‫س اوآ‬2 5‫ وود‬$=‫ا‬D‫ى أ‬2 K) d 3‫ ه‬N/! "# ‫ب‬6T8 ‫ أو‬3;;‫;ب ا ا‬8‫و‬ ‫ وƒ*;ل  ا‬3;;‫  ا‬d K‫ و‬R8;K 2‫ذج ه‬2 ‫ ا‬#‫ و‬، ‫ذج‬2 ‫ ا‬# N^ 8 ‫ي‬6‫وا‬ 3 # 3` = ‫ أ‬2‫ وه‬، Occam's Razor ‫ *)م س اوآ;م‬8 ‫ذج‬2 ‫ ا‬# "‫ إ‬3;;‫ا‬ 7‫ه‬D ‫أ‬8 ‫ إ‬F‫ ا‬324 ‫ور أو‬G‫ ا‬%1 %H‫ آ ا‬8I9&‫آ( إ‬A#‫ء )ا‬%>‫? ا‬%9 :‫ل‬2;8 KA‫ة ا‬84F ‫ أ او‬$# 3 ‫ا ا أ‬6‫ ه‬، ( 2A#‫ )ا‬J%A‫د ه"ا ا‬8 0 ‫ ا‬%H‫ا‬ ‫ ذج‬# 6 ‫ك أآ‬$‫ إذا آن ه‬: ‫ل‬2;8 ‫ي‬6‫ وا‬3 ‫ ا‬V‫ ا‬3= Parsimony Principle

‫ ه‬7I#‫ات وا‬%+#‫ ا‬6 ‫د‬84 F‫ ذج ا"ي ي ا‬#$P QR$‫  ا‬9 /0 SI 8T‫وا‬  2‫ي ه‬6‫ر وا‬2TP ‫ ا‬E = mc 2 *P8‫ن ا‬2L  ‫ا ا أ‬6‫" ه‬# ‫ أدل‬S‫ و‬.GP‫ ذج ا‬#$‫ا‬ ‫ و\ه‬mxɺɺ = F K2 9‫ن اآ‬2L ]6‫ وآ‬، ‫ق‬DA‫" ا‬# T ‫ وأه‬9U8‫ا ا‬2;‫ ا‬d ‫ا‬ .92 ‫ ا‬9 O‫ ا‬R‫ ا*آ‬9: ‫ ا‬9U8‫ا ا‬2;‫ ا‬ ‫ا‬2L‫‹ و‬% QU‫ و‬3= l/K  ^‫ ا ء وا‬j $ ‫م‬2;8  ‫ي ان‬O 9TH‫ و‬ 52:*‫  أ‬l%2 (^‫ او اآ‬9`%  Ti ) ‫ر‬2: ‫ة‬#  ‫ و;ة‬92: 9U8‫ر‬ ‫م‬#‫ و‬TP= ‫ا‬2:\‫ و‬g‫*ط ا‬A‫ ا  ا‬N‫ وا آ‬L ، TU2 \‫*ه *;ه و‬ ‫ه  ب‬6f8 j‫ وا‬9`/* ‫ا وا‹ ا‬2;‫ ا‬56‫ ه‬N^ 9;;‫ ا‬9/P  T *‫إ‬ ‫وط‬0‫ ا‬3= *‫ و‬S2; ‫ن‬2/8  $D*‫*; ان إ‬8 N 5\ N #  ‫ آ‬N 8‫( و‬9U2 ‫)ا‬

11

‫ا ‪ 9‬ون د‪S‬ت ر‪; 9U8‬ة و‪2K 982D‬ي ا‪  ^/‬ا *‪Z‬ات وا  \‬ ‫ا‪i‬ور‪ .98‬وآهن ‪ "#‬ذ] =‪ 3‬ا‪A‬ار ا *د ‪GK R2 9 L‬داد آ‪  N‬أ‪N;*  Z* `U‬‬ ‫إ" ا د‪2 "* 9‬آن ه‪6‬ا ا *‪f X 8S Z‬ي ‪ 9 9`%‬أو ‪ 9;:‬إ" ا *‪ Z‬ا* ‪N^ Q‬‬ ‫د‪U  9= N‬ط ا‪ ‰J‬و أ‪2D‬ال ا‪`D0‬ل   ‪ 5‬إ" ‪ c` 3= 9 15‬ا ‪) Q *J‬آ‪T N‬‬ ‫‪G8‬داد وه‪6‬ا ‪K 3:8‬ا ‪2L d‬ي و *‪ 3‬ز‪8‬دة =‪ . ( R2 3‬وه‪6/‬ا ى ا‪  ^/‬ا^ ‪GK‬د‬ ‫د‪  ^/ TKS‬ا*`‪ \ N%‬ا‪i‬ور‪ 98‬وه ‪2 3Kf8‬س أوآ‪T‬م‪ :‬إ* آ‪ N‬ا*`‪N%‬‬ ‫\ ا‪i‬ور‪H 98‬ا وا ;‪ 3‬ا ‪2‬ذج =‪ 3‬ا ‪ d‬ا!‪.$/‬‬ ‫‪ N82K 9 #‬ا ا;;‪ 3‬إ" ‪ #‬ا ‪2‬ذج ه‪ 3= 3‬ا;;‪ 9‬أه وأ‪2: R%‬ة =‪ 3‬ء ا ذج‬ ‫وا*‪2; 3‬م ‪ 8T*  T‬أ ‪2‬س اوآ‪T‬م =`‪ 9 # 3‬ء ا ‪2‬ذج  * آ‪ N‬ا*`‪\ N%‬‬ ‫ا ‪Z 8!*  $ T‬ض وا‪2U2‬ح او ا*‪2  8!*  T*J / 8S 3‬ارد ا *‪.9‬‬ ‫= ;‪ Q:‬ا ا;;‪ 3‬ا" ‪ / 8 J‬ا*‪ $ N‬آ  ‪2 Q:L 2‬س‪ .‬أ ‪2‬س اوآ‪T‬م أداة‬ ‫ ‪ 9‬و‪:‬ة ‪ ،‬إذا ا‪ X:*L‬ا‪+= ^/‬ن ا‪ N‬ا **‪  a‬ا ‪2‬ذج  ‪2/8‬ن ‪ $‬اي ‪9%‬‬ ‫  ‪ 9/P‬ا;;‪ 9‬وإذا ا‪ X:*L‬ا;‪+= N‬ن ا ‪2‬ذج ‪2  9 R‬ارد ا *‪2 .9‬ف ‪P‬ح‬ ‫ا‪ N/P‬ا   و‪2‬س اوآ‪T‬م  ^ل ا*‪:3‬‬ ‫; در‪ 3= X‬ا‪U8‬ت =‪2U2 3‬ع ا*`‪ NU‬وا*‪2U2 N/‬ع ا;‪6‬ا@‪ Projectiles l‬وا*‪3‬‬ ‫‪  Q*K‬ر ‪ ، ‚=/ Q:L‬ا‪;*!A‬ق ‪8‬أ ل ‪ g X Y NJK‬و!وط او‪ 9=  9‬وا ‪s 0 9#‬‬

‫و‬

‫‪ v0‬و‪ N/‬ا د‪9‬‬

‫‪ "# N K a (t ) = g‬ا‪A‬زا‪ 9‬آا‪G 9‬‬

‫‪2U "# . s (t ) = 12 gt 2 + v0t + s 0‬ء ا‪ N/P‬ا   و‪2‬س اوآ‪T‬م =‪+‬ن ا ‪ 3= 9/P‬ا‬ ‫ا;;‪2;K 3‬م *‪ # B‬آ‪ 9`86L 9‬أو ا!ء  ‪ 9Y‬آ‪ J 3‬او ! ‪9\  L ، $T‬‬ ‫ا ‪ 9/P‬ا;;‪ 9‬و;‪ T‬إ" ‪ #‬ا ‪2‬ذج  *) ‪2‬س اوآ‪T‬م ا‪6‬ي ا=*ض ان ا ا;;‪3‬‬ ‫ ‪ g:‬و ل ‪ NJK‬او ‪H‬ذ ‪ X Y 9‬و=‪ 3‬ا`اغ )‪#‬م و‪2H‬د \ف ‪2H‬ي( ‪# Q‬م و‪2H‬د اي‬ ‫‪2L‬ى ‪YB‬ة اى ‪  U ،‬ه‪ 56‬ا`وض او ه‪6‬ا ا =‪+‬ن  ‪2‬ذج ا ر‪‚=/ Q:L N/! "#‬‬ ‫ا‪ 9/PK /‬و‪ Y ، $‬ا* =‪ 3‬ا ‪ N‬وت ا آ‪6T ، ^ 9‬ة ا‪\0‬اض وا‬ ‫ا ‪2‬ذج  ‪H‬ا ‪ ،‬ا)‪ :‬ه ‪ 3= TO8‬ا`‪f 9U‬ن ا ‪2‬ذج ‪ f*8‬ان ‪ Q H‬ا;‪6‬ا@‪ T l‬آ‪9‬‬ ‫‪  Q*K‬ر ‪ 3= ‚=/ Q:L N/! "#‬ا ا;;‪ 3‬ذا ‪ 2‬ر ر‪ 9P8‬أو آة ‪D‬و‪(a2 a ) 9‬‬ ‫=‪ 3‬و‪2H‬د ر‪8‬ح؟‪ .‬ا‪ # T S i8‬ا;‪6‬ا@‪ l‬ان =‪ 9U‬ل ا*‪ NJ‬ا^ ‪ X‬وإام‬ ‫;و‪ 9‬ا‪2T‬اء \ ‪ 9%‬و‪ 3:K‬أ‪:‬ء ‪  N`K L‬ا وا‪ .9 8GT‬و‪Z /‬ض‬ ‫ا*;‪+= R8‬ن ر‪J 3‬رة أو ا!ء ‪28 3= 9;Y‬م =‪ $‬ا‪8‬ح ``‪+= 9‬ن  ‪2‬ذج ا ر ا;‪‚=/ Q:‬‬

‫‪12‬‬

‫‪H R‬ا‪  .‬ا ‪H T‬ا ا‪Y‬ء آ* * *;‪ N a@* #8‬ا ‪2‬ذج ان ‪ Qi‬ا`‪U‬ت ا*‪3‬‬ ‫ ‪ T# 3‬ا ‪2‬ذج =`‪^ 3‬ل ا;‪6‬ا@‪ l‬أ=*‪ U‬ان ا ا;;‪\ H28S g:  3‬ف ‪2H‬ي )أي‬ ‫=‪ 3‬ا`اغ( و‪H‬ذ ‪ 9* Y 9‬و‪2L H2KS‬ى اى‪ .‬ه‪ 56‬ا`‪U‬ت ه‪GH 3‬ء ‪ T‬و‪2‬ي ‬ ‫ا ‪2‬ذج = ‪  †)! 38‬ر‪ 9P8‬و‪2;8‬ل ] ‪ :‬ا‪2  !O‬ذ‪* = ، f: ]H‬د ‪!  : $#‬‬ ‫ا‪ 9P8‬آ‪  Q** X‬ر ‪ 2 ‚=/ Q:L N/! "#‬ر‪ 3= X‬ا`اغ ‪8 L .‬د ‪ ]#‬ان  ‪2‬ذ‪]H‬‬ ‫\ وا‪= 3= ‰S 0 3L‬اغ و‪2/‬ن رد ‪!„ : $#‬ء ا^;‪ 9‬وا*‪=  "K 3‬ت‬ ‫‪L‬ة =‪+‬ن ‪#YfK‬م و‪2H‬د =اغ ه‪ / 8 YfK 2‬إه ‪ $‬وه‪ $*^K 2‬ا*‪J‬رب ا  ‪.9‬‬ ‫ا`‪U‬ت وا‪*A‬رات  ‪2‬ذج ه‪  3‬اه ‪2:‬ط ا=ع ‪ U‬ا ‪ //P‬وا‪2  8L‬ذج‪.‬‬ ‫‪P‬وع‪ g8) :‬ا‪ N R:‬ه‪6‬ا ا ‪P‬وع ‪H T $0‬ا ‪*A‬ب ا دة(‬ ‫`*ض ا ‪2‬ف ;‪2‬م ‪P‬وع ‪2  9‬ز‪ N%2* 8‬ا‪  98  @ G‬ا" ا‪L‬ب ‪:‬ر‪.‬‬ ‫ا=*ض ان ا =‪  9‬ا ‪ 98‬وا ‪:‬ر ‪ 50‬آ‪ 5JKƒ *2‬ا‪2‬ا‪ 8 .‬ان  ‪9`/K R‬‬ ‫ا‪6T 8G‬ة ا)‪ R  3/ 9‬ا  ا ‪U;  R‬ة ا‪2 G‬ن‪ .‬إذا ا=*‪ XU‬ان ا رة ‪T‬‬ ‫*‪ d2‬إ*‪T‬ك ‪ 25‬آ‪2H/‬ن‪*#A 6 .‬ر  ‪:38‬‬ ‫ ار ا‪ 8G‬ا‪Z*K L 9‬‬‫ او‪L‬ت ا*‪2H2 Yf*K N%2‬د زم وري أو ‪$#‬‬‫ ‪ 9‬ا‪ ) 2J‬ا‪:‬ر‪\ ،‬ر‪ ،‬ر‪8‬ح ‪ 982L‬اˆ(‬‫ إ*ف ا =ت دا‪ N‬ا ‪) 98‬إذا آن ا ‪:‬ر ^ =‪ ! 3‬ل ا ‪+= 98‬ن ا‪ 3= @ G‬ا‪2J‬ب‬‫‪Z* K‬ق ر*‪ 9=  T‬ا‪2D‬ل(‬ ‫ و‪2H‬د ‪/‬ن =رغ ‪GA‬ال ا‪2 G‬ن ‪ #‬ا‪2%2‬ل  ‪:‬ر ام ا‪O*A‬ر `اغ ‪/‬ن‬‫ *‪ Q:‬إ‪J8‬د إ‪*#‬رات اى آ^ة و‪ /‬ذا ‪2 #‬س اوآ‪T‬م؟ ه‪ N‬آ‪ N‬ا*`‪ N%‬ا  ;‪9‬‬ ‫‪9 T‬؟ ذا ‪ T 6f‬واي ‪Q:*; T‬؟ ‪Z‬ض ا ‪2:‬ب و‪  U‬ا ‪2‬ارد ا *‪9‬؟‬

‫‪13‬‬

‫م‬O‫ ا‬9‫ وآ‬3O‫ ا‬/`*‫ا‬ Cause Yf*‫ وا‬R ‫ ا‬9L# "# ‫م‬2;8 ‫ ا*;ي‬5JKA‫ ا‬R  3;;‫ ا ا‬N‫آ‬P Q N*‫ا‬ .j‫ ا‬Ti # ‫ل‬G N/P 9/P ‫اء ا‬GH‫ أ‬6f8‫ و‬9: ‫ ا‬and Effect "‫ إ‬9/P ‫ ا‬Qّ:;8S System Approach/ Thinking 3O‫ ا‬/`*‫ أو ا‬3O‫ ا‬5JKA‫ا‬  S 3*‫ *دة وا‬d ‫ روا‬H2K ‫م إذ‬O‫ ا‬T= 3*‫ ا‬9‫ ا‬8* N/‫ آ‬T O8 N 9G ‫اء‬GH‫أ‬ T JK ‫دة‬#‫ إ‬Y ‫" ة‬# ‫ء‬GH N‫ إ" آ‬O ‫  ان‬S T=P/*‫*ر وإ‬#A‫ ا‬3= ‫ه‬6‫ ا‬ ‫م  ل‬O ‫=ت‬K‫ و‬R‫اآ‬K T=‫ ا*ف و‬9‫" و‬# G‫آ‬8 3O‫ ا‬/`*= .;S 9‫و‬0‫ ا‬R‫ ا*اآ‬56‫" ه‬# ‫م‬O‫ف ا‬K # ‫ات‬B*‫" ا‬K Y ‫ و‬9‫ أو‬R‫اآ‬K ‫إ*)ام‬ 9‫ ا*آ‬$%‫ا‬2 9  ‫م‬O‫ ا" ا‬O *K ‫م‬O‫ ا‬9‫ آ  ان آ‬.T# ‫ا *ف‬ ‫اء‬H+ g 8 ‫ا‬6‫ وه‬9‫ ارا‬XK ‫م‬O‫ف ا‬P/*A ‫ ء  ذج‬R:*K "*‫ وا‬G‫ ا‬Q ‫ة‬Z* ‫ا‬ ‫ او‬/`*‫" ا*;  ا‬# # K ‫ وره‬3*‫م وا‬O‫ ا‬9H6  9  ;* ‫إ*رات‬ R  ‫*ف‬KS T*: 9 O0‫د إ" ان ا‬28 3O‫ ا‬5JKA‫ ا‬3K 3= R ‫ ا‬.3O‫ ا‬5JKA‫ا‬ 9H6 ‫ ا‬.‫ ه ا ا‬g8S ‫ ا*;ي‬5JKA‫ن ا‬+= ‫ا‬6T‫ و‬$T8 = ‫*ف‬K L N 3T8‫ ا‬/`K /`*‫ ا‬3= ‫ت‬8‫ور‬i‫ ا ا‬3‫ ه‬Modeling or System dynamics ‫م‬O‫ ا‬9‫أو آ‬ .‫ل‬2‫ت وا‬U`‫*;  ا‬K T0 3O‫ا‬

: %&&‫ ا‬V ‫ر‬I0 : System ‫م‬W$‫ا‬ .j‫ ا‬Ti "#  *K‫ و‬N#`*K ‫!ء‬0‫  ا‬9#2 J : Entity 6R‫آ‬ .‫ إه* م ص‬$=  ‫م‬O‫ ا‬3= ‚! 2‫وه‬ : Attribute H .@/ 9`% ‫ او‬9% 2‫وه‬ : Activity ‫ط‬A .‫م‬O‫ ا‬9 3= ZK R K 9 # ‫أي‬ : State of the System or State Variables  ‫ات ا‬%+ ‫م او‬W$‫ ا‬T ‫ر‬2:K ‫رس‬8‫ و‬.9 9O # ‫م‬O‫ ا‬3= 9:P0‫ وا‬TK`%‫@ت و‬/‫ ا‬N‫ آ‬lK ‫ات‬Z* 3‫وه‬ .$* 3= ‫ات‬Z*‫ ا‬Q** ‫م‬O‫ا‬

14

‫ ل‪:‬‬ ‫* ‪ .T:L Q J* 9#i a*8 Q‬ا‪ @GJ‬ا‪ 3= 0‬ه‪6‬ا ا‪O‬م ه  ‪  L‬ا*‪Q‬‬ ‫وا‪6‬ي ‪ Q8‬ا;‪ Q:‬و‪  L‬ا*‪ Q J‬وا‪6‬ي ‪ Q J8‬ه‪ 56‬ا;‪*A Q:‬ج ا‪ .9#i‬هك ا‪ L i8‬‬ ‫ا ‪8*P‬ت وا‪6‬ي ‪ B8‬ا ‪2‬اد ا)‪ 9‬و‪  L‬ا‪ P‬ا‪6‬ي ‪ GTJ8‬ا‪ P 9#i‬و‪  L‬ا‪9L‬‬ ‫ا‪*A‬ج وا‪6‬ي ‪ N;* 8‬ا‪:‬ت ‪ 3#‬ا‪ 9#i‬و‪  ;8‬ا ‪ 9; 3# N‬ا‪ L0‬م‪.‬‬ ‫=‪ 3‬ه‪6‬ا ا‪O‬م‪:‬‬ ‫ا‪@/‬ت ه‪ :3‬ا‪ LS‬م‪ ،‬ا‪:‬ت‪ ،‬ا‪GH0‬اء‪ ،‬ا‪ Q@i‬اˆ‬ ‫ا‪DP‬ت ه‪ 9 # :3‬ا*‪ 3= Q‬ا‪ L0‬م‬ ‫ا`ت ه‪ :3‬ا‪2 ،RD N/ 9 /‬ع ا;‪# ،9:‬د ا ‪ 3= @/‬آ‪  L N‬اˆ‬ ‫وا‪8Z‬ول ا ‪ SI‬ا ‪ $%I #W 2‬و‪:;0  YI‬‬ ‫ا‪O‬م‬

‫آ@ت‬

‫‪`%‬ت‬

‫ا‪9:P‬‬

‫ور‬

‫رات‬

‫‪9=  ،9#‬‬

‫‪2‬ا‪9L‬‬

‫ ]‬

‫ز @‬

‫دا@‪ ،‬ر‪ L‬ا ب‬

‫‪R‬‬

‫إ‪SK‬ت‬

‫‪ /‬ت‪ ،‬ر@‪N‬‬

‫‪2D‬ل ا ‪ 9TH ،9 /‬إرل‪N%2K ،‬‬

‫‪2‬ق آ‪G‬ي‬

‫ز @‬

‫;‪،‬‬

‫‪RD‬‬

‫‪L‬ض‬ ‫ا‪KA‬ل‬ ‫‪ 9 @L‬ا* ‪82‬‬

‫د=‪ 9 L Q‬ا ‪8*P‬ت‬

‫وه‪6‬ا ا‪J‬ول ‪  3:8S‬آ‪ Q J N‬ا‪@/‬ت وا`ت وا‪ 56T 9:P0‬ا‪0 9 O0‬ن ذ]‬ ‫‪ 9= R:*8‬ا‪0‬هاف ا*‪  3‬ا‪ TH‬رس ا‪O‬م‪ .‬وإ‪ *#‬دا ‪ 3#‬ا‪0‬هاف ا ‪/ 8 9 2:‬‬ ‫‪ 8K‬و‪ l%‬أدق ‪O‬م و‪.9K2/‬‬ ‫‪ V I0‬ا‪ #$‬ذج ‪ 6‬و!; ‪ W‬ا‪ %‬ا‪: W$‬‬ ‫ ان ‪ L:K‬إ" ‪2  3@ l8K‬ذج ‪ "#‬ا‪\ ;* 9;; N^ K 9‬ض  و ر‪9H‬‬ ‫و‪2U‬ح ‪2U XK 9‬ا ‪ d‬ا ‪2‬ارد ا *‪ .9‬و‪8‬ف  ‪ 9TH‬ا*`‪ /‬ا‪System 3O‬‬ ‫‪ "# Thinking‬ا‪O 8JK $‬م ‪2/*8‬ن  ‪2  Q JK‬ت ‪2‬ل ا‪O‬م ‪Z‬ض درا*‪.$‬‬ ‫و‪2‬ف  *`‪ 3= j‬ه‪6‬ا ‪.;S‬‬

‫‪15‬‬

:‫م‬W$‫[ ا‬% ‫ات‬Z*‫ ا‬56‫ ه‬N^ $2  d ‫ ا‬3# YB8 $‫ آ  ا‬$H‫ث ر‬K 3*‫ات ا‬Z* ‫م‬O‫ ا‬Yf*8 ‫ا‬6‫ وه‬$* ‫م و‬O‫ اود  ا‬G  ‫م ان‬O‫ ا‬9H6  # ‫ا‬H T ‫ =  ا‬.‫م‬O‫ ا‬9 3# YBK .‫م‬O‫ا ا‬6‫ ه‬9‫هاف  وراء درا‬0‫ ا‬9= ‫*د‬8 ‫ا‬6T‫م و‬O‫ ا‬YfK ‫* رج‬K ‫ت‬J* ‫ ا‬3# ‫ت‬: /*K 3*‫ ا‬N‫ا‬2‫ ا‬Q ‫ ^ل ا‬3`= ‫*ر إذ ان‬#0 ]‫ ذ‬6‫ ا‬RJ= R:‫ ا‬3# YfK ‫ إذا آن ض‬/‫م و‬O‫ ا‬9  ‫ء‬GH 3T= .‫م‬O‫ ا‬9:P‫ط  ا‬P 9L‫ة ا‬6‫* ه‬K‫ت و‬:‫ل ا‬2%‫ وو‬Q ‫ت ا‬H)  9L# ‫هك‬ :Endogenous Activities %2\‫ا‬8‫ ا‬SA‫ا‬ .‫م‬O‫ ا‬N‫ دا‬9:P0‫ ا‬lK‫و‬ :Exogenous Activities %!‫ ار‬SA‫ا‬ 9H‫ ر‬9:Pf Yf*8S ‫ي‬6‫م ا‬O‫ ا‬.‫م‬O‫ا ا‬6‫ ه‬3# YBK 3*‫م وا‬O‫ ا‬9 3= 9:P0‫ ا‬lK‫و‬ .‫ح‬2*` ‫م‬O $f l%28 ‫ي‬6‫ وا‬9H‫ ا)ر‬9:P0 Yf*8 ‫ي‬6‫م ا‬O‫ ا‬c/ Z ‫م‬O 3 8 :Deterministic Activities ‫دة‬8 #‫ ا‬SA‫ا‬ .TK  ‫م‬K N/P TJ@* 8K / 8 3*‫ ا‬3‫وه‬ : Stochastic Activities %R‫ ا‬AI‫ ا‬SA‫ا‬ 3 *‫ إ‬Q8‫ز‬2* l%2K ‫ت *دة‬/‫ إ‬TJ@* ‫ن‬2/K‫ و‬3@‫ا‬2P# N/P ‫ه‬YfK Z*8 3*‫ ا‬3‫وه‬ 9& ‫ل‬:#‫  إ‬G‫ آ  ان ا‬3 *‫ إ‬Q8‫ز‬2* l%28 Q J* 9& $LZ* K ‫ي‬6‫ ا‬XL2‫= ^ ا‬ .3@‫ا‬2P# N/P Z*8 :Continuous Systems ]2#‫ ا‬#W‫ا‬ ‫ي‬2H ‫  ر‬3= ‫@ة‬D 9‫ آ‬5JK‫ و *  = ^ إ‬N* N/P ‫م‬O‫ ا‬9 T= Z*K 3*‫ ا‬3‫وه‬ .5JKA‫ ا‬g* Smooth # N/P ‫ث‬K 3b‫ر ا‬:‫ ا‬/K XK :Discrete Systems 2$#‫ ا‬#W‫ا‬ N/P ‫ث‬8 Q‫ ا‬3= 9#i ‫ = ^ إآ ل‬G‫ ا‬Q Q:;* N/P ‫م‬O‫ ا‬9 T= Z*K 3*‫وا‬ .ˆ‫ ا‬Q:;* N/P ‫ث‬8 Q@i‫ ا‬3# RD ‫ل‬2%‫ و‬،Q:;* :System Modeling ‫م‬W$‫"! ا‬# ‫اء‬H‫ض إ‬Z ‫م‬O‫ا ا‬6‫ ه‬l%2 Model ‫ذج‬2  3 ‫ن او‬2/ ‫ ان‬RJ8  ‫م‬O 9‫را‬ 3* ]‫م !ة وذ‬O‫ ا‬3# T@‫ا‬H‫ إ‬/ 8S ‫ت‬U‫ وإ=*ا‬9‫ أ‬3# 9 Hƒ ‫رب‬J*‫ا‬ $%‫ا‬2) $‫م و=;ا‬O‫ ا‬ZK 3‫دي ا‬B8 $ # 3= ‫ك‬K‫ث إر‬8‫ و‬3%0‫م ا‬O‫ب ا‬:i8S 16

‫ا‪ 9%0‬آ  ان درا‪ 9‬ا ‪2‬ذج ‪  S‬ا‪O‬م ‪# R8JK  / K‬ة ‪2‬ارات ‪2‬ل ا‪O‬م وذ]‬ ‫ ‪#+‬دة ا ‪2‬ذج ا‪ 3‬ا‪ 9‬ا‪ # 9%0‬إ‪H‬اء آ‪2 N‬ار ‪ c/‬ا‪O‬م ا‪ 3%0‬ا‪6‬ي إذا ‪ZK‬‬ ‫‪ / 8S‬إ‪#‬د‪ 9K‬ة اى *‪ 9‬ا‪ ^ = 9%0‬را‪O 9‬م إ‪*L‬دي *‪ Z‬ت اض‬ ‫وا‪B8 L R:‬دي ا‪ .T /# / 8S a@* 3‬آ  أن ا ‪2‬ذج ‪ / 8‬ان ‪8‬رس =‪ 3‬أز‪ 9‬إ=*ا‪9U‬‬ ‫= ^ ‪ / 8‬إ‪H‬اء آة ‪O‬م ‪)*+‬ام ا ‪2‬ذج و=‪=K j 9‬ت ا‪O‬م `*ات ‪#‬ة‬ ‫ا!‪ T‬او  =‪ 3‬د‪ .9L @L‬وآ‪ 8D # / 8 ]6‬ا ‪2‬ذج درا‪ 9‬ا‪O‬م ‪ NL‬إ‪ $@P‬وو‪2H‬د‪5‬‬ ‫ا‪ 8 ^ = %‬ء ‪ Q‬و‪# 8‬ة رات ء =*‪ 8‬اي ر ا=‪2/ Ni‬ن  ‪2‬ذج ‪N/‬‬ ‫ر وآ‪K 3‬ف ا ‪ XK Q‬ه‪ 56‬ا)رات‪.‬‬ ‫أ اع ا‪#$‬ذج‪:‬‬ ‫‪ ) %R _%P‬د ( ‪:Physical Models‬‬ ‫وه‪ 3‬ا*‪2 3K 3‬اد  ‪ N^ 9‬ء  ‪2‬ذج ‪@:‬ة =‪ 9 3‬ا*  وذ] ‪*A‬ر ه‪T/‬‬ ‫‪‘ XK‬وف ‪.9‬‬ ‫ر )‪ %2%2 0 ) %‬او ‪:Mathematical Models ( 8 Z0‬‬ ‫وا*‪)*  3‬م @‪L# T‬ت ر‪2K ) 9U8‬ز‪8‬ت إ* ‪ ،9‬دوال‪H ،‬اول‪ ،‬ر‪2‬ت اˆ(‬ ‫هك ا‪  lK i8‬ذج ا‪J‬ة ‪ Static Models‬وا*‪ Q T* Z*KS 3‬ا‪ G‬وا ذج‬ ‫اآ‪ 9‬أو ا‪ Dynamic Models 9/8‬وا*‪ Q T* Z*K 3‬ا‪.G‬‬ ‫وآ ^ل ‪ 3#‬ا ذج ا`‪ 9@8G‬ا‪J‬ة  ‪2‬ذج ء ا ‪ J‬اام‪2  ،‬ذج `‪ 9‬او ‪@D‬ة =‪3‬‬ ‫=‪6‬ة ‪ 3 R*/‬اˆ وآ ^ل  ‪2‬ذج =‪ 3@8G‬آ‪  3‬ذج &‪ 9‬ا‪*A‬اق اا‪ 3= 3‬ور!‪9‬‬ ‫آ‪ 9‬ا‪ 9T‬وآ^  ا ذج ا`‪ 9@8G‬اآ‪  L N 3= 9‬ا`‪8G‬ء ‪ 9/‬ا‪2‬م‪.‬‬ ‫‪ :8 K‬أذآ أ^‪ j 9‬ا ذج ا‪ 9U8‬ا‪J‬ة وآ‪ ]6‬اآ‪ ).9‬أ‪8‬ذ‪ :‬ا‪2O‬اه ا*‪3‬‬ ‫‪ l%2K‬د‪S‬ت ‪ 9U`K‬أو =و‪2/K 9L‬ن آ‪(9‬‬ ‫‪2‬ف رس ‪ 9;K‬ء ا ذج ‪S 8D #‬ت درا‪3= 9`*) 9 O0 Case Study 9‬‬ ‫‪SJ‬ت ا‪ #0‬ل وا‪*LA‬د وا‪ 9‬وا`‪8G‬ء وا‪ R:‬وا ‪ Q *J‬اˆ‬

‫‪17‬‬

‫‪ N^ K‬ا‪O‬م =‪ 3‬ا*`‪ /‬ا‪ 3O‬وآ‪ 9‬ا‪O‬م‪:‬‬ ‫‪K‬ر‪ l8‬أ‪:9‬‬ ‫ا‪#‬ع ‪: Stock‬‬ ‫أي !‚ ‪ Q Z*8‬ا‪) G‬د‪* ،3/8‬ك( ‪G8‬داد و‪ †;8‬و‪ " 8‬ا‪2*  i8‬ى ‪ Level‬او‬ ‫*‪ ، State Variable 9 Z‬ا *ع ‪ R#2* 8‬ا‪!0‬ء `*ة ز‪ 9‬وه‪ 56‬ا‪!0‬ء ا *‪9#2‬‬ ‫‪ TOKS‬أو ‪ O 3`*)K‬إذ ا‪iK T‬ف أو ‪ (N;K) R K‬ل =*ة ز‪.9‬‬ ‫أ^‪ :9‬آ ‪ 9‬ا ‪G 3= 5‬ان‪# ،‬د ا‪ T0‬ا*‪ ، ^*  T/* 8 3‬ا‪ 9L:‬ا )‪: 3= 9G‬ر‪# ،98‬د‬ ‫ا‪@/‬ت =‪ ،Q *J 3‬آ ‪ 9‬ا;‪2‬د =‪  3‬ب ‪ ،3/‬ا)‪2‬ف‪ ،‬ا‪ ،RiZ‬ا‪/‬اه‪ ،9‬ا‪*A‬ب‪ ،‬أˆ‬ ‫ا‪%‬ب ‪: Flow‬‬ ‫ه‪ 2‬ل ‪ 9  Z8 Rate‬ا *ع‪ 8Gُ8 2T= ،‬أو ‪  †ِ;ُ8‬ا *ع‪ .‬ا‪ A‬ب ا‪6‬ي ‪ 8G8‬ا *ع‬ ‫‪ " 8‬أ‪ A‬ب اا‪ N‬أو ا ر ‪ ،Source‬وا‪6‬ي ‪ †;8‬ا *ع ‪ " 8‬أ‪ A‬ب ا)رج أو‬ ‫ا‪2Z‬ر ‪. Sink‬‬ ‫أ^‪ :9‬آ ‪ 9‬ا ‪ 5‬ا ‪G) 986Z‬ان )إ ب دا‪ N‬أو ر( او ا ‪) $ 9 2‬إ ب رج أو‬ ‫\‪2‬ر(‪# ،‬د ا‪ T0‬ا ‪*P‬اة )إ ب دا‪ N‬أو ر( أو ا ‪) 9#‬إ ب رج أو \‪2‬ر(‪،‬‬ ‫ا‪:‬ر‪8‬ت ا‪ T 9=J‬أ ب رج =;‪ d‬وه‪ 3‬ا‪ 9L:‬ا‪ 9@ T/‬ا *)‪# ،9‬د ا‪@/‬ت =‪3‬‬ ‫‪S2 8GK Q *J‬دة )إ ب دا‪ N‬أو ر( و‪ N;K‬أو ‪2  †;K‬ت )إ ب رج أو \‪2‬ر(‪،‬‬ ‫آ ‪ 9‬ا;‪2‬د =‪  3‬ب ‪GK 3/‬داد ‪A‬در )إ ب دا‪ N‬أو ر( و‪ †;K‬ف )إ ب‬ ‫رج أو \‪2‬ر(‪ ،‬ا)‪2‬ف ‪G8‬داد م ا‪2P‬ر ‪0‬ن )إ ب دا‪ N‬أو ر( و‪†;8‬‬ ‫ ‪) 9 :‬إ ب رج أو \‪2‬ر(‪ ،‬ا‪G8 RiZ‬داد *ش )إ ب دا‪ N‬أو ر( و‪N;8‬‬ ‫ *‪ N‬ا‪) R:‬إ ب رج أو \‪2‬ر(‪ ،‬ا‪/‬اه‪) 9‬إ ب دا‪ N‬أو ر( ‪GK‬داد *=‪c‬‬ ‫و‪* N;K‬ون )إ ب رج أو \‪2‬ر(‪ ،‬ا‪*A‬ب ‪DA 8G8‬ع )إ ب دا‪ N‬أو ر(‬ ‫و‪A N;8‬ه ل )إ ب رج أو \‪2‬ر(‪ ،‬اˆ‪ / 8 .‬ان ‪ O‬ا" ا‪ A‬ب ‪ "#‬ا‪ "N=" $‬إذ ا‪$‬‬ ‫‪2;8‬م `‪ N‬او ‪ 3= N #‬ا ‪2‬ذج ‪" "#‬أ ء" )ا *ع(‬ ‫ا‪` #‬ت ‪ Converters‬أو ا‪%+#‬ات ا‪84#‬ة ‪: Auxiliary Variables‬‬ ‫‪2K‬ى أر‪L‬م‪2;K ،‬م  ت   ‪ 9‬أو‪ 98H‬أو ‪ 9;:‬و‪ *K‬ا *‪3= Controllers 9 /‬‬ ‫ا ‪2‬ذج‪.‬‬

‫‪18‬‬

،9H‫ ا‬# @‫ا‬G‫ ا‬N‫ ا‬،‫ب‬A‫ ا‬،TJ‫ ا‬،T ‫  ا‬،5 ‫ان ا‬G 3= 9=‫ا‬2:‫ ا‬:9^‫أ‬ O8‫ اˆ و‬،‫ع‬DA‫ت ا‬# ‫د‬# ،c=*‫ ا‬9#2 ،‫ ا*ش‬9#2 ،9G ‫ا*ض „ر ا‬ adverb ‫ آل او ‘ف‬$‫ا‬ : Information Link ‫ ت‬2I#‫ ا‬S‫ أو را‬Connectors ‫ت‬aH #‫ا‬ ‫ أن  ان‬T ‫  ا‬،‫ذج‬2 ‫ ا‬3= & "‫ء إ‬GH  ‫ت‬2 ‫ ا‬d K ‫ أو‬N K 3*‫ ا‬3‫وه‬ 9 ;= d;= ‫ت‬2 N;K 3‫ ه‬N (‫د‬2;‫ او ا‬9L:‫ او ا‬5 ‫ ا‬N^) 98‫ آ ت د‬N;KS ‫ت‬%2 ‫ا‬ .& ‫ء‬GJ N;*K ‫ذج‬2 ‫ء  ا‬GH ‫د‬# 3# YB8 T ‫  ا‬،‫ ا" ا م‬5 ‫`ع ا‬K‫ ى إر‬N;8 ‫ان‬G)‫ ا‬3= 9=‫ا‬2:‫ ذراع ا‬:9^‫أ‬ 9 ‫ آ‬،‫ب‬JA‫ ا‬3# ‫ث ا;درات‬A‫د ا‬# ،‫ز‬TH NZP* TJ‫ ا‬9 ‫ آ‬،T@‫ !ا‬/ 8 3*‫ ا‬T0‫ا‬ .ˆ‫ ا‬،‫ل =*ة ا*ش‬2D ،9G ‫] „ر ا‬UK ‫ ;ار‬،9H‫ ا‬# @‫ا‬G‫ ا‬N‫ا‬ :‫م آ‬W$‫ ا‬%‫آ‬T‫  و‬W$‫ ا‬% ‫م‬W$‫ ا‬# ‫و‬

Stock Source/Sink Flow

Information Link

AuxiliaryVariable

19

:‫ا ا‬ Differential Equations %2)‫د`ت ا‬I#‫ا‬ Z*  9‫*;ت ا‬P  ‫ن وده‬2/*K 98H ‫ت‬S‫ د‬# ‫رة‬# 3‫ ه‬9U`*‫ت ا‬S‫ا د‬ x = f ( t ) Z*  9U`K ‫ت‬S‫ د‬3*‫ن ا‬+= x = f ( t ) ‫ آن‬2 ^ = NU`* 9 L ‫ي‬H dx + tx + 3 = 0 dt d 2x dx + 5 − 14 x − 10 = 0 2 dt dt 3 2 d x d x dx − − +x+2=0 dt 3 dt 2 dt

"‫ق إ‬:* ‫ف‬2‫ و‬Linearity T*:‫ و‬Degree T*H‫ ر‬9U`*‫ت ا‬S‫ ا د‬G *K‫و‬ ‫ق‬D ‫ ة‬9U`*‫ت ا‬S‫ ا د‬NK‫ و‬.9:)‫ وا‬9^‫و" وا‬0‫ت ا‬H‫ت  ار‬S‫ا د‬ .‫ا ا ;ر‬6‫ى ه‬2*  R8  T ‫ *ض‬

: %S‫ ا‬3‫ر! او‬8‫ ا‬6 %2)‫د`ت ا‬I#‫ ا‬:`‫او‬ N/P‫" ا‬# 3‫وه‬ f (t, x)

dx + h (t, x ) = 0 dt

. x ‫ و‬t 3= 9: ‫ دوال‬h ( t , x ) ‫ و‬f ( t , x ) V :N` 9 L ‫ات‬Z* ‫ي‬2K ‫ت‬S‫ د‬N N/P‫ ا‬TU‫ و‬/ 8 h ( t , x ) ‫ و‬f ( t , x )  N‫ آ‬X‫إذا آ‬ f (t, x ) = p (t ) q ( x )

h (t, x ) = r (t ) s ( x )

2‫ ه‬9U`*‫ ا‬9‫ ا د‬N/! ‫ن‬2/8 ‫أي‬ p (t ) q ( x )

dx + r (t ) s ( x ) = 0 dt

‫ل‬J ‫ ا‬3= t L Q J p ( t ) ≠ 0 ‫" و‬: ‫ل ا‬J ‫ ا‬3= x L Q J s ( x ) ≠ 0 ‫" !ط ان‬#‫و‬ 3*‫ات آ‬Z* ‫ ا‬N= Q:*  s ( x ) p ( t ) ≠ 0 "# 9‫ ا د‬3=D 9 ; ،": ‫ا‬ q ( x) r (t ) dx + dt = 0 s ( x) p (t )

! ‫ ا‬N/* N‫" ا‬# N‫و‬ 20

q ( x)

r (t )

∫ s ( x ) dx + ∫ p ( t ) dt = C .9‫و‬0‫وط ا‬P‫" ا‬#  *8 ‫ إ*ري‬X Y C V :‫ ل‬ 9*‫ ا‬9U`*‫ ا‬9‫ ا د‬N dx 1 − x − =0 dt 1 + t

: ‫ا‬ "# N= x ≠ 1 ‫" !ط أن‬# 1 − x "# 9‫ ا د‬3=D  ; 1 dx 1 − = 0, x ≠ 1 1 − x dt 1 + t

J ‫ اود‬RKK‫ و‬dt NU`*‫ ا‬3= =:‫ب ا‬i dx dt = , x ≠1 1− x 1+ t

‫ف‬D N/ N/*‫ ا‬6‫ أ‬/ 8‫ و‬j‫ ا‬Ti # 92` X%‫ن ا‬b‫ات ا‬Z* ‫ا‬ dx

dt

∫ 1 − x + ℓn C = ∫ 1 + t ,

x ≠1

‫أو‬ − ℓn 1 − x + ℓ n C = ℓn 1 + t , x ≠ 1

‫أي‬

(1 − x )(1 + t ) = C , x ≠ 1 t N;* ‫ ا‬Z* ‫ ا‬9S x Q *‫ا‬Z*  N‫و‬ x = 1±

C , x ≠1 1+ t

:\b ‫ ل‬ 9*‫ ا‬9U`*‫ ا‬9‫ ا د‬N t

dy − ( x − t ) = 0, y ≠ 0 dt

21

9‫;ل أن اا‬8 ) "‫و‬0‫ ا‬9H‫  ار‬9 J* ‫ دوال‬3‫ ه‬f ( t , x ) = t , h ( t , x ) = x − t ‫اوال‬ 9;;‫ ا‬56‫ ( وه‬g ( kx, ky ) = k n g ( x, y ) 9L‫ ا‬X;; ‫ إذا‬n 9H‫  ار‬9 J* g ( x, y ) :3*‫ آ‬N‫ ا‬3= # K J ‫ت‬U`K N/! "# 9‫ ا د‬QU‫ وو‬x = st j82* t ( s − 1) dt − t ( s dt + t ds ) = 0, t ≠ 0

J N/*‫ وا‬t Z*  9  ‫ اود‬RK*

∫ ds = − ∫

dt + C, t ≠ 0 t

‫أي‬ s = C − ℓn t , t ≠ 0

x Z* ‫ ا‬9S ‫أو‬ x = t ( C − ℓn t ) , t ≠ 0

:"‫و‬0‫ ا‬9H‫  ار‬9:)‫ ا‬9‫ا د‬ ‫ ام‬N/P‫ ا‬T‫و‬ dx + P (t ) x = Q (t ) dt

9L ":8 N‫ا‬ − P ( t ) dt − P ( t ) dt ∫ P(t ) dt +e ∫ x = Ce ∫ ∫ Q ( t )e dt

‫ وا‬xCF $ G8‫ و‬Complementary Function 9 / ‫ ا‬9‫ " اا‬8 ‫ول‬0‫ ا ا‬V N/P‫" ا‬# ‫ن‬2/8 N‫ أي ا‬xPS $ G8‫ و‬Particular Solution ‫ ا)ص‬N‫ ا‬3^‫ا‬ . x = xCF + xPS :‫ ل‬ 9U`*‫ ا‬9‫ ا د‬N dx + tx = t dt

22

N‫ وا‬xCF = Ce − ‫ن‬2/8‫ و‬xPS = e −

1 t2 2

1 t2 2

− P ( t ) dt T‫ أ‬J= P ( t ) = t 6f ]‫ وذ‬xCF = Ce ∫ 9 / ‫ ا‬9‫ اا‬H2

∫ te

1t2 2

− P ( t ) dt ∫ P( t )dt dt = 1 J= Q ( t ) = t V xPS = e ∫ ∫ Q ( t )e dt ‫ا)ص‬

General Solution ‫ ام‬N‫ا‬ x = Ce

− 12 t 2

+1

‫*ري *ج إ" !وط‬A‫ ا‬X ^‫د ا‬J8A . C ‫ إ*ري وا‬X Y ‫ي‬28 ‫ ام‬N‫ ان ا‬S 0 = C + 1 ⇒ C = −1 J j82*= t = 0 # x = 0 /* Initial Values (IV) 9‫أو‬

. x = 1 − e−

1 t2 2

9‫و‬0‫وط ا‬P‫ ا‬XK ‫ ام‬N‫ن ا‬2/8‫و‬ :‫ ل‬ 9U`*‫ ا‬9‫ ام  د‬N‫ ا‬H‫أو‬

d 2 x 1 dx − = te 2t dt 2 t dt

J y =

dx QU2 /‫ و‬9^‫ ا‬9H‫و  ار‬K 9‫ا د‬ dt

dy 1 − y = te 2t dt t

.R: 8 *‫ آ‬T ‫*ك‬8 . y 3= "‫و‬0‫ ا‬9H‫  ار‬3‫وه‬

Higher Order Differential :%2I‫ر!ت ا‬8‫ ا‬6 %2)‫د`ت ا‬I#‫ا‬ Equations Linear Equations with Constant c ‫ت‬a I# %S‫د`ت ا‬I#‫ ا‬:`‫أو‬ Homogeneous Case Z#‫ ا  ا‬Coefficients N/P‫" ا‬# 3‫وه‬ dnx d n −1 x + a + ⋯ + an x = f ( t ) 1 dt n dt n −1

‫م‬# N/P ‫ و‬ɺɺx =

d 2x dx ‫ و‬xɺ = 2‫ ه‬9‫ ا د‬N/! d * ‫ ص‬GK ‫ف  *)م‬2 2 dt dt

N/P‫" ا‬# 9;  ‫ ا‬9‫ ا د‬g*= x( n ) = x( n ) + a1 x ( n −1) + ⋯ + an x = f ( t )

23

dnx dt n

‫ن‬2/K \) X ‫ا‬2Y a1 , a2 ,..., an V ،9* Y 9: ‫ ت‬9U`K ‫ت‬S‫ " د‬K‫و‬ ‫ أي‬f ( t ) = 0 T= ‫ن‬2/8 3*‫ت وا‬S‫ ا د‬56T cJ* ‫ ا‬N/P‫ ا‬S‫ف رس او‬2 .(9;; N/P‫" ا‬# ‫ت‬S‫ا د‬ x( n) + a1 x ( n −1) + ⋯ + an x = 0

3= j82* ، C ‫ إ*ري‬X ^‫ و‬eλt ≠ 0 V x = Ceλt N‫ب ا‬J ‫ت‬S‫ ا د‬56‫ ه‬N a*8 9;  ‫ ا‬9‫ا د‬



n

+ a1λ n −1 + ⋯ + an ) eλt = 0

.Characteristic Polynomial ‫ة‬G ‫ " آ^ة اود ا‬K P ( λ ) ≡ λ n + a1λ n −1 + ⋯ + an 9‫ا د‬

(‫`ر‬%‫أ‬

‫أو‬

‫ور‬6H

‫)أو‬

‫ل‬2

3‫ه‬

T

‫ح‬2 ‫ا‬

λ

L

Auxiliary Equation ‫ة‬# ‫ ا‬9‫ " ا د‬K 3*‫ وا‬P ( λ ) ≡ λ n + a1λ n−1 + ⋯ + an = 0 ‫ور‬6J‫  ا‬n T P ( λ ) = 0 ‫ن‬+= n 9H‫ آ^ة ود  ار‬3‫ ه‬P ( λ ) ‫ أن‬V‫و‬  ‫ او ازواج‬9;; ‫ن‬2/K ‫ور إ ان‬6J‫ ا‬56‫ن ه‬+= 9;; a1 , a2 ,..., an X‫ وإذا آ‬λ1 , λ2 ,..., λn xi = Ci eλit , i = 1, 2,..., n  *‫  ا‬N‫ آ‬. Complex Conjugates 9‫ ا *;ر‬9‫اد ا آ‬#0‫ا‬

‫ن‬2/8‫ و‬Ci ‫ إ*ري‬X ^ 9U`*‫ ا‬9‫  د‬N 2‫ه‬ x = C1e λ1t + C2 eλ2t + ⋯ + Cn e λnt

‫ت‬S‫ ا د‬9 3=‫ و‬Complementary Function

9 / ‫ ا‬9‫ اا‬3 8‫  و‬i8‫أ‬

.9 / ‫ ا‬9‫ اا‬2‫ ام ه‬N‫ن ا‬2/8 9 J* ‫ا‬ :‫ ل‬ ɺɺ x + 3 xɺ + 2 x = 0 9U`*‫ ا‬9‫ ا د‬N

: ‫ا‬ ‫ن‬2/8‫ و‬λ1 = −1, λ2 = −2 3‫ ه‬P ( λ ) = 0 ‫ور‬6H‫ و‬P ( λ ) ≡ λ 2 + 3λ + 2 ‫ة‬# ‫ ا‬9‫ا د‬ ‫ ام‬N‫ا‬ x = C1e − t + C2 e −2t

.9‫و‬0‫وط ا‬P‫دان  ا‬8 8‫ ^ * إ*ر‬ : Repeated Roots ‫ر‬6J‫ار ا‬/K 9 3‫ر ه‬6J‫ا ا‬6T 9:K ‫ل ا‬2‫ن ا‬+= ‫  ا ات‬r ‫د‬# λ = λ1 ^ ‫ر‬6H ‫ر‬/K ‫إذا‬ eλ1t , teλ1t , t 2 eλ1t ,..., t r −1eλ1t

24

:‫ ل‬ ɺɺɺ x + 4 ɺɺ x + 5 xɺ + 2 x = 0 9U`*‫ ا‬9‫ ا د‬N

: ‫ا‬ 3‫ ه‬P ( λ ) = 0 ‫ور‬6H‫ و‬P ( λ ) = λ 3 + 4λ 2 + 5λ + 2 = ( λ + 1) ( λ + 2 ) ‫ة‬# ‫ ا‬9‫ا د‬ 2

‫ ام‬N‫ن ا‬2/= K ‫ر‬/ −1 ‫ر‬6J‫ ا‬λ1 = −1, λ2 = −1, λ3 = −2 x = C1e − t + C2te− t + C3e −2t t = 0 # x = 1, xɺ = 0, ɺɺ x = 1 9‫و‬0‫وط ا‬P 98‫*ر‬A‫ ا‬X ‫ا‬2^‫ ا‬L H‫أو‬

NU`*‫ ا‬8D # H2 ‫ ام‬N‫ ا‬ xɺ = −C1e− t + C2 (1 − t ) e − t − 2C3e−2t

ɺɺ x = C1e − t − C2 ( 2 − t ) e −t + 4C3e −2 t

J 9‫و‬0‫ ; ا‬j82* ‫و‬ C1 + C3 = 1 −C1 + C2 − 2C3 = 0 C1 − 2C2 + 4C3 = 1

‫ ا)ص‬N‫" ا‬# N j82* ‫ و‬C1 = −1, C2 = 3, C3 = 2 ‫ل‬2‫ ا‬T 3*‫وا‬ x = ( 3t − 1) e− t + 2e −2 t

Linear Equations with Constant c ‫ت‬a I# %S‫د`ت ا‬I#‫ ا‬:%c : Inhomogeneous Case Z#‫ ا‬%1  ‫ ا‬Coefficients 9 J* ‫ت \ ا‬S‫ ام  د‬N‫ا‬ x( n ) + a1 x ( n −1) + ⋯ + an x = f ( t )

Complementary Function 9 / ‫ ا‬9‫ " اا‬8 xCF V x = xCF + xPS N/P‫" ا‬# 2‫ه‬ .Particular Solution ‫ ا)ص‬N‫ " ا‬8 xPS ‫و‬ .‫ ا)ص‬N‫د ا‬J8‫ن إ‬b‫ف  *ض ا‬2‫ و‬،9 / ‫ ا‬9‫د اا‬J8‫ إ‬9`‫ آ‬9;  ‫ ا`;ة ا‬3= 8‫; رأ‬ :‫ ا)ص‬N‫د ا‬J8‫ق إ‬D : D N‫ ا‬9;8D . Dn ≡

dn d2 d 2 ‫و‬ D ≡ ^ = D ≡ 9L ‫ف‬8‫ و‬D NU`*‫ ا‬N# :l8K n 2 dt dt dt

9L P ( D ) ≡ D n + a1 D n −1 + ⋯ + an Polynomial Operator ‫ آ^ة اود‬N# ‫ف‬

25

P ( D ) f ( t ) ≡ ( D n + a1 D n −1 + ⋯ + an ) f ( t ) = f ( n ) ( t ) + a1 f ( n −1) ( t ) + ⋯ + an f ( t )

‫ أي‬D 0 x ( t ) = x ( t ) ‫ و‬an D0 2‫ ه‬an ‫ أن ا‬S) ‫ ة‬n NU`* 9 L 9‫ دا‬f ( t ) V .(‫ة‬2‫ ا‬NU`K N# :‫ ل‬ D NU`*‫ ا‬N# N/! "# 9*‫ ا‬9U`*‫ ا‬9‫ ا د‬QU d 2x dx − 3 + 2 x = te − t 2 dt dt ɺɺ x − 3 xɺ + 2 x = te− t

: ‫ا‬ D 2 x − 3Dx + 2 x = te − t

(D

2

− 3D + 2 ) x = te − t

P ( D ) ≡ D 2 − 3D + 2 ‫ه‬

: D )‫  ا‬4 ‫\ اص‬ ‫ ل آ^ات‬# P ( D ) , Q ( D ) , R ( D ) ‫ وآن‬NU`* 9 L ‫ دوال‬f ( x ) , g ( x )  N‫إذا آن آ‬ 9*‫اص ا‬2)‫ ا‬T ‫ ل آ^ات اود‬# ‫ن‬+= ‫ود‬ 1)  P ( D ) + Q ( D )  f ( x ) = P ( D ) f ( x ) + Q ( D ) f ( x ) 2 )  P ( D ) Q ( D )  f ( x ) = P ( D ) Q ( D ) f ( x ) 

3) D ( aD r ) f ( x ) ≡ aD r +1 f ( x )

4 ) P ( D )  f ( x ) + g ( x )  ≡ P ( D ) f ( x ) + g ( x ) f ( x ) 5) P ( D ) + Q ( D ) ≡ Q ( D ) + P ( D ) 6 )  P ( D ) Q ( D )  R ( D ) ≡ P ( D ) Q ( D ) R ( D )  7 ) P ( D ) Q ( D ) + R ( D )  ≡ P ( D ) Q ( D ) + P ( D ) R ( D ) 8 ) ( D − λ ) Q ( D ) ≡ DQ ( D ) − λ Q ( D )

The Factorization Theorem  ‫ ا‬I %2 ‫ ا‬W

( λ − λ1 ) , ( λ − λ2 ) ,..., ( λ − λn ) N‫ا‬2# T λ n + a1λ n −1 + ⋯ + an ‫`*ض أن آ^ة اود‬ 6@# D n + a1 D n −1 + ⋯ + an ≡ ( D − λ1 )( D − λ2 )⋯ ( D − λn )

.$ Permutaion N8‫د‬K ‫ي‬f ‫ *ل‬8 ‫ ان‬/ 8  80‫ف ا‬:‫ ان ا‬S 26

:‫ ل‬ ɺɺ x + 5 xɺ + 6 x = cos t

(D

2

+ 5 D + 6 ) x = cos t

( D + 2 )( D + 3) x = cos t ( D + 3)( D + 2 ) x = cos t Distinct Roots 2$#‫"ور ا‬Z‫ ا‬:‫ ل‬ T‫ا‬2# N/! 3= 9^‫ ا‬9H‫  ار‬9‫ ا‬9‫ ا" ا د‬O

( D − λ1 )( D − λ2 ) x = 0, λ1 ≠ λ2 g*= 9;  ‫ ا‬9L‫ ا‬3= ( D − λ2 ) x = u ‫ض‬2#

( D − λ1 ) u = 0 ‫أو‬ du − λ1u = 0 dt

N‫ ا‬T‫ و‬u 3= "‫و‬0‫ ا‬9H‫  ار‬9 J* 9U`K 9‫ د‬3‫وه‬ u = C1eλ1t

J ( D − λ2 ) x = u # j82* ‫و‬

( D − λ2 ) x = C1eλ t 1

dx − λ2 x = C1eλ1t dt

N/P‫" ا‬#‫ و‬x 3= "‫و‬0‫ ا‬9H‫  ار‬9 J*\ 9U`K 9‫ د‬3‫وه‬ dx + P (t ) x = Q (t ) dt

2‫ ه‬T‫و‬ − P ( t ) dt − P ( t ) dt ∫ P (t ) dt x = Ce ∫ +e ∫ ∫ Q ( t )e dt

(‫ب‬: 8 *‫ آ‬N%`*‫*ك ا‬K) N‫ن ا‬2/8‫ و‬Q ( t ) = C1eλ t ‫ و‬P ( t ) = −λ2 V 1

x=

C1 eλ1t + C2 eλ2t λ − λ ( 1 2)

x = C1′eλ1t + C2 eλ2t

27

Repeated Roots ‫رة‬#‫"ور ا‬Z‫ ا‬:‫ ل‬ 9^^‫ ا‬9H‫  ار‬9 J* ‫ ا‬9‫* ا د‬

( D − λ1 ) ( D − λ2 ) x = 0 2

g8‫ و‬u = C1eλ t T 3*‫ ( وا‬D − λ2 ) u = 0 a*8 ( D − λ1 ) x = u QU‫ وو‬N‫ا‬2‫ ا‬N8* 2

2

( D − λ1 )

2

x = C1eλ2t

9;  ‫ ا‬9‫ ا د‬gK ( D − λ1 ) x = v 9 */ ‫و‬

( D − λ1 ) v = C1eλ t 2

N‫ ا‬T 3*‫وا‬ v = C1′eλ2t + C2 e λ1t

‫واا‬

( D − λ1 ) x = C1′eλ t + C2eλ t 2

1

"# N T‫و‬ x = C1′′eλ2t + ( C2 x + C3 ) eλ1t

.N N%`*‫ إآ ل ا‬R:‫" ا‬# :9O Complex Conjugate Roots ‫ر‬/#‫ ا‬9‫آ‬#‫"ور ا‬Z‫ ا‬:‫ ل‬ N/P‫" ا‬# 9;; ‫ ت‬T 3*‫ ا‬P ( λ ) = 0 9‫  د‬R‫ر آ‬6H ‫د‬2H‫ و‬9 3= ‫ ا)ص‬N‫ ا‬N/! ‫ن‬2/8‫ و‬λ = µ − iν N/P‫" ا‬# & ‫ر‬6H ‫ ف ان هك‬+= λ = µ + iν e µ t ( C1 cosν t + C2 sin ν t )

N/P‫ ا‬$ ‫ن‬2/8 ‫ ا)ص‬N‫ن ا‬+= ‫ ة‬m ‫ور‬6J‫ ا‬98‫د‬K 9 3=‫و‬ e µ t  Pm−1 ( t ) cosν t + Qm−1 ( t ) sin ν t 

‫ف‬iK‫ و‬98‫ إ*ر‬X ‫ا‬2Y T‫ و‬m − 1 9H‫  ار‬t 3= ‫ آ^ات ود‬Qm−1 ( t ) ‫ و‬Pm−1 ( t ) V 9‫ اا‬3:K 3/ P ( λ ) = 0 9‫  د‬9;; ‫ور‬6H  a*K 3*‫ي ا‬0‫ اود إ" اود ا‬56‫ه‬ . xCF 9 / ‫ا‬ :‫ ل‬ 9‫ إ" ا د‬O

(D

5

− 5 D 4 + 12 D 3 − 16 D 2 + 12 D − 4 ) x = 0

28

N‫ا‬2# N/! 3=‫و‬

( D − 1)( D − 1 − i ) ( D − 1 + i ) 2

2

x=0

3‫ ه‬9 / ‫ ا‬9‫ اا‬. 2 98‫د‬K T ν = 1 ‫ و‬µ = 1 9‫ ا *;ر‬9‫ ا آ‬N‫ا‬2‫ا‬ xCF = et C1 + ( C2 + C3t ) cos t + ( C4 + C5t ) sin t 

/‫ و‬9 / ‫ ا‬9‫د اا‬J8A gU‫ وا‬N/P ‫ت‬S‫ ا د‬N d 8 D N‫ ا‬:K ‫آ   أن‬ .‫ ا)ص‬N‫د ا‬J8‫ إ‬3= ^‫ اآ‬gi*K ‫ف‬2 D N‫ة ا‬2L *) ‫ ا‬N/P 9 J* \ 9‫ د‬9 */ P ( D ) x = f (t )

9L ":8 ‫ ا)ص‬N‫وا‬ xPS = P −1 ( D ) f ( t )

:3*‫`  آ‬8‫س و‬2/ ‫ ا‬N‫ ا‬P −1 ( D ) V / xɺ =

dx =t dt

‫أو‬ Dx = t

J x Z*  N 1 x = D −1t = t 2 + C 2

]6‫ وآ‬.‫ ة واة‬N/*‫ ا‬N^ K D −1 ‫أي‬ D2 x = t

J ‫س‬2/ ‫د ا‬J8+ x = D −2t = D −1 ( D −1t )

J ‫ر‬/* ‫ ا‬N/* ‫و‬ 1  1 x = D −2t = D −1  t 2 + C1  = t 3 + C1t + C2 2  6

.‫ ة‬r ‫ر‬/* ‫ ا‬N/*‫ ا‬3K D − r ‫أي أن‬

29

‫س‬2/ ‫ن‬2/K‫ و‬D −1 3= ‫ن آ^ة ود‬2/K P −1 ( D ) ‫ن‬+= D 3= ‫ آ^ة ود‬P ( D ) ‫  أن‬ ‫ أي‬P ( D ) P −1 ( D ) P ( D ) ≡ 1 xPS = P −1 ( D ) f ( t ) ‫ أي‬f ( t ) "# P ( D ) ‫س‬2/ :K 9D  2‫ ا)ص ه‬N‫د ا‬J8‫إذا إ‬

.N/* 9 L f ( t ) ‫ن‬2/K ‫" أن‬# Inverse Operator ‫ س‬I#‫  ا‬I‫ ا‬:V I0 9L 3:8 f ( t ) 9‫" دا‬# N 8 ‫ي‬6‫ ( وا‬D − λ ) ‫س‬2/ ‫ ا‬N‫ ا‬YfK −1

(D − λ)

−1

f ( t ) = eλt ∫ f ( t )e − λt dt

:‫ ل‬ 9‫ ا)ص  د‬N‫ ا‬H‫أو‬

( D − 1)( D − 2 ) x = et ‫ن‬2/8‫ ( و‬D − 2 ) ( D − 1) 2‫س ه‬2/ ‫ ا‬N‫ا‬ −1

x = ( D − 2)

−1

( D − 1)

−1

−1

et

a*8 ( D − 1) et 3#   ‫ ا‬l8*‫ ا‬:* −1

( D − 1)

−1

et = tet

a*8 ( D − 2 ) tet "# l8*‫ ا‬:K Y −1

xPS = − ( t + 1) et

.‫ب‬2: ‫ ا‬2‫وه‬ :\b ‫ ل‬ 9‫ ا)ص  د‬N‫ ا‬H‫أو‬

(D

2

− 2 D + 2 ) x = et

:N‫ا‬ N‫ا‬2# N/! "# 9‫ ا د‬QU2

( D − 1 − i )( D − 1 + i ) x = et :3*‫ آ‬N‫ ا‬Q *‫و‬

30

( D −1+ i ) x = ( D −1− i ) = e(

1+ i )t

−1

et

t −(1+ i )t

∫e e

dt = iet

‫ن‬2/8 3* ‫و‬ x = ( D − 1 + i ) iet −1

= e(

1−i )t

t −(1−i )t

∫ ie e

dt = et

2‫ ا)ص ه‬N‫أي ان ا‬ xPS = et

.‫ب‬2: ‫ ا‬2‫وه‬

31

:‫ا ا‬ Difference Equations %F‫د`ت او‬I#‫ا‬ ‫ي‬H Z*  ‫ت‬L‫ن وده  =و‬2/*K 98H ‫ت‬S‫ د‬# ‫رة‬# 3‫ ه‬9L‫ت ا`و‬S‫ا د‬ Z*  9L‫ت =و‬S‫ د‬3*‫ن ا‬+= xk = x ( tk ) , k = 0,1, 2,..., n ‫ آن‬2 ^ = 9` L 6f8 xk , k = 0,1, 2,..., n xk − xk −1 − xk − 2 = 0 xk + 2 xk −1 = 5 xk − 3 = 0 xk − 3k − 7 = 0

9*‫اص ا‬2)‫ ا‬$‫ و‬B 3`)‫ ا‬9‫زا‬A‫ ا‬N# :V I0 1) Bxk = xk −1 2 ) B 2 xk = B ( Bxk ) = B ( xk −1 ) = xk − 2 3) B m xk = xk − m 4 ) Bc = c

5 ) B ( cxk ) = cxk −1

9*‫اص ا‬2)‫ ا‬$‫ ≡ ∇ و‬1 − B 8`*‫ ا‬N# :V I0 1) ∆xk = xk − xk −1 2 ) ∆ 2 xk = ∆ ( ∆xk ) = ∆ ( xk − xk −1 ) = xk − 2 xk −1 + xk − 2 3) ∆ m xk = ∆ m −1 ( ∆xk ) 4 ) ∆c = 0

5 ) ∆cxk = c∆xk

6 ) ∆ ( xk + yk ) = ∆xk + ∆yk

:‫ة‬84F m  m m− j ∆ m xk = ∑   ( −1) xk − j j =0  j 

S ≡ ∆ −1 3@Tb‫ ا‬Q J*‫ ا‬N#‫ و‬F ≡ B −1 30‫ ا‬9‫زا‬A‫ ا‬N#  ‫ ه‬8& # ‫هك‬

.9H‫ ا‬XL‫ و‬T)*  ‫ف‬2 3*‫وا‬ :3‫ر! او‬8‫ ا‬6 %S‫ ا‬%F‫د او‬I#‫ا‬ N/P‫" ا‬# 3‫وه‬ a0,k xk + a1,k xk −1 = ck , k = 1, 2,..., n

32

N/P‫" ا‬# i8‫ ا‬R*/K‫و‬ xk = −

a1,k a0, k

xk −1 +

ck , k = 1, 2,..., n a0,k

xk = Axk −1 + C , k = 1, 2,..., n

.9* Y‫ و‬A ≠ 0 V J k = 1 QU2 ،‫ة‬: x0 ‫" =ض ان‬# xk = Axk −1 + C , k = 1, 2,..., n 9‫ ا د‬N x1 = Ax0 + C k = 2 9 ;‫و‬ x2 = Ax1 + C

= A ( Ax0 + C ) + C = A2 x0 + (1 + A ) C k = 3 9 ;‫و‬

x3 = Ax2 + C

= A ( A2 x0 + ( A + 1) C ) + C = A3 x0 + (1 + A + A2 ) C

‫م‬# N/P ‫و‬ xk = Ak x0 + C (1 + A + A2 + ⋯ + Ak −1 ) , k = 1, 2,...

‫ ان‬S 1+ A + A +⋯ + A 2

k −1

1 − Ak , if  =  1− A  k, if 

A ≠1 A =1

N‫ ا‬g8‫و‬  k 1 − Ak , if A ≠ 1  A x0 + C , xk =  1− A  x0 + Ck , if A = 1 

k = 0,1, 2,...

:1‫ ل‬ X‫إذا آ‬ xk = 2 xk −1 + 1, k = 1, 2,...

J x0 = 5 9‫ او‬9 ;‫و‬

33

‫‪‬‬ ‫‪ , k = 0,1, 2,...‬‬ ‫‪‬‬

‫‪ 1 − 2k‬‬ ‫‪xk = 5 ( 2k ) + 1‬‬ ‫‪ 1− 2‬‬

‫‪= 6 ( 2 k ) − 1, k = 0,1, 2,...‬‬

‫و ‪:#+‬ء ‪ k‬ا; ‪ J 0,1, 2,...‬ان ا‪2/8 N‬ن ا ** ‪. 5,11, 23, 47,... 9‬‬ ‫‪ T‬ا‪I#‬د`ت او‪ %F‬ا‪ 6 %S‬ا‪8‬ر! او‪8&f 3‬ام ‪: Excel‬‬ ‫‪ N‬ا د‪S‬ت ا`و‪/K 9L‬ار‪ / 8 8‬ا;م ‪2 9‬ا‪ Excel 9:‬آ*‪:3‬‬ ‫أد‪ N‬ا*‪) 3‬ا‪ :0‬ا‪0‬ول و*" ا^‪ Y V‬ا ˆ ا ‪ :‬ا^‪ "* V‬ا ى ا ‪:(R‬‬

‫ا*‪:9J‬‬

‫و‪ T‬ا‪ N/P‬ا*‪:3‬‬

‫‪34‬‬

x(k) 7000 6000 5000 4000 3000 2000 1000 0 0

2

4

6

8

10

12

:2‫ ل‬ X‫إذا آ‬ 2 xk − xk −1 = 4, k = 1, 2,...

J x0 = 3 9‫ او‬9 ;‫و‬ xk =

1 xk −1 + 2, k = 1, 2,... 2

=(

)

1 k 2

3+ 2

1 − ( 12 )

k

1 − ( 12 )

, k = 0,1, 2,...

= 4 − ( 12 ) , k = 0,1, 2,... k

. 3,3 12 ,3 43 , 3 87 ,3 1615 ,... 9 ** ‫ن ا‬2/8 N‫ ان ا‬J 0,1, 2,... ;‫ ا‬k ‫ء‬:#+ ‫و‬ : Excel ‫ام‬8&f  ‫ا‬ :(R ‫ *" ا ى ا‬V^‫ ا‬: ‫ ا ˆ ا‬Y V^‫ول و*" ا‬0‫ ا‬:0‫ )ا‬3*‫ ا‬N‫أد‬

9J*‫ا‬

35

:3*‫ ا‬N/P‫ ا‬T‫و‬ 4.5 4 3.5

x(k)

3 2.5 2 1.5 1 0.5 0 0

1

2

3

4

5

k

36

6

7

8

:3‫ ل‬ X‫إذا آ‬ xk + xk −1 = 1, k = 1, 2,...

J x0 = 1 9‫ او‬9 ;‫و‬ xk = − xk −1 + 1, k = 1, 2,... = ( −1) + k

=

1 − ( −1)

k

1 − ( −1)

, k = 0,1, 2,...

1 k 1 + ( −1)  , k = 0,1, 2,...   2

. 1, 0,1, 0,1, 0,... 9 ** ‫ن ا‬2/8 N‫ ان ا‬J 0,1, 2,... ;‫ ا‬k ‫ء‬:#+ ‫و‬ : Excel ‫ام‬8&f  ‫ا‬ :(R ‫ *" ا ى ا‬V^‫ ا‬: ‫ ا ˆ ا‬Y V^‫ول و*" ا‬0‫ ا‬:0‫ )ا‬3*‫ ا‬N‫أد‬

9J*‫ا‬

:N/P‫ ا‬T‫و‬

37

‫‪1.2‬‬ ‫‪1‬‬ ‫‪0.8‬‬ ‫‪0.6‬‬ ‫‪0.4‬‬ ‫‪0.2‬‬ ‫‪0‬‬ ‫‪30‬‬

‫‪25‬‬

‫‪20‬‬

‫‪15‬‬

‫‪10‬‬

‫‪5‬‬

‫‪0‬‬

‫‪k‬‬

‫ ‪: AF$‬‬ ‫رأ‪ 3= 8‬ا‪ 9^0‬ا  ;‪  9YY 9‬ا د‪S‬ت ا`و‪ 9L‬آن ‪ N‬ا‪0‬و" ; ‪ 9‬ا‪0‬و‪ 9‬ا ‪:‬ة‬ ‫** ‪  9‬ا‪0‬ر‪L‬م *‪#‬ة‪ ،‬و‪ N‬ا^‪ 9 ; 9‬ا‪0‬و‪ 9‬ا ‪:‬ة ** ‪  9‬ا‪#0‬اد ا*‪;*K 3‬رب‬ ‫إ‪ 3‬اد ‪ ، 4‬و‪ N‬ا^^‪ 9 ; 9‬ا‪0‬و‪ 9‬ا ‪:‬ة ** ‪  9‬ر‪ 0  L‬و ‪ 1‬ا *‪/‬رة ) أي ا;‬ ‫‪6 6*K‬ب  ‪ 0‬و ‪.(1‬‬ ‫‪ :8 K‬أو‪ L H‬او‪  9‬د‪S‬ت ا`و‪ 9L‬ا  ;‪K 3:K V 9‬ف \ ا‪6‬ي ‪OS‬ة  ;‪.‬‬ ‫ " ه‪ 3‬ا; ‪ 9‬ا‪0‬و‪ 9‬ا*‪  9 ** 3:K 3‬ا‪0‬ر‪L‬م أو ا‪#0‬اد ا *;ر ‪ 3= 9‬ا ^ل‪ 1‬وه‪6/‬ا‪.‬‬ ‫‪ YfK‬ا; ا‪0‬و‪ "# 9‬ا ** ‪ 9‬ا‪:9JK‬‬ ‫‪2‬ف  *ض ‪ YfK‬ا; ‪ 9‬ا‪0‬و‪K "# 9‬ف ا ** ‪ 9‬ا‪  9JK‬ا‪^  N‬ل ا*‪:3‬‬ ‫ ل‪:4‬‬ ‫‪ N‬ا د‪ 9‬ا`و‪ 9L‬ا*‪9‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪xk −1 + , k = 1, 2,...‬‬ ‫‪2‬‬ ‫‪2‬‬

‫; ا‪0‬و‪. x0 = 0,1, 2 9‬‬ ‫ا   ا&‪: Excel S‬‬

‫‪38‬‬

‫= ‪xk‬‬

‫ ان هك ‪ 3= ;*  N‬آ‪ N‬ا‪S‬ت إذ ‪;*K‬رب ** ‪ 9‬ا‪ N‬إ" ‪.1‬‬ ‫ ل‪:5‬‬ ‫‪ N‬ا د‪ 9‬ا`و‪ 9L‬ا*‪9‬‬ ‫‪xk = 3 xk −1 − 1, k = 1, 2,...‬‬

‫; ا‪0‬و‪. x0 = 0,1, 2 9‬‬ ‫‪39‬‬

: Excel S&‫ا   ا‬

.N‫ ا‬9 ** #*K ‫ إذ‬9 ‫ اي‬3= ;*  N ‫ هك‬c ‫ ان‬

: %F‫و‬P ‫د‬I# %2)0 ‫د‬I k /0 *; ‫ف‬2 .T 9 K 9L‫ =و‬9‫ د‬N 98T‫ آ‬9U`K 9‫  د‬N ‫د‬J8‫ إ‬/ ‫ ا‬ ; 9= 9‫ دا‬x /* .9* Y ‫و" ت‬0‫ ا‬9H‫  ار‬9:)‫ت ا‬S‫" ا د‬# 9PL ‫ا‬ 9U`*‫ ا‬9‫; ا د‬K 3*‫ وا‬a ≤ t ≤ b ‫ =*ة‬3= t 9;; Dx ( t ) =

d x ( t ) = Ax ( t ) + C , a ≤ t ≤ b dt

40

.‫ة‬: x0 = x ( a ) 9‫و‬0‫ ا‬9 ;‫ و`ض أن ا‬98‫ إ*ر‬X ‫ا‬2Y C ‫ و‬A ≠ 0 V 9` ; a ≤ t ≤ b ‫ إ*ال ا`*ة‬S‫ او‬R:*K 9L‫ =و‬9‫ د‬9U`*‫ ا‬9‫ ا د‬56‫ ه‬R8;* "‫ إ‬a  ‫ و;  ا`*ة‬n RH2 ‫ ا‬g‫ ا‬L‫ ا‬6f .T# 9L‫ ا`و‬9‫ ا د‬l8K / 8  ;*‫ ;ط ا‬h = ( b − a ) n ‫ل‬2:‫ ذات ا‬98‫اء ا * و‬GH0‫  ا‬n "‫ إ‬b t0 = a, t1 = a + h, t2 = a + 2h,..., tn = a + nh = b

. xk = x ( tk ) = x ( t0 + kh ) 9 */ ‫ز‬2‫ ا‬d  #‫د‬ ‫ ان‬NU`*‫ ا وف  ;ر ا‬ ∆xk h →0 h

Dx ( tk ) = lim

Dx ( t ) =

d x ( t ) = Ax ( t ) + C , a ≤ t ≤ b 9U`*‫ ا‬9‫وا  إ*ال ا د‬8 ‫ا‬6T‫و‬ dt

9L‫ ا`و‬9‫  د‬ ∆xk = Axk + C , k = 0,1, 2,..., n − 1 h

‫أو‬ xk +1 = (1 + Ah ) xk + Ch, k = 0,1, 2,..., n − 1

‫و" ت‬0‫ ا‬9H‫  ار‬9L‫ =و‬9: 3‫ة ه‬0‫ ا‬9‫ ا د‬.": x0 "‫و‬0‫ط ا‬P‫ ا‬Q   ‫ آ‬T‫ و‬9* Y C C k  xk = (1 + Ah )  x0 +  − , k = 0,1, 2,..., n − 1 A A  C = 0 # :9%)‫ ا‬9‫ا‬

9U`*‫ ا‬9‫ ا د‬.9 T ‫ ا‬TK;:* ]‫ وذ‬9 ‫ اه‬T 9 3‫وه‬ Dx ( t ) =

d x ( t ) = Ax ( t ) , a ≤ t ≤ b dt

. x 9‫ اا‬Q R*8 t ‫ ـ‬9  x 9‫ ا‬3O‫ ا‬Z*‫أو ل ا‬ 3‫ ه‬T 9 *‫ ا‬98;*‫ ا‬9L‫ ا`و‬9‫ا د‬ xk +1 = (1 + Ah ) xk , k = 0,1, 2,..., n − 1

T 3*‫وا‬ xk = x0 (1 + Ah )

k

41

2‫ ه‬9U`*‫ ا‬9‫ ا د‬N ‫ ان‬S x ( t ) = x0 e

A( t − t0 )

‫ث‬8 A < 0 # ‫ و‬x 9‫ ا‬Exponential Growth 3‫ ا‬2  a*8 A > 0 9 3= . Exponential Decay 3‫ ش ا‬/‫إ‬

42

Linear Difference Equations c ‫ت‬a I# %S‫ ا‬%F‫د`ت او‬I#‫ا‬ : with Constant Coefficients N/P‫" ا‬# X‫ إذا آ‬9: T‫ ا‬k = 0,1, 2,... ;‫" ا‬# 9= 9L‫ =و‬9‫;ل ان د‬8 f 0 ( k ) xk + n + f1 ( k ) xk + n −1 + ⋯ + f n −1 ( k ) xk +1 + f n ( k ) xk = g ( k )

‫ ا ت‬X‫ إذا آ‬. k = 0,1, 2,... "# 9= k ‫ دوال ـ‬f 0 , f1 ,..., f n−1 , f n , g V 9* Y ‫ن‬2/K ‫م ان‬G8S g 9‫ )ا‬9* Y ‫ ت‬9: ‫ن‬2/K 9‫ن ا د‬+= X ‫ا‬2Y T‫ آ‬f 0 , f1 ,..., f n . n 9H‫ن  ار‬2/K 9‫ن ا د‬+= f n ≠ 0 ‫ و‬f 0 ≠ 0  N‫ آ‬X‫ إذا آ‬.(9: ‫او‬ :9^‫أ‬ 9* Y ‫ ت‬9: 9L‫ت =و‬S‫ د‬3*‫ا‬ 2 xk +1 − xk = 6 3 xk + 2 + 2 xk +1 + xk = 3k

xk +3 − xk = k

9‫ ا د‬3=D  ;K Ni=0‫ =  ا‬f 0 ≠ 1 ‫ن‬2/K # .RK*‫" ا‬# 3 ‫ و‬2 ‫ و‬1 ‫ت‬H‫ در‬T 9‫ ا د‬N/! g8‫ا و‬2 8‫  و‬xk +n N NJ 3/ T# xk + n + a1 xk + n −1 + ⋯ + an −1 xk +1 + an xk = r ( k )

. ai = fi f 0 , i = 1,..., n; r ( k ) = g ( k ) f 0 V ‫ف `*ض ان‬2 .9* Y ‫ ت‬9:)‫ ا‬9L‫ت ا`و‬S‫  د‬0‫ ا‬N/P‫ف  *)م ا‬2 ;‫" ا‬# 9= 98‫ إ*ر‬9‫ دا‬r ( k ) , k = 0,1, 2,... 9‫ واا‬an ≠ 0 i8‫ وا‬X ‫ا‬2Y a1 , a2 ,..., an 3 ‫ و‬2 ‫ و‬1 ‫ت‬H‫  ار‬9* Y ‫ ت‬9: 9L‫ت =و‬S‫ د‬3‫ ه‬3*= ‫ا‬6‫ ه‬3#‫ و‬.‫ة‬: ‫ا‬ 3‫ا‬2*‫" ا‬# xk +1 + a1 xk = r ( k )

xk + 2 + a1 xk +1 + a2 xk = r ( k )

xk +3 + a1 xk + 2 + a2 xk +1 + a3 xk = r ( k )

9‫ا د‬ xk + n + a1 xk + n −1 + ⋯ + an −1 xk +1 + an xk = 0

9:)‫ ا‬9L‫ ا`و‬9‫  د‬9 *‫ وا‬9* Y ‫ ت‬9 J* ‫ ا‬9:)‫ ا‬9L‫ ا`و‬9‫ " ا د‬K . xk + n + a1 xk + n −1 + ⋯ + an −1 xk +1 + an xk = r ( k ) 9* Y ‫ ت‬9 J* ‫\ا‬

43

: W ‫ن‬+=

xk + n + a1 xk + n −1 + ⋯ + an −1 xk +1 + an xk = 0

9‫  د‬

x( 2)

‫و‬

x(1)

‫إذا آن‬

. C2 ‫ و‬C1 98‫ إ*ر‬X ‫ا‬2^ T N i8‫ ا‬2‫ ه‬C1 x(1) + C2 x( 2) :98O N xPS ‫ وآن‬xk + n + a1 xk + n−1 + ⋯ + an −1 xk +1 + an xk = 0 9 J* ‫ ا‬9‫  د‬N xCF ‫إذا آن‬ N xCF + xPS ‫ن‬+= xk + n + a1 xk + n −1 + ⋯ + an −1 xk +1 + an xk = r ( k ) 9 J* ‫ \ ا‬9‫ د‬ . xk + n + a1 xk + n −1 + ⋯ + an −1 xk +1 + an xk = r ( k ) 9 J* ‫ \ ا‬9‫ د‬ General Solution of the Homogeneous Z#‫د ا‬I#2 ‫م‬I‫ا  ا‬ : Equation xk + n + a1 xk + n −1 + ⋯ + an −1 xk +1 + an xk = 0 9 J* ‫ ا‬9‫ ام  د‬N‫د ا‬J8‫ف  *ض إ‬2

:3*‫ آ‬9^f 9 J* ‫ ا‬9‫ ام  د‬N‫ ا‬H‫( او‬1 xk − xk − 2 = 0

Auxiliary Equation ‫ة‬# ‫ ا‬9‫" ا د‬# N= xk = λ k , λ ≠ 0 N‫ب ا‬J λ k − λ k −1 = 0 λ k −1 ( λ − 1) = 0

‫ ام‬N‫ن ا‬2/8‫ و‬λ1 = λ2 = 1 8‫ * و‬8‫ر‬GH T ‫ة‬# ‫ ا‬9‫ن ا د‬+= λ ≠ 0 ‫و  ان‬ 2‫ ه‬9 J* ‫ ا‬9‫ د‬ xk = ( C1 + C2 k )1k = C1 + C2 k

.9‫و‬0‫وط ا‬P‫ه  ا‬8K *8 C2 ‫ و‬C1 8‫ * إ*ر‬Y T‫و‬ 9 J* ‫ ا‬9‫ ام  د‬N‫ ا‬H‫( او‬2 xk − 3 xk −1 + 2 xk − 2 = 0

Auxiliary Equation ‫ة‬# ‫ ا‬9‫" ا د‬# N= xk = λ k , λ ≠ 0 N‫ب ا‬J λ k − 3λ k −1 + 2λ k − 2 = 0

λ k − 2 ( λ 2 − 3λ + 2 ) = 0

44

λ1 = 1, λ2 = 2 ‫ور‬GJ‫ ا‬T‫ ( و‬λ 2 − 3λ + 2 ) = 0 gK ‫ة‬# ‫ ا‬9‫ن ا د‬+= λ ≠ 0 ‫و  ان‬

2‫ ه‬9 J* ‫ ا‬9‫ ام  د‬N‫ن ا‬2/8‫و‬ xk = C1λ1k + C2λ2k = C1 + C2 2k

.9‫و‬0‫وط ا‬P‫ه  ا‬8K *8 C2 ‫ و‬C1 8‫ * إ*ر‬Y T‫و‬ 9 J* ‫ ا‬9‫ ام  د‬N‫ ا‬H‫( او‬3 xk + 3 xk −1 + xk − 2 = 0

Auxiliary Equation ‫ة‬# ‫ ا‬9‫" ا د‬# N= xk = λ k , λ ≠ 0 N‫ب ا‬J λ k + 3λ k −1 + λ k − 2 = 0

λ k − 2 ( λ 2 + 3λ + 1) = 0

‫ور‬GJ‫ ا‬T‫و‬



2

+ 3λ + 1) = 0

gK ‫ة‬# ‫ ا‬9‫ن ا د‬+=

2‫ ه‬9 J* ‫ ا‬9‫ ام  د‬N‫ن ا‬2/8‫ و‬λ1 =

λ≠0

‫و  ان‬

−3 + 5 −3 − 5 , λ2 = 2 2

xk = C1λ1k + C2λ2k k

 −3 + 5   −3 − 5  = C1   + C2   2  2   

k

.9‫و‬0‫وط ا‬P‫ه  ا‬8K *8 C2 ‫ و‬C1 8‫ * إ*ر‬Y T‫و‬ 9 J* ‫ ا‬9‫ ام  د‬N‫ ا‬H‫( او‬4 xk + xk −1 + 14 xk − 2 = 0

Auxiliary Equation ‫ة‬# ‫ ا‬9‫" ا د‬# N= xk = λ k , λ ≠ 0 N‫ب ا‬J λ k + λ k −1 + 14 λ k − 2 = 0

λ k − 2 ( λ 2 + λ + 14 ) = 0

λ1 = λ2 = − 12 ‫ور‬GJ‫ ا‬T‫ ( و‬λ 2 + λ + 14 ) = 0 gK ‫ة‬# ‫ ا‬9‫ن ا د‬+= λ ≠ 0 ‫و  ان‬

2‫ ه‬9 J* ‫ ا‬9‫ ام  د‬N‫ن ا‬2/8‫و‬ xk = C1λ1k + C2λ2k = ( C1 + C2 k ) ( − 12 )

k

.9‫و‬0‫وط ا‬P‫ه  ا‬8K *8 C2 ‫ و‬C1 8‫ * إ*ر‬Y T‫و‬ 9 J* ‫ ا‬9‫ ام  د‬N‫ ا‬H‫( او‬5 45

xk + xk − 2 = 0

Auxiliary Equation ‫ة‬# ‫ ا‬9‫" ا د‬# N= xk = λ k , λ ≠ 0 N‫ب ا‬J λ k + λ k −2 = 0

λ k − 2 ( λ 2 + 1) = 0

‫ور‬GJ‫ا‬

T‫و‬



2

+ 1) = 0

gK

‫ة‬# ‫ا‬

9‫ا د‬

‫ن‬+=

λ≠0

‫ان‬

 ‫و‬

2‫ ه‬9 J* ‫ ا‬9‫ ام  د‬N‫ن ا‬2/8‫ و‬λ1 = i = −1, λ2 = −i = − −1 xk = C1λ1k + C2λ2k

πk  = C1 cos  + C2   2 

.9‫و‬0‫وط ا‬P‫ه  ا‬8K *8 C2 ‫ و‬C1 8‫ * إ*ر‬Y T‫و‬ Polar Form 3:L N/! "‫ إ‬9‫اد ا آ‬#0‫ ا‬N82K :9O 3*‫ ا‬j82* r ( cos θ + i sin θ ) ":;‫ ا‬N/P‫ إ" ا‬a + bi R‫ل اد ا آ‬28 r = a 2 + b2 a b cosθ = , sin θ = , −π < θ ≤ π 2 2 2 a +b a + b2

R*/K λ1 = i = 0 + 1i

= r ( cos θ + i sin θ )

r = 02 + 12 = 1 cosθ =

0 1 π = 0, sin θ = = 1 ⇒ θ = 1 1 2

λ2 N^  ‫و‬

2‫ ه‬9 J* ‫ ا‬9‫ ام  د‬N‫ن ا‬2/8‫و‬ xk = Ar k cos ( kθ + C )

N/P‫" ا‬# TJ xk = Ar k cos ( kθ + C ) 9‫ ا د‬3= j82*‫ ا‬8 *‫ آ‬R: ‫*ك‬8 . xk = C1 cos 

πk

 + C2   2 

.  ‫ ا‬N xk = sin

kπ ‫ ه أن‬x0 = 0, x1 = 1 9‫و‬0‫ ; ا‬:8 K 2

46

‫ إذا آن‬:9J* xk + a1 xk −1 + a2 xk − 2 = 0

‫ة‬# ‫ ا‬9‫ري ا د‬6H λ2 ‫ و‬λ1 ‫ وآن‬a2 ≠ 0 ‫ و‬X ‫ا‬2Y a2 ‫ و‬a1 V λ 2 + a1λ + a2 = 0

‫ت‬L ":8 xk + a1 xk −1 + a2 xk −2 = 0 9L‫ ا`و‬9‫ ام  د‬N‫ن ا‬+= xk = C1λ1k + C2 λ2k

‫ ;; و)*` و‬λ2 ‫ و‬λ1 ‫وذ] إذا آن‬ xk = ( C1 + C2 ) λ1k

‫ و‬8‫ ;; و* و‬λ2 ‫ و‬λ1 ‫وذ] إذا آن‬ xk = Ar k cos ( kθ + C )

N/P‫" ا‬# ‫ آ *;ر أي‬λ2 ‫ و‬λ1 ‫وذ] إذا آن‬ λ1 = a + bi = r ( cosθ + i sin θ )

λ2 = a − bi = r ( cos θ − i sin θ )

: Particular Solution of the Complete Equation 2 ‫د ا‬I#2 ‫ا  اص‬ 9/‫ ا‬9‫ ا)ص  د‬N‫د ا‬J8‫ف  *ض إ‬2 xk + n + a1 xk + n −1 + ⋯ + an −1 xk +1 + an xk = r ( k )

:3*‫ آ‬9^f 9‫( * ا د‬1 xk + 2 − 3 xk +1 + 2 xk = 3k

Method of Undetermined Coefficients ‫ ا ت \ ا دة‬9;8: T ‫ف‬2 :3*‫آ‬ 9 L ‫د‬J8‫ ول إ‬. ‫د‬8  A X ^‫ ا‬N ‫ ا‬V xk* = A3k N/P‫" ا‬# N ‫د‬J8‫ول ا‬ ‫ض‬2 ،  xk* T= ‫ن‬2/8 (‫ت‬H‫ )إن و‬A ‫ـ‬

47

x*k +2 − 3 xk* +1 + 2 xk* = A3k + 2 − 3 A3k +1 + 2 A3k = A3k ( 9 − 9 + 2 ) = 2 A3k ∴A=

1 2 1 2

9 / ‫ ا‬9‫ اا‬2‫ وه‬9 J* ‫ ا‬9‫ ام  د‬N‫ ا‬H‫  ان و‬.‫ ا)ص‬N‫ ا‬xk* = 3k ‫ن‬2/8‫و‬ 2‫ ه‬9/‫ ا‬9‫ ام  د‬N‫ن ا‬2/8‫ و‬، 9/‫ ا‬9‫ د‬ xk = C1 + C2 2k + 12 3k

.9‫و‬0‫وط ا‬P‫ه  ا‬8K *8 C2 ‫ و‬C1 8‫ * إ*ر‬Y T‫و‬   K ^‫آ‬0‫ ا‬9‫( * ا د‬2 xk + 2 − 3xk +1 + 2 xk = a k

  ‫ ا ^ل ا‬3=  ‫ آ‬.( a = 3 6f ]‫ا وذ‬6‫  ه‬9% 9   ‫  ) ا ^ل ا‬X Y a V ‫ض‬2‫ و‬xk* = Aa k 38J*‫ ا‬N‫ ا‬6f x*k +2 − 3 xk* +1 + 2 xk* = Aa k + 2 − 3 Aa k +1 + 2 Aa k = Aa k ( a 2 − 3a + 2 )

= A3k ( a − 1)( a − 2 ) ∴A =

1

( a − 1)( a − 2 )

, a ≠ 1, 2

3‫ة ه‬# ‫ ا‬9‫ور ا د‬6H ‫ ان‬S .‫ ا)ص‬N‫ ا‬xk* =

1

( a − 1)( a − 2 )

a k , a ≠ 1, 2 ‫ن‬2/8‫و‬

/* ^ ‫ أي‬a = 2 ‫ أو‬a = 1 X‫آ‬2 ‫ ذا‬. 2 ‫ و‬1 xk + 2 − 3xk +1 + 2 xk = 1

‫ض‬2‫ و‬xk* = Ak ‫ن‬2/8 a = 1 QU2 ‫ و‬xk* = Aka k N‫ب ا‬J x*k +2 − 3xk* +1 + 2 xk* = A ( k + 2 ) − 3 A ( k + 1) + 2 Ak = −A ∴ A = −1

. xk* = −k ‫ ا)ص‬N‫ن ا‬2/8‫و‬ ‫  ص‬xk* = Ak 2k ‫ ه ان‬xk + 2 − 3xk +1 + 2 xk = a k 9‫ ا د‬3= a = 2 9 3= :8 K ‫ ام‬N‫ ا‬T xk + 2 − 3xk +1 + 2 xk = 2k 9L‫ ا`و‬9‫ وان ا د‬A = 1 2 #

48

xk = C1 + C2 2 k + k 2 k −1

9‫ ا)ص  د‬N‫ ا‬H‫( او‬3 8 xk + 2 − 6 xk +1 + xk = 5sin

kπ 2

N‫ب ا‬J xk* = A sin

kπ kπ + C cos 2 2

38J*‫ ا‬N ‫ض‬2 ،‫ه‬8K * 9* Y ‫ ت‬C ‫ و‬A V  ( k + 2 ) π + C cos ( k + 2 ) π  − 6  A sin ( k + 1) π + C cos ( k + 1) π  8 xk*+ 2 − 6 xk*+1 + xk* = 8  A sin    2 2 2 2     kπ kπ   +  A sin + C cos  2 2  

9^^ ‫ت ا‬L‫*)ام ا‬+ ‫و‬ sin

( k + 2)π

cos

( k + 2)π

sin

( k + 1) π

cos

( k + 1) π

2 2 2 2

kπ  kπ  = sin  + π  = − sin 2  2  kπ  kπ  = cos  + π  = − cos 2  2  kπ  kπ π  = sin  +  = cos 2  2 2 kπ  kπ π  = cos  +  = − sin 2  2 2

a*8 8 xk*+ 2 − 6 xk*+1 + xk* = ( −7 A + 6C ) sin

kπ kπ + ( −6 A − 7C ) cos 2 2

‫ ان‬J 8 xk + 2 − 6 xk +1 + xk = 5sin

kπ 9%0‫ ا‬9‫ ا د‬Q 56‫ ه‬9‫ ا د‬9; : 2

−7 A + 6C = 5 −6 A − 7C = 0 7 6 A=− , C = 17 17

‫ ا)ص‬N‫ن ا‬2/8‫و‬ xk* =

1 kπ kπ  + 6 cos  −7 sin  17  2 2 

49

: AF$ 9;8:= ، r ( k ) 9‫ اا‬N/!  $D*‫ إ‬/ 8 ‫ ا)ص‬N‫ ا‬N/! ‫ ان‬a**  9;  ‫ ا‬9^0‫ ا‬ ‫ب‬U N% ‫ع او‬2 J r ( k ) 9‫ اا‬X‫ح إذا آ‬J T‫ إ*)ا‬/ 8 ‫ا ت \ ا دة‬ ‫د‬# n ‫ و‬X ‫ا‬2Y ‫ اي‬b ‫ و‬a V a k , sin bk , cos bk , k n N/P‫ وال  ا‬9:)‫ ا‬R‫اآ‬K .RH2 g% ‫ ا ;*ح‬38J*‫ ا‬N‫ وا‬r ( k ) 9‫ ا‬N/! 3:8 3*‫ول ا‬J‫ا‬ r (k )

xk*

ak sin b k / co s b k

Aa k A sin b k + C co s b k A 0 + A1 k + A 2 k 2 + ⋯ + A n k n

kn k nak

a k ( A0 + A1 k + A 2 k 2 + ⋯ + A n k n )

a k sin b k / a k co s b k

a k ( A sin b k + C co s b k )

:‫ ل‬ 9‫ ام  د‬N‫ ا‬H‫أو‬ xk + 2 − 4 xk +1 + 4 xk = 3k + 2k

9‫ن اا‬2/K 9#‫ و‬λ1 = λ2 = 2 ‫رة‬/ ‫ ا‬8‫ر‬6J‫ ا‬T λ 2 − 4λ + 4 = 0 ‫ة‬# ‫ ا‬9‫ا د‬ 9‫   ا د‬80‫ف ا‬:‫ ا" ا‬O‫  ا‬a** 8 ‫ ا)ص‬N‫ ا‬. xCF = ( C1 + C2 k ) 2k 9%)‫ا‬ A0 , A1 , A L ‫ ود‬xk* = A0 + A1k + Ak 2 2 k N/P‫" ا‬# $‫ ا‬J= ‫ول‬J 9*A‫وا‬

j82* xk* + 2 − 4 xk* +1 + 4 xk* = ( A0 − 2 A1 ) + A1k + 8 A2k

J xk + 2 − 4 xk +1 + 4 xk = 3k + 2k Q 9‫  ;ر‬ A0 − 2 A1 = 0,

A1 = 3, 8 A = 1

‫ ام‬N‫ن ا‬2/8‫ و‬A0 = 6, A1 = 3, A = 18 ‫أي‬ xk = ( C1 + C2 k ) 2k + 6 + 3k + 18 k 2 2k

50

‫اف ا‪ 2 2 R;$‬ل ‪8&f‬ام ‪: Excel‬‬ ‫‪2‬ف رس ‪K‬ف ا‪2‬ل ا‪ N  9JK‬د‪= 9‬و‪ ; 9L‬أو‪: 9‬ة ورس ا*ف‬ ‫ا‪ **  3@T‬ت اد‪ "# 98‬أ^‪ Excel )*  9‬آ*‪:3‬‬ ‫‪ (1‬أدرس ‪K‬ف ا د‪ 9‬ا`و‪ 9L‬ا*‪9‬‬ ‫‪xk + 2 − 3 xk +1 + 2 xk = 0‬‬ ‫ ; أو‪ x0 = 0, x1 = 1 9‬و ‪ x0 = −1, x1 = −2‬و ‪x0 = x1 = 2‬‬ ‫ا‪ ; :N‬ا‪0‬و‪x0 = 0, x1 = 1 9‬‬

‫ ان ا‪ #*8 N‬إ" ∞ ‪.‬‬ ‫و ; ا‪0‬و‪x0 = −1, x1 = −2 9‬‬

‫ ان ا‪ #*8 N‬إ" ∞ ‪. −‬‬ ‫و ; ا‪0‬و‪x0 = x1 = 2 9‬‬

‫‪51‬‬

‫ ان ا‪ 9* Y 9 L N‬وه‪6‬ا ‪ Q H "# :8‬ا; ا‪0‬و‪. x0 = x1 9‬‬ ‫‪ (2‬أدرس ‪K‬ف ا د‪ 9‬ا`و‪ 9L‬ا*‪9‬‬ ‫‪2 xk + 2 + 3 xk +1 − 2 xk = 0‬‬

‫‪3‬‬ ‫‪1‬‬ ‫ ; أو‪ x0 = 1, x1 = 9‬و ‪ x0 = 1, x1 = −2‬و‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫ا‪ ; :N‬ا‪0‬و‪9‬‬ ‫‪2‬‬

‫= ‪x0 = 1, x1‬‬

‫ ان ا‪;*8 N‬رب إ" ‪.0‬‬ ‫و; ا‪0‬و‪x0 = 1, x1 = −2 9‬‬

‫‪52‬‬

‫‪. x0 = 2, x1 = −‬‬

‫ ان ا‪* #*8 N‬ددا  ‪ 9H2 L‬و‪.9‬‬ ‫‪3‬‬ ‫و; ا‪0‬و‪9‬‬ ‫‪2‬‬

‫‪x0 = 2, x1 = −‬‬

‫`‪ c‬ا*ف ا‪ 3@T‬ا  ‪.‬‬ ‫‪ (3‬أدرس ‪K‬ف ا د‪ 9‬ا`و‪ 9L‬ا*‪9‬‬ ‫‪xk + 2 + xk = 0‬‬

‫ ; أو‪. x0 = 1, x1 = 0 9‬‬

‫‪53‬‬

.‫*دد ودا‬8 N‫ا‬ ‫ أن‬S  1, if k = 0, 4,8,12,... kπ  cos =  −1, if k = 2, 6,10,14,... 2   0, if k = 1,3,5, 7,...

9*‫ ا‬9L‫ ا`و‬9‫ف ا د‬K ‫( أدرس‬4 4 xk + 2 + xk = 0

. x0 = 1, x1 = 0 9‫ ; أو‬

.0 "‫ إ‬H )*8 N‫ا‬

54

1 kπ 9‫ و; أو‬xk = A   cos  + C  ‫  ; وآن‬9‫ ا د‬56T ‫ ام‬N‫ ا‬H‫; و‬  2  2  k

kπ 1 kπ ‫ ان‬S . xk =   cos ‫ ام‬N‫ ا‬g8 x0 = 1, x1 = 0 2 2  2 k

‫ ا*دد و‬R 8 cos

.)*‫ ا‬R 8 (1 2 )

k

: AF$ ‫ أ إذا‬.H )*K ‫ء او‬d †L*K‫ او‬8‫ا‬G*K ‫ او‬9* Y NOK L 9 ‫ *;ر‬N‫ ا‬9 ** X‫( إذا آ‬1 ‫ أو‬− ∞ "‫  *  إ‬N/P †L*K ‫ أو‬98TS ∞ "‫  *  إ‬N/P 8‫ا‬G*K L T+= ‫ة‬#* X‫آ‬ .3@TS ‫ا‬J` ‫ او‬3@T  *  ‫ددا‬K ‫ي‬K .9‫و‬0‫ وا; ا‬9L‫ ا`و‬9‫  ا د‬N‫" آ‬# N‫ ا‬9 ** ‫ف‬K  *8 (2 .N 3@T‫ ا*ف ا‬8K 3= 9 T ‫ ا‬N‫ا‬2‫*  ا‬K ‫ة‬# ‫ ا‬9‫ور ا د‬6H (3 : ‫ ه‬WTa N‫ وا‬xCF 9 / ‫ ا‬9‫ن  اا‬2/*8 9L‫ وا`و‬9U`*‫ت ا‬S‫  د‬xGS ‫ ام‬N‫; ذآ أن ا‬ ‫ و‬xCF  N‫ف آ‬K "#  *8 N 3@T‫ ا*ف ا‬. xGS = xCF + xPS ‫ أي‬xPS ‫ا)ص‬ N i8‫ة و‬L ‫ `*ة‬Transient 3;*‫ او إ‬3 xCF ‫ف‬K ‫ن‬2/8 \‫ و‬xPS . xPS Yf*‫ ا‬3=  * 8‫ و‬982D ‫*!"  =*ة‬8‫و‬

55

:‫ا اا‬ :Matrix Algebra and Calculus ‫ت‬P #‫ب ا‬T‫ و‬9! ‫ف‬2 ‫ا‬6T‫ و‬،‫ و ء ا ذج‬3U8‫ ا‬N*‫ ا‬3= ‫ا‬H 9 T ‫دوات ا‬0‫=ت  ا‬2` ‫* ا‬K .‫ا ا ;ر‬6‫)م ه‬8  ‫=ت‬2` ‫ و ب ا‬H  N;‫ق إ" ا‬:* ‫ص‬2)‫" ا‬#‫ و‬.‫ ة‬#‫ر وأ‬2: N/! 3= ‫!ء‬0‫  ا‬R‫آ‬K T‫" ا‬# 9=2` ‫ف ا‬K :3*‫ آ‬A 9=2` ‫ف ا‬K aij ∈ ℝ 9;;‫اد ا‬#„  a11 ⋯ a1n  A =  aij  =  ⋮ ⋮ ⋮   am1 ⋯ amn 

:‫ت‬P #‫ ا‬324 %&&‫ت ا‬%2#I‫ا‬ ‫=ت‬2` Q H -1 1- C = A + B ⇒ cij = aij + bij ‫ب د‬i‫ ا‬-2 2- C = α A ⇒ cij = α aij 9=2` ‫ب‬i‫ ا‬-3 n

3- C = AB ⇒ cij = ∑ aik bkj k =1

9=2` (‫ل‬2;) ‫س‬2/ -4 4- C = AT ⇒ cij = a ji 9  ‫ ا‬9=2` ‫ ا‬-5 5- A =  aij  , i = 1,..., n; j = 1,..., n ‫ة‬2‫ ا‬9=2` -6 6- I n = ek( n )  , ek( n) = ( 0,..., 0,1( k th position ) , 0,..., 0 )

T

9=2` ‫ب‬2; -7 7- AB = I ⇒ B = A−1 Singular ‫ !ذة‬A ‫ن‬2/KS‫" !ط ا‬# ‫ب‬2; ‫س ا‬2/ -8

56

8- ( A−1 ) = ( AT ) = A−T −1

T

9=2` ‫ دة ا‬-9 det ( A ) = ∑ ( −1) a1 j det ( A1 j ) n

j +1

j =1

 j ‫د‬2 ‫ول وا‬0‫ ا‬: ‫ف ا‬6 T# N ( n − 1) × ( n − 1) 9=2` A1 j V . A 9=2` ‫ا‬ :‫دات‬8 #2 ‫ة‬8%#‫ ا اص ا‬YI

( i ) det ( AB ) = det ( A ) det ( B ) ( ii ) det ( AT ) = det ( A ) ( iii ) det ( cA ) = c n det ( A) ( iv ) det ( A ) ≠ 0 ⇔ A is nonsingular . y = [ yi ] , i = 1, 2,..., m ‫ أي‬m × 1 9=2` # ‫رة‬# 2‫د ه‬2 ‫ ا‬$J* :l8K 38 y = Ax ‫ن‬+= $J* x ‫ و‬9=2` A ‫إذا آن‬ n

yi = ∑ aij x j , i = 1, 2,..., m j =1

":8 y =  y j  , j = 1,..., n ‫ و‬x = [ xi ] , i = 1,..., m TJ*  3H‫ب ا)ر‬i‫ ا‬:l8K 9L  x1 y1 ⋯ x1 yn  xy =  ⋮ ⋮ ⋮   xm y1 ⋯ xm yn  T

":8 y =  y j  , j = 1,..., n ‫ و‬x =  x j  , j = 1,..., n TJ*  3‫ب اا‬i‫ ا‬:l8K 9L n

xT y = ∑ xi yi = y T x i =1

. A 3= k ‫د‬2 ‫ ا‬ck V A = [ c1 ,..., cn ] 2‫ ه‬A 9=2`  ‫دي‬2 ‫ ا‬N^ *‫ ا‬:l8K  r1T    . A 3= k : ‫ ا‬rkT V A =  ⋮  2‫ ه‬A 9=2`  ‫ي‬: ‫ ا‬N^ *‫ ا‬:l8K  rmT   

. aij = a ji , ∀i, j = 1,..., n , i ≠ j ‫ *‘ة إذا آن‬A 9  ‫ ا‬9=2` ‫;ل ان ا‬8 :l8K 57

;K ‫ *ة إذا‬A ‫ ا *‘ة‬9  ‫ ا‬9=2` ‫;ل ان ا‬8 :l8K AT A = AAT = I

‫أو‬ A−1 = AT

‫أي‬ ckT c j = 0, , k = 1,..., n ; j = 1,..., n, k ≠ j

‫أو‬ rk rjT = 0, k = 1,..., n ; j = 1,..., n, k ≠ j

9=2` ‫ا‬

‫ن‬+=

1 ≤ j1 < ⋯ < js ≤ n

9@GH 9=2` 3‫ ه‬bpq = ai

p jq

‫و‬

1 ≤ i1 < ⋯ < ir ≤ m

X‫آ‬

‫إذا‬

:l8K

9L 9= ‫ ا‬B = bpq  , p = 1,..., r ; q = 1,..., s

9@GH 9=2` B ‫ن‬+= p = 1,..., r ; i p = j p ‫ و‬r = s X‫ وإذا آ‬، A  Submatrix ‫ن‬+= p = 1,..., r ; i p = j p = p ]‫" ذ‬# 9=U‫ وإذا آن إ‬Principal Submatrix 9 @‫ر‬ .Leading Principal Submatrix 9;* 9 @‫ ر‬9@GH 9=2` B T= ‫ن‬2/8 9  9=2` 3‫ وه‬Diagonal Matrix 98:;‫ ا‬9=2` ‫ ا‬:l8K ‫ أي‬aij = 0, ∀i ≠ j  a11 0 ⋯ ⋮ ⋮ ⋮  A =  0 ⋮ aii  ⋮ ⋮ ⋮  0 0 ⋯

0 0 ⋮ ⋮  ⋮ 0  ⋮ ⋮  0 ann 

. A = diag ( aii ) , i = 1,..., n T G8‫و‬

{λ1 ,..., λn } ;‫  ا‬9#2 J 3‫ه‬

A 9  9=2`  Eigenvalues ‫_ة‬%##‫ ا‬7%/‫ ا‬:V I0

9‫; ا د‬K 3*‫وا‬ det ( A − λi I ) = 0, ∀i = 1,..., n

‫ت‬TJ* ‫  ا‬9#2 J 3‫ ه‬A 9  9=2`  Eigenvectors ‫_ة‬%##‫;ت ا‬Z#‫ ا‬:V I0 ;K 3*‫{ وا‬λ1 ,..., λn } ‫ة‬G ‫ ; ا‬9 *‫ا‬ Avi = λi vi , ∀i = 1,..., n

‫أو‬ 58

( A − λi I ) vi = 0,

∀i = 1,..., n

.G ‫وج ا‬G‫ ن ا‬8 T Q K G  9J*‫ة و‬G ‫ ا‬9 ;‫ ا‬:l8K 3*‫ ا‬9=2` ‫ ا‬3‫ ه‬A 9  ‫ ا‬9=2`  9 *‫ ا‬Modal Matrix ‫ ا;س‬9=2` :l8K ;K 3*‫ وا‬A 9=2`  ‫ة‬G  ‫ت‬TJ*  TK #‫ن ا‬2/*K A = M ΛM −1

. A 9=2`  ‫ة‬G ‫ه  ا; ا‬%# 92/ ‫ ا‬98:;‫ ا‬9=2` ‫ ا‬3‫ ه‬Λ = diag ( λi ) V . AM = M Λ ‫ أن‬S 9=2`  ‫س‬L 9=2`‫ة و‬G  ‫ت‬TJ*‫ة و‬G ‫ ا; ا‬H‫ أو‬:‫^ل‬  −2 −3 4  A =  0 1 0   −2 −2 4 

:N‫ا‬ −2 − λ −3 det ( A − λ I ) = 0 1− λ −2 −2

(1 − λ )

−2 − λ

4

−2

4−λ

4 0 =0 4−λ

= (1 − λ ) ( λ 2 − 2λ ) = 0

∴ λ = [1 2 0] T

1 0 0  Λ = 0 2 0    0 0 0 

3*‫ ا;س آ‬9=2`‫ة و‬G ‫ت ا‬TJ* ‫ ا‬H2 −3 4   vi1   −2 − λi  ( A − λi I ) vi =  0 1 − λi 0  vi 2  = 0  −2 −2 4 − λi   vi 3   −3 −3 4   v11  1     λ1 = 1 ⇒  0 0 0  v12  = 0 ⇒ v1 =  −1  −2 −2 3   v13   0 

59

 −4 λ2 = 2 ⇒  0  −2  −2 λ3 = 0 ⇒  0  −2

−3 4   v21  1     −1 0   v22  = 0 ⇒ v1 =  0  1  −2 2   v23  −3 4   v31   2    1 0 v32 = 0 ⇒ v1 =  0       1  −2 4   v33 

 1 1 2 M =  −1 0 0   0 1 1 

. A = M ΛM −1 ‫ و‬AM = M Λ ‫; أن‬K :8 K :3*‫ آ‬R 8 R \ g% ‫د‬# k V Ak ‫ ة‬/ I P  P‫ ر‬:V I0 A k = M Λ k M −1

. Λ k = diag ( λik ) ‫و‬ 2‫ ه‬A 9  ‫ ا‬9=2` ‫ ا‬Trace Y‫ أ‬:l8K n

tr ( A ) = ∑ aii i =1

:‫ أن‬9‫ ه‬/ 8 n

tr ( A ) = ∑ λi i =1

‫و‬ n

det ( A ) = ∏ λi i =1

:‫ت‬O N/ ( A − λi I ) vi = 0 ;8 vi ‫ و‬$J* H28S ‫ا‬6T‫ !ذة و‬9=2` ( A − λ I ) ‫ أن‬S (1 ‫ ان‬gU28 ‫ا‬6‫ وه‬α ≠ 0 V α vi ]6/= λi ‫ة‬G ‫ ا‬9 ; Q K G  $J* vi ‫ذا آن‬+= λi .5‫ ;ار‬c‫ و‬$‫ه‬JK‫ إ‬3= ‫ن‬2/K G ‫ ا‬$J* ‫ ا‬9 ‫أه‬ Right and Left Eigenvectors 98‫ وا ر‬9 ‫ة ا‬G ‫ت ا‬TJ* ‫  ا‬#2 ‫( هك‬2 9L 3 ‫ ا‬G ‫ ا‬$J* ‫= ا‬# ‫  أن‬، {λ1 ,..., λn } ‫ة‬G ‫ ; ا‬9 *‫ا‬ ‫ف‬8 ‫ ا ري‬G ‫ ا‬$J* ‫ ا‬، AM = M Λ  T#  ‫ي‬6‫ وا‬Avi = λi vi , ∀i = 1,..., n N ‫ي‬6‫ وا‬uiT ( A − λi I ) = 0, ∀i = 1,..., n ‫ أو‬uiT Avi = uiT λi , ∀i = 1,..., n 9L‫ ا‬ 60

 ‫ن‬2/*K M −1 ‫ر‬2: ‫ن‬+= vi  ‫ن‬2/*K M ‫ ة‬#‫ أ‬X‫ذا آ‬+= M −1 A = ΛM −1 9L‫  ا‬$# .‫ة وة‬G ‫ أن ا; ا‬S . uiT I P  ‫ ة‬/ e P‫ ر‬:V I0 e

At

( At ) = I + At +

2

2!

( At ) + 3!

( )

3

+⋯

= M diag eλi t M −1

: (SVD) Singular Value Decomposition ‫ذة‬A‫ ا‬#%/‫ ا‬m%0 K* *=2` H28 $+= A ∈ ℝ m×n X‫إذا آ‬ U = [u1 ,..., um ] ∈ ℝ m×m

‫و‬ V = [ v1 ,..., vn ] ∈ ℝ n×n

V U T AV = diag (σ 1 ,..., σ p ) ,

p = min ( m, n )

vi ‫ و‬ui ‫ت‬TJ* ‫ وا‬A 9=2`  ‫ذة‬P‫ ا; ا‬σ i 3 K . σ 1 ≥ σ 2 ≥ ⋯ ≥ σ p ≥ 0 V ‫و‬

.3‫ا‬2*‫" ا‬# ‫ذ‬P‫  ا‬80‫ ا‬i $J* ‫ذ وا‬P‫  ا‬80‫ ا‬i $J* ‫ا‬ : Matrix Calculus ‫ت‬P #‫ب ا‬T ‫ه‬%# V t Z* ‫" ا‬#  *K ‫=ت‬2` B ( t ) = bij ( t ) ‫ و‬A ( t ) =  aij ( t )  /* .‫ ƒ!*;ق‬9 L ‫ن دوال‬2/K bij ( t ) ‫ و‬aij ( t ) P #‫ ا‬/A :V I0 d d  A ( t ) =  aij ( t )  dt  dt 

P #‫  ا‬0 :V I0

∫ A ( t ) dt =  ∫ a ( t ) dt  ij

‫ب‬i‫ة ا‬#L :l8K d d  d  A (t ) B (t ) = A (t )  B (t )  +  A (t )  B (t ) dt dt dt     d



∫ A ( t )  dt B ( t )  dt = A ( t ) B ( t )

limits

d  − ∫  A ( t )  B ( t ) dt dt  

61

‫ س‬I#‫ ا‬/A :V I0 d −1 d  A ( t ) = − A−1 ( t )  A ( t )  A−1 ( t ) dt  dt 

‫ن‬+= 9* Y ‫=ت‬2` C = cij  ‫ و‬A =  aij  X‫إذا آ‬ d At e = Ae At dt

∫e

At

dt = A−1e At + C

62

: ‫ا ا‬ : State Space Representation  ‫ء ا‬GP %#0 The State Space Equations and $ _‫ل ا‬Z#‫ ا‬P ;2T‫ء ا  و‬GP ‫د`ت‬I : their Time Domain Solution :3‫ ;ط ه‬9YY "# ‫ ه‬G‫ف آ‬2 .3;‫ ا‬9‫ء ا‬i= N/! " 8‫ و‬9‫ اآ‬9 O0‫ ا‬3= 9‫ ا‬Z*  ‫ ام‬N^ *‫ ا‬-1 .3;‫ ا‬N/P‫" ا‬# 9‫ ا‬9 O0‫ ا‬QU‫ق و‬D -2 .3G‫ل ا‬J ‫ ا‬3= 9‫ت ا‬S‫  د‬N ‫د‬J8‫ق ا‬D -3 State

9‫ات ا‬Z* 9:‫ا‬2 9‫ اآ‬9 O0‫ ا‬9J  9‫ء ا‬i= N^ K ‫ *)م‬8

. Standard State Space Form 3;‫ ا‬9‫ء ا‬i= N/! 3= TU‫ وو‬Variables ‫=ت‬2` ‫ وا‬x, y, u, f , g $J* ‫ وال ا‬R*/8  *  3‫م آ‬O 9‫ ا‬Z*  ‫ ام‬N/P‫ا‬ N/P‫" ا‬# A, C , D 9* ^‫ا‬ d x ( t ) = Ax ( t ) + f ( x, t ) + Bu ( t ) dt y ( t ) = Cx ( t ) + Du ( t )

‫ أن‬RJ8 A ‫م‬O‫ ا‬9=2` .9:)‫ة واود \ ا‬Z* ‫ ا ت ا‬N‫ي آ‬2K f ( x, t ) V .‫م‬# N/! ‫ اي‬T ‫ن‬2/8 ‫ ان‬/ 8 D ‫ و‬C ‫ و‬B ‫=ت‬2` ‫ وا‬9  ‫ن‬2/K :1‫^ل‬ ‫س‬L N/! 3= 9*‫ ا‬9^‫ ا‬9H‫م  ار‬O‫ ا‬9‫ د‬QU d x1 ( t ) = 7 x1 ( t ) + 3 x2 ( t ) + 4tx1 ( t ) + x1 ( t ) x2 ( t ) − u1 ( t ) + 2u3 ( t ) dt d x2 ( t ) = 9 x1 ( t ) − 5 x2 ( t ) − 3 x22 ( t ) + 4u2 ( t ) dt y ( t ) = x1 ( t ) + x2 ( t ) − 2u2 ( t )

:N‫ا‬ d x ( t ) = Ax ( t ) + f ( x, t ) + Bu ( t ) dt y ( t ) = cT x ( t ) + d T u ( t )

V

63

 u1 ( t )   x1 ( t )    x (t ) =   , u ( t ) =  u2 ( t )   x2 ( t )   u3 ( t )   4tx ( t ) + x1 ( t ) x2 ( t )   −1 0 2  f ( x, t ) =  1 , B =   2 −3 x2 ( t )  0 4 0   cT = [1 1] , d T = [ 0 −2 0] 7 3  A= ,  9 −5 

:  ‫ > ا‬3‫ا  ا‬ ‫ء‬i= N^ K ‫ص‬2)‫" ا‬#‫ و‬9‫ ا‬N/! "‫ إ‬9 O0‫ ا‬j N82* 9;8D ‫ء‬:#‫ إ‬2‫ه= ه ه‬ \ 9 O0‫ ا‬N82K‫ و‬9:*) ‫ ا‬98J‫ وا‬9U`*‫ت ا‬S‫ وا د‬n 9H‫  ار‬9 O0 9‫ا‬ .9: "‫ إ‬9: : n !‫ر‬8‫ ا‬6 %S‫ ا‬%2)‫د`ت ا‬I#‫  ا‬0 -1 n 9H‫  ار‬3*‫م ا‬O‫" ا‬: dn d n −1 d y t + a y ( t ) + ⋯ + an −1 y ( t ) + an y ( t ) = ( ) 1 n n −1 dt dt dt n n −1 d d d b0 n u ( t ) + b1 n −1 u ( t ) + ⋯ + bn −1 u ( t ) + bnu ( t ) dt dt dt

Qi x1 ( t ) = y ( t ) − β 0u ( t ) d d d y ( t ) − β 0 u ( t ) − β1u ( t ) = x1 ( t ) − β1u ( t ) dt dt dt 2 2 d d d d x3 ( t ) = 2 y ( t ) − β 0 2 u ( t ) − β1 u ( t ) − β 2u ( t ) = x2 ( t ) − β 2u ( t ) dt dt dt dt ⋮ x2 ( t ) =

x j (t ) =

d j −1 d j −1 d j −2 d β β y t − u t − u ( t ) − ⋯ − β j −1u ( t ) = x j −1 ( t ) − β j −1u ( t ) ( ) ( ) 0 1 j −1 j −1 j −2 dt dt dt dt

V β 0 = b0 β1 = b1 − a1β 0 β 2 = b2 − a1β1 − a2 β 0 ⋮

β j = b j − a1β j −1 − ⋯ − a j −1β1 − a j β 0

"# N ‫ا‬6/‫وه‬

64

d x ( t ) = Ax ( t ) + bu ( t ) dt y ( t ) = cT x ( t ) + du ( t )

V  x1 ( t )   β1    β  x2 ( t )   x (t ) = , b =  2  , cT = [1 0 0 ⋯] , d = β 0 = b0  ⋮  ⋮       β n   xn ( t )   0  0  A= ⋮   0  −an

1

0



0

1









0

0



−an −1

− an − 2 ⋯

0  0   ⋮   1  −a1 

:2‫^ل‬ 9‫ء ا‬i= N^ K "‫ إ‬9*‫ ا‬9‫ل ا د‬2 d3 d2 d d y ( t ) + 6 2 y ( t ) − 8 y ( t ) + 4 y ( t ) = 2 u ( t ) + 7u ( t ) 3 dt dt dt dt

j82* 9;  ‫ ا‬9;8:‫ *) ا‬ x j (t ) =

d x j −1 ( t ) − β j −1u ( t ) dt

J x1 ( t ) = y ( t ) − β 0u ( t ) = y ( t ) d d d y ( t ) − β 0 u ( t ) − β1u ( t ) = y ( t ) dt dt dt 2 2 d d d d2 x3 ( t ) = 2 y ( t ) − β 0 2 u ( t ) − β1 u ( t ) − β 2u ( t ) = 2 y ( t ) − 2u ( t ) dt dt dt dt x2 ( t ) =

]6‫وآ‬ β j = b j − a1β j −1 − ⋯ − a1β 0 β 0 = b0 = 0 β1 = b1 − a1β 0 = 0 β 2 = b2 − a1β1 − a2 β 0 = 2

β 3 = b3 − a1β 2 − a2 β1 − a3 β 0 = 7 − 6 ( 2 ) − 5

J 9U`*‫ ا‬9‫ ا د‬3= j82* ‫و‬ 65

 x1 ( t )   0 1 0   x1 ( t )   0  d     x2 ( t )  =  0 0 1   x2 ( t )  +  2  u ( t )  dt  x3 ( t )   −4 8 −6   x3 ( t )   −5  x1 ( t )    y ( t ) = [1 0 0]  x2 ( t )  + [ 0] u ( t )  x3 ( t ) 

:  ‫ > ا‬3‫ إ‬3 !‫ر‬8‫ ا‬6 ‫م‬W  0 ": d3 d2 d y t + a y ( t ) + a2 y ( t ) + a3 y ( t ) = u ( t ) ( ) 1 3 2 dt dt dt

‫ ان‬i8‫  ا‬. u ( t ) ‫*;ت‬P ‫ى‬28S  80‫ف ا‬:‫ ان ا‬O ،9 N/! "‫م ا‬O‫ا ا‬6‫ل ه‬2 N  9JK‫ة ا‬# ‫ ا‬9‫ور ا د‬6H Q 9; :* 9JK‫م ا‬O‫ ا‬9=2`  ‫ة‬G ‫ا; ا‬ .‫ة‬: ‫ ا‬9‫  د‬9 *‫ ا‬9 J* ‫ ا‬9‫ا د‬ ‫ ت‬/‫ض ا‬2 9‫ ا‬56T :N‫ا‬ x1 ( t ) = y ( t ) x2 ( t ) = y′ ( t ) =

d x1 ( t ) = x1′ ( t ) dt

‫م‬# N/P ‫و‬ x j (t ) =

d x j −1 ( t ) dt

J y′′′ ( ' t ) =

d x3 ( t ) = x3′ ( t ) QU2 9= ‫ ا‬9‫ن  ا د‬b‫ ا‬x1 ( t ) = y ( t ) Q dt

d x3 ( t ) = −a1 x3 ( t ) − a2 x2 ( t ) − a3 x1 ( t ) + u ( t ) dt

3*‫ آ‬3=2` N/! "# QU2K x3′ ( t ) ‫ و‬x2′ ( t ) ‫ و‬x1′ ( t ) 3= ‫ت‬S‫ن ا د‬+= ‫ا‬6/‫وه‬  x1 ( t )   0 d   x2 ( t )  =  0  dt  x3 ( t )   − a3

1 0 − a2

0   x1 ( t )  0    1   x2 ( t )  + 0  u ( t ) −a1   x3 ( t )  1 

‫و‬  x1 ( t )    y ( t ) = [1 0 0]  x2 ( t )  + [ 0] u ( t )  x3 ( t ) 

66

3‫ ه‬9 J* ‫ ا‬9‫ة  د‬# ‫ ا‬9‫ا د‬ λ 3 + a1λ 2 + a2λ + a3 = 0

N  ":K 9‫ ا‬9=2`  ‫ة‬G ‫وا; ا‬ det ( A − λ I ) = 0 −λ

1

0

0

−λ

1

− a3

− a2

−a1 − λ

=0

J ‫ول‬0‫ ا‬:  ‫و `] ا ة‬ −λ

−λ − a2

0 1 −1 − a3 −a1 − λ

1 −a1 − λ

= −λ ( λ 2 + a1λ + a2 ) − 1( a3 ) = λ 3 + a1λ 2 + a2λ + a3 = 0

3: ‫م‬O 9‫ ا‬9=2`  ‫ة‬G ‫  ; أي ان ا; ا‬T#  3*‫ ا‬9J*‫ ا‬c` 3‫وه‬ .9 J* ‫ ا‬9‫ة  د‬# ‫ ا‬9‫ور ا د‬6H Q  :*K ;*  : S2#‫ ا‬9Z‫ وا‬%2)‫د`ت ا‬I#‫ ا‬T -2 3;‫ ا‬9‫ء ا‬i= N/! "# 3*‫م ا‬O‫ ا‬QU d d x1 ( t ) + x2 ( t ) = −4 x1 ( t ) + x4 ( t ) + x5 ( t ) + u ( t ) dt dt d x2 ( t ) = x2 ( t ) − 5 x3 ( t ) + 3u ( t ) dt 0 = x3 ( t ) + x4 ( t ) = x1 ( t ) − 3x2 ( t ) + x3 ( t )

0

+ 7u ( t )

= x1 ( t ) − x2 ( t )

0

+ x5 ( t )

3=2` ‫ ا‬N/P‫" ا‬# ‫ت‬S‫ ا د‬56‫ ه‬R*/

1 0  0  0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

d   dt x1 ( t )    0   d x ( t )   −4 0 0 2    0   dt   0 1 −5  d   0 x3 ( t ) =  0 0 1     dt 0    1 −3 1 d   x4 ( t )  1 −1 0 0   dt   d   x5 ( t )   dt 

67

1 1   x1 ( t )   1    0 0   x2 ( t )   3     1 0   x3 ( t )  +  0  u ( t )     0 0   x4 ( t )   7  0 1   x5 ( t )   0 

3*‫=ت آ‬2` ‫;  ا‬

 1   0  0   0    0

1 1 0 0  0 

0 0  0  0  0

0 0 0 0 0

 d    dt x1 ( t )     0     d x ( t )    −4 2      0     dt   0 d    0     x3 ( t )   =   0  dt     1 0        d 0     x4 ( t )    1 dt   d   x5 ( t )       dt

0 1 0 −3 −1

0  −5  1 1  0

1 1     x1 ( t )    1       0 0    x2 ( t )   3  1 0     x3 ( t )   +   0   u ( t )     0 0     x4 ( t )    7     0 1     x5 ( t )     0    

N/P‫" ا‬# X%‫; ا‬  E11 0 

d  xd ( t )   0  dt  C11 C12   xd ( t )  bd  u (t )  =  +  C21 C22   xa ( t )   ba  0  d   x t  dt a ( ) 

N‫ ا‬T 3*‫وا‬ d xd ( t ) = Axd ( t ) + wu ( t ) dt

V A = E11−1 ( C11 − C12C22−1C21 )

w = E11−1 ( bd − C12C22−1ba )

: %S\ 3‫ إ‬%S\ %1 #W‫  ا‬0 -3 ‫م‬O 3: R8;K H‫أو‬  −1 2  A= ,  −1 −3

 x2 (t ) 1  f =  2  , bu ( t ) =   u ( t ) 0  0 

Equilibrium Point ‫ازن‬2*‫ ا‬9:; Reference State QH ‫ ا‬9 6+ ‫ف‬2 . u0 ( t ) Q dx0 ( t ) dt = 0 :N‫ا‬ 3‫ وه‬QH ‫ ا‬9‫ ود ا‬u0 ( t ) ‫ و‬x0 ( t ) ‫ل‬2 ‫م‬O‫ف `] ا‬2 d x0 ( t ) = 0 dt Ax0 ( t ) + f ( x0 ( t ) , u0 ( t ) ) + 0 = 0

68

‫أو‬ 2 0 = − x10 ( t ) + 2 x20 ( t ) + x20 (t )

0 = − x10 ( t ) − 3 x20 ( t )

J RK*‫دة ا‬#+ ‫و‬ x10 ( t ) = −3 x20 ( t )

2 3 x20 ( t ) + 2 x20 ( t ) + x20 ( t ) = ( 5 + x20 ( t ) ) x20 ( t ) = 0

3‫*;ار ه‬A‫ ا‬3* ‫ا‬6/‫وه‬ 0 15  x10 ( t ) =   , x20 ( t ) =   0  −5 

‫ن‬f  # $# *‫ ا‬/ 8 9‫ ا‬$J*  9 *‫ ا‬Jacobian Matrix 9 2‫آ‬J‫ ا‬9=2` ‫ا‬ J u (t ) = 0

J x(t )

 ∂  ∂x ( t ) f1 ( x ( t ) , u ( t ) ) 1 =  ∂ f2 ( x (t ) , u (t ))   ∂x1 ( t )



 f1 ( x ( t ) , u ( t ) )   0 2 x2 ( t )   =   ∂ 0 0   f 2 ( x ( t ) , u ( t ) ) ∂x2 ( t )  x ( t ), u (t ) 0 0 ∂x2 ( t )

x0 ( t ),u0 ( t )

2‫ ( ه‬: NH ‫ي‬6‫ ) ا‬3:)‫م ا‬O‫ ا‬x0T ( t ) = [ 0 0] Q QH ‫ ا‬9  −1 2  1  d δ x (t ) =  δ x (t ) +   δ u (t )  dt  −1 3  0 

2‫ ه‬3:)‫م ا‬O‫ ا‬x0T ( t ) = [15 −5] QH ‫ ا‬9‫و‬  −1 −8 1  d δ x (t ) =  δ x (t ) +   δ u (t )  dt  −1 −3 0 

.9`*) 9‫ت او‬S ‫ل‬2 3%0‫م ا‬O 3: R8;K N^ K ‫ ا *;ة‬9:)‫ ا‬9 O0‫ ا‬56‫ه‬ :‫ة‬/#‫ ا‬%S‫ ا‬#W‫ ا‬T : Z#‫ة ا‬/#‫ ا‬%S‫ ا‬#W‫ا‬ (9J*) 3=2` Z*  9‫ د‬Scalar ‫دي‬# Z* 3= 9‫  د‬N‫ف ;رن  ا‬2 :98‫ اد‬9‫ا‬ d x ( t ) = ax ( t ) , x0 ( 0 ) = x0 dt

N‫ ا‬J 9U`*‫ت ا‬S‫ ا د‬N 9;  ‫ق ا‬:

69

x ( t ) = x0e at

:9=2` ‫ ا‬9‫ا‬ d x ( t ) = Ax ( t ) , x0 ( 0 ) = x0 dt

2‫ ه‬N‫ ا‬9;8:‫ ا‬c` x ( t ) = e At x0

State Transition Matrix 9‫ إ*;ل ا‬9=2` " K e At 9=2` ‫ا‬ :9‫ إ*;ل ا‬9=2` ‫اص‬2 1.

d At e = Ae At = e At A dt

2.

∫e

3. e

At

dt = A−1e At = e At A−1

A ( t +τ )

= e At e Aτ

4. let τ = −t , e 5. e(

A+ B)t

A ( t +τ )

= e At e − At = I

= e At e Bt , if

or

−1

e At  = e − At

AB = BA

: Z#‫ا‬%1 ‫ة‬/#‫ ا‬%S‫ ا‬#W‫ا‬ :98‫ اد‬9‫ا‬ d x ( t ) − ax ( t ) = bu ( t ) dt

N‫ ا‬J 9U`*‫ت ا‬S‫ ا د‬N 9;  ‫ق ا‬: x ( t ) = x0e at + ∫ e a ( t −τ )bu (τ ) dτ t

0

:9=2` ‫ ا‬9‫ا‬ d x ( t ) − Ax ( t ) = Bu ( t ) dt

2‫ ه‬N‫ ا‬9;8:‫ ا‬c` x ( t ) = e At x0 + ∫ e A( t −τ ) Bu (τ ) dτ t

0

70

: %F‫د`ت او‬I#2  ‫ء ا‬GP %#0 N ‫ آ  ان‬9U`*‫ت ا‬S‫  د‬5O  ^/ NT‫ أ‬9L‫ت ا`و‬S‫  د‬9‫ء ا‬i= N^ K  ‫ آ‬N‫د ا‬J8A Excel N^ a ‫ *)م‬8‫م و‬O ‫اري‬/K N 8D # *8 aK‫م ا‬O‫ا‬ .;S ‫ى‬ :3*‫ آ‬9‫ء ا‬i= N^ K N/P 9H‫  أي در‬9L‫ =و‬9‫ أي د‬QU2K xk +1 = Gxk + Huk

\ ‫ ود‬9=2` H ‫ ( و‬9  ) 9‫ ا‬9=2` G ‫ و‬k ‫ار‬/*‫ ا‬# 9‫ ا‬$J* xk V .cJ*‫ا‬ :1‫^ل‬ "‫و‬0‫ ا‬9H‫ إ" د*  ار‬9 Z*‫ و‬9^‫ ا‬9H‫  ار‬9*‫ ا‬9L‫ ا`و‬9‫ل ا د‬2 .9 ‫ي‬Z*‫و‬ xk + 2 + 5 xk +1 − 7 xk = 2k

:N‫ا‬ :N/P‫" ا‬# 9‫ ا د‬S‫ أو‬Qi xk + 2 = −5 xk +1 + 7 xk + 2k

a*= xk +1 = yk QU xk +1 = yk yk +1 = −5 yk + 7 xk + 2k

‫أي‬  xk +1   1 0   xk   0   y  =  −5 7   y  +  2  k  k    k +1  

V xk +1 = Gxk + Huk N/P‫" ا‬# 3‫وه‬  1 0 G=   −5 7 

‫و‬ 0 H =   2

  ‫م ا‬O N H‫ أو‬x0 = 1, y0 = 1 9‫; أو‬

71

:Excel ‫ام‬8&f  ‫ا‬ :3*‫ ا‬N‫أد‬

J

N^ 9‫ اآ‬9 O0‫ وآة ا‬NK a‫ ا‬3= T*J 92T 2‫ ه‬9‫ء ا‬i= N^ K 9 ‫أه‬ .‫ و\ه‬STELLA ‫ و‬Vensim a :Vensim 9:‫ا‬2 9L‫ت ا`و‬S‫  د‬9‫ء ا‬i= N^ K : Vensim 9:‫ا‬2   ‫م ا‬O‫ ا‬N^ K x dx

y dy

k

dx = y dy = -5*y+7*x+2*k k = LOOKUP( [(0,0)-(10,10)],(0,0),(1,1),(10,10)) x = INTEG ( dx, 1) y = INTEG ( dy, 1)

72

:‫ا ادس‬ : %&&‫ذج ا‬#$‫ ا‬YI ‫;ا‬K ^‫ ء  ذج أآ‬9‫آت او‬K *K 3*‫ ا‬90‫ ا ذج ا‬j ‫ ورس‬3 ‫ف‬2 3;;‫ب إ" ا ا‬L‫وا‬

: S‫ل( ا‬a `‫ )ا‬#$‫ ذج ا‬# -1 # ‫ى او ا *ع‬2* ‫ ان ا‬U= 2= ،X Y ‫† ل‬L*8 ‫داد أو‬G8 ‫م‬O R‫آ‬K d ‫ا ا‬6‫ه‬ 9L ":8 (a < 0) †;‫( أو ا‬a > 0) ‫دة‬8G‫ن ل ا‬+= x (t ) ‫  ;ار‬N^ 8 t G‫ا‬ dx (t ) = xɺ (t ) = a dt

:N/P N^ 8‫و‬ x(t) dx(t)/dt

a

N/P ":K (a > 0) ‫و ـ‬

Graph for x(t) 40

30

20

10

0 0

10

20

30

40

50 60 Time (Month)

"x(t)" : Current

73

70

80

90

100

xɺ (t ) G

dx (t ) ‫ دا@  ـ‬G ‫ف‬2 :9O dt

:&`‫ل( ا‬a `‫ )ا‬#$‫ ذج ا‬# -2 2= ،‫دة‬2H2 ‫ ا‬9 /‫ ا‬Q R*8 ‫;† ل‬8 ‫ أو‬8‫ا‬G*8 ‫ى أو *ع‬2* *8 ‫ذج‬2 ‫ا ا‬6‫ه‬ ‫( او‬a > 0) ‫دة‬8G‫ن ل ا‬+= x (t ) ‫  ;ار‬N^ 8 t G‫ ا‬# ‫ى او ا *ع‬2* ‫ ان ا‬U= 9L ":8 (a < 0) †;‫ا‬ xɺ (t ) = ax (t )

:N/P N^ 8‫و‬ x(t) dx(t)/dt

a

N/P ":K (a > 0) ‫و ـ‬

Graph for x(t) 200

150

100

50

0 0

10

20

30

40

50 60 Time (Month)

70

80

90

100

"x(t)" : Current

(a < 0) 9 ; ;  ‫ ا‬/P‫ أر ا‬:8 K

74

: S‫ل ا‬a `‫ وا‬#$‫ ذج ا‬# -3 & X Y ‫† ل‬L*8 XL2‫ ا‬c` 3=‫( و‬a > 0) X Y ‫ ل‬8‫ا‬G*8 ‫ى‬2*  ‫ *ع او‬N^ 8‫و‬ :3*‫ آ‬N^ 8‫( و‬b < 0) xɺ (t ) = a − b

x(t) dx(t)/dt

-dx(t)/dt

a

b

:&`‫ل ا‬a `‫ وا‬#$‫ ذج ا‬# -4 2= ،‫دة‬2H2 ‫ ا‬9 /‫ ا‬Q R*8 ‫;† ل‬8 ‫ و‬8‫ا‬G*8 ‫ى أو *ع‬2* *8 ‫ذج‬2 ‫ا ا‬6‫ه‬ ‫( و‬a > 0) ‫دة‬8G‫ن ل ا‬+= x (t ) ‫  ;ار‬N^ 8 t G‫ ا‬# ‫ى او ا *ع‬2* ‫ ان ا‬U= 9L ":8 (b < 0) †;‫ا‬ xɺ (t ) = (a − b ) x (t )

:N/P N^ 8‫و‬ x(t) dx(t)/dt

-dx(t)/dt

a

b

75

:I%‫ ذج ا‬#$‫ ا‬-5 QL2 N^ 8 x (t ) ‫آن‬2 ^ = ، 9‫ آ‬9J* 3:8 3/  *: * # Q J8 ‫ذج‬2 ‫ا ا‬6‫ه‬ ‫ أن‬S) v (t ) G 9#  G‫ ر‬2‫ و‬9* ^‫ ا‬9;=S‫ ا‬T*# N^ 8 xɺ (t ) ‫ن‬+= 9‫آ‬ N/P 9‫ت اآ‬S‫ د‬R*/K‫و‬

dv (t ) = vɺ (t ) = xɺɺ (t ) ‫ن‬2/8 NJ*‫ن ا‬+= ( v (t ) = xɺ (t ) dt

9‫ا د‬ xɺɺ (t ) = a

†; NJK a < 0 ‫دة و‬8‫ ز‬NJK a > 0 V

x(t) dx(t)/dt

v(t) dv(t)/dt a

"‫و‬0‫ ا‬9H‫  ار‬9U`K K‫ دا‬N/! "# 9^‫ ا‬9H‫  ار‬9U`*‫ ا‬9‫ ا د‬R*/K‫و‬ :3*‫ ( آ‬State Equations 9‫ت ا‬S‫)د‬ xɺ (t ) = v (t ) vɺ (t ) = a

9‫و; او‬ x ( 0) = 0 k v (0) = 0 k/sec xɺ (t ) = 5 k/sec vɺ (t ) = 3 k/sec 2

76

Graph for x(t) 80,000

60,000

40,000

20,000

0 0

10

20

30

40 50 60 Time (Second)

70

80

90

"x(t)" : Current

100 k

Graph for v(t) 400

300

200

100

0 0

10

20

30

40 50 60 Time (Second)

"v(t)" : Current

70

80

90

100

k/Second

77

Birth-Death Model ‫ت‬2 ‫دة وا‬S2‫ذج ا‬2  (3) 9U`*‫ ا‬9‫  د‬l%28‫و‬ xɺ = ( b − d ) x

9L‫أو ا`و‬ xt = xt −1 + ( b − d ) xt −1

x

dx/dt

b

d

dx/dt=(b-d)x

Logistic Growth Model 3* H2‫ ا‬2 ‫ذج " ا‬2  (1) 9U`*‫ ا‬9‫  د‬l%28‫و‬ xɺ = k ( H − x )

9L‫أو ا`و‬ xt = xt −1 + k ( H − xt −1 )

78

Inventory x dx/dt

k

Sales rate

H

Market limit

dx/dt=k(H-x)

Product Limit Growth (3* H2) ‫وط‬P ‫ ا ود‬2 ‫ذج ا‬2  (5) 9U`*‫ ا‬9‫  د‬l%28‫و‬ xɺ = kx ( h − x )

9L‫او ا`و‬ xt = xt −1 + kxt −1 ( h − xt −1 )

79

Product sold x dx/dt Sales rate

k z

Residual market z=H-x

H Market limit dx/dt=kx(h-x)

:9 ‫ي‬Z*  9U`*‫ت ا‬S‫  د‬l%28 ‫ذج‬2  (6) yɺ = k1 ( h − y )

xɺ = k2 ( y − x )

9L‫أو ا`و‬ yt = yt −1 + k1 ( h − yt −1 )

xt = xt −1 + k2 ( yt − xt −1 )

80

Houses sold y= Number of houses sold Houses supply h= Number of housholds

y dy/dt

x= Number of airconditions

k1 h dy/dt=k1(h-y)

Airconditions sold

Airconditions supply

x dx/dt

k2 dx/dt=k2(y-x)

:9 ‫ات‬Z* ‫ ^ث‬9U`*‫ت ا‬S‫  د‬l%28 ‫ذج‬2  (7) hɺ = k4 h

yɺ = k1 ( h − y )

xɺ = k2 ( y − x ) − k3 x

9L‫أو ا`و‬ ht = ht −1 + k4 ht −1

yt = yt −1 + k1 ( ht − yt −1 )

xt = xt −1 + k 2 ( yt − xt −1 ) − k3 xt −1

81

Hous holds h

dy/dt=k1(h-y)

dh/dt dx/dt=k2(y-x)-k3x

k4

dh/dt=k4h Houses sold y dy/dt k1 Airconditions sold Broken aircond.

x

dx/dt

k3

k2

82

:‫ا ا‬ :‫ذج‬#$‫ ا‬YI ‫ء‬$9 %&‫`ت درا‬T :‫ق‬2 ‫ ا‬9‫ذج آ‬2  ‫" ء‬# ‫ ^ل‬-1 ‫ق‬2 ‫ ا‬2  gU28 ‫ذج‬2 ‫ ا‬.@‫ دا‬a* 82 K 9‫ذج آ‬2  ‫ف  *ض ء‬2 ‫ا ا ^ل‬6‫ ه‬3= 9= ‫ر ا‬P*‫ف * ان ا‬2 .‫ن‬2 ‫ ز‬N/ ‫ ة واة‬$@‫* !ا‬8 V ‫ر‬2D 8H a*  3/‫ا‬  *8 a* ‫ن ل !اء ا‬+= ‫ا‬6T‫ و‬a* ‫ا ا‬6‫ ا!*وا ه‬86‫ @ ا‬G‫" ا‬#  *K a* ‫ا ا‬6‫ ه‬# :"# a* ‫ ا!*وا ا‬86‫ @ ا‬G‫د ا‬# (1) a* ‫*وا ا‬P8 ‫ ان‬QL2*8 86‫ ا‬L‫ @ ا‬G‫د ا‬# (2) T‫آ‬/*‫ إ‬# a* ‫ إ!*وا ا‬86‫ @ ا‬G‫ء ا‬U L2* ‫ @ ا‬G‫*ع ا‬L‫ إ‬9H‫( در‬3) j‫ ا‬Ti : ‫ف‬2 ،(3@TS) ‫ا‬H ‫ آ‬L2* ‫ @ ا‬G‫د ا‬# T= ‫ن‬2/8 3*‫ ا‬9‫‰ ا‬L ‫ف‬2 :S‫أو‬ ‫ ان‬QL2*8 86‫" ا‬#‫( و‬8*P) ActualCustomers = a* ‫ ا!*وا ا‬86‫ @ ا‬G‫" ا‬# ‫ اآ‬L2* ‫د ا‬# T= 3*‫ ا‬9‫ف * ا‬2‫( و‬L2*) PotentialCustomers ‫*وا‬P8 .8*P ‫دة ا‬8‫ ز‬# O‫ ا‬jZ X Y 8;K NO8‫ و‬8*P ‫^  ا‬/ 3‫ إ‬L2* ‫  ا‬c∆t ‫ل‬28 8*P ‫ وا  ا‬N‫∆ آ‬t ‫ة‬L 9‫ `*ة ز‬$‫`*ض ا‬ 3:8 ‫ي‬6‫( وا‬conversion coefficient N82*‫ ا‬N) RH2 X Y c V ،8*P .8*P ‫ا‬28 3/ L2* ‫ع ا‬LA 8*P ‫ ا‬9= ‫;  ى‬ L2* ‫  ا‬c∆t ‫ل‬2 T ‫ وا‬N‫ آ‬8*P ‫  ا‬n ( t ) H28 t G‫ ا‬# ‫ ان‬U*=‫إذا إ‬ g8 8*P ‫د ا‬# t + ∆t G‫∆ = ا‬t 9G‫ ا`*ة ا‬3= 8*P "‫إ‬ n ( t + ∆ t ) = n ( t ) + n ( t ) c∆ t

‫أو‬ n ( t + ∆t ) − n ( t ) dn ( t ) = = cn ( t ) ∆ t →0 ∆t dt lim

(1) 9/K 9‫ د‬N/! "# ‫أو‬

t

n ( t ) = n0 + ∫ cn (τ ) dτ

(2)

0

2‫ ه‬9;  ‫ ا‬9‫ ا د‬N ، t = 0 G‫ ا‬# 8*P ‫د ا‬# 2‫ ه‬n0 V 83

n ( t ) = n0e ct , t ≥ 0

( 3)

:9L‫ =و‬9‫ د‬N/! 3# (3)-(1)  9;  ‫ت ا‬L‫ف ‹ ا‬2 :9O n ( t + ∆ t ) − n ( t ) = n ( t ) c∆ t for ∆t = 1 (one time unit) nt +1 = nt + nt c nt +1 = (1 + c ) nt

when t = 0, nt = n0

n1 = (1 + c ) n0

n2 = (1 + c ) n1 = (1 + c )(1 + c ) n0 = (1 + c ) n0 2

n3 = (1 + c ) n2 = n0 (1 + c )

3

or nt = n0 (1 + c ) , t ≥ 0 t

Vensim 9Z ‫ذج‬2 ‫ ا‬N^ 8 3*‫ ا‬N/P‫ا‬

n(t)

n(0)

dn(t)/dt

c

(1)

c = 1 Units: **undefined**

(2)

"dn(t)/dt" = c*"n(t)" Units: **undefined**

(3)

FINAL TIME = 100 Units: Month The final time for the simulation.

(4)

INITIAL TIME = 0 Units: Month The initial time for the simulation.

84

(5)

"n(0)" = 1

Units: **undefined**

(6)

"n(t)"= INTEG ( "dn(t)/dt", "n(0)") Units: **undefined**

(7)

SAVEPER = TIME STEP Units: Month The frequency with which output is stored.

(8)

TIME STEP = 1 Units: Month

The time step for the simulation.

:‫أو‬

Actual Customers

InitialActualCustomers

ConversionFlow

ConversionConstant

(1)

ActualCustomers = INTEG ( ConversionFlow, InitialActualCustomers) Units: **undefined**

(2)

ConversionConstant = 1 Units: **undefined**

(3)

ConversionFlow = ConversionConstant*ActualCustomers Units: **undefined**

(4)

FINAL TIME = 10

Units: Month The final time for the simulation.

(5)

INITIAL TIME = 0 Units: Month The initial time for the simulation.

(6)

InitialActualCustomers = 1 Units: **undefined**

(7)

SAVEPER = TIME STEP Units: Month The frequency with which output is stored.

(8)

TIME STEP = 1 Units: Month

The time step for the simulation.

85

1 Current 1 ActualCustomers 2,000

1

1

1

1

1

1

1

1,500 1

1,000 1

500 1 1 0 ConversionFlow 2,000

1

1

1

1

1

1,500 1

1,000 1

500 1

0

1

0

1

1

2.5

1

1

1

5 7.5 Time (Month)

10

.8*P "‫ إ‬L2* ‫ و ل إ ب ا‬8*P ‫د ا‬#  N/ 3S‫ ا‬2 ‫ ا‬d  S 2 ‫ ا‬9;;‫ ا‬3= ‫ن‬0 ،(3@T) ‫ ود‬L2* ‫د ا‬# T= ‫ن‬2/8 3*‫ ا‬9‫‰ ا‬L ‫ن‬b‫ ا‬:Y ‫ده‬# ‫ إذا آن‬8*P "‫ إ‬T‫ا آ‬22* L2* ‫ن ا‬0 ]‫ *  „  وذ‬8 ‫ ان‬/ 8S 3S‫ا‬ .‫ود‬ 2‫ ه‬t G‫ ا‬# ;* ‫ @ ا‬G‫د ا‬# ‫ن‬2/= M 2‫ ه‬L2*  3/‫`*ض ان اد ا‬ N/ N82*‫ ل ا‬2‫ ه‬c ‫ و `*ض ان‬t G‫ ا‬# 8*P ‫د ا‬# 2‫ ه‬n ( t ) V M − n ( t ) 3/‫ اد ا‬Q : R*8 N82*‫ف `*ض ان ل ا‬2 ،L2* M H28 # ‫*ي‬P N82*‫ن ل ا‬+= L2* ‫ ا‬l ";K ‫ آن‬2 ^ = ،9‫ ز‬9O ‫ اي‬# ;* ‫ ا‬L2*  .‫ا‬6/‫ وه‬c / 4 2‫*ي ه‬P N/ N82*‫ن ل ا‬+= L2* ‫ ا‬Q ‫ ر‬3;K ‫ وإذا‬c / 2 2‫*ي ه‬P N/ 2‫∆ ه‬t 9G‫ ا`*ة ا‬3= ‫*ى وا‬P 2 ‫ ا‬L2* ‫د ا‬# ‫ن‬+= ‫ت‬U`‫ ا‬56‫ ه‬XK

{ M − n ( t ) M } × c∆t 2‫*ى ه‬P n ( t ) N/ 2 ‫ ا‬L2* ‫د ا‬# ‫ن‬2/8‫و‬

86

{

}

n ( t ) ×  M − n ( t )  M × c∆t

g8 8*P ‫د ا‬# t + ∆t G‫ ا‬#

{

}

n ( t + ∆t ) = n ( t ) + n ( t ) ×  M − n ( t )  M × c∆t n ( t + ∆t ) − n ( t ) = c ×  M − n ( t ) M × n ( t ) ∆t

{

}

‫أو‬ dn ( t ) M − n (t ) = c× × n (t ) dt M

(4) 9/K 9‫ د‬N/P ‫أو‬

t

n ( t ) = n0 + ∫ c × 0

M − n (τ ) × n (τ ) dτ M

( 5)

2‫ ه‬9;  ‫ ا‬9‫ ا د‬N ، t = 0 G‫ ا‬# 8*P ‫د ا‬# 2‫ ه‬n0 V n (t ) =

M , t≥0 1 +  ( M − n0 ) n0  e − ct

(6)

logistic curve 3* H2‫ " ا " ا‬8 "  (6) 9‫ا د‬ :9L‫ =و‬9‫ د‬N/! 3# (6)-(4)  9;  ‫ت ا‬L‫ف ‹ ا‬2 :9O M − nt × nt M n   nt +1 = nt + c  1 − t  nt M  nt +1 = nt + c (1 − α nt ) nt nt +1 − nt = c ×

where α = 1 M

‫د‬# 2‫ ه‬n0 = 1 ‫ أن‬U= ‫ذا‬+= ‫ار‬/*‫ ا‬9;8: T ‫ف‬2 9: \ 9L‫ =و‬9‫ د‬56‫وه‬ M = 100 2‫ ه‬L2*  3/‫ واد ا‬c = 1 N82*‫ ول ا‬t = 0 G‫ ا‬# 8*P ‫ا‬

‫ن‬+= α = 1 M = 0.01 nt +1 = nt + c (1 − α nt ) nt n1 = n0 + c × (1 − α n0 ) n0

= 1 + 1 × (1 − 0.01 × 1) × 1 = 1.99

87

n2 = n1 + c × (1 − α n1 ) n1

= 1.99 + 1 × (1 − 0.01 × 1.99 ) × 1.99 = 3.94

n3 = n2 + c × (1 − α n2 ) n2

= 3.94 + 1 × (1 − 0.01 × 3.94 ) × 3.94 = 7.73

n4 = 14.85 n5 = 27.50 n6 = 47.44 n7 = 72.37 n8 = 92.37 n9 = 99.42 n10 = 99.996

:3*‫ ا‬N/P‫ ا‬T‫و‬

Graph for ActualCustomers 100

1

1

9

10

1

75

1

50

1

1

25 1

0 0

1

1

1

2

1

3

ActualCustomers : Current

4 1

5 6 Time (Month)

1

1

1

1

7 1

8 1

1

1

1

1

:3*‫ آ‬Vensim ‫*)ام‬+   ‫ذج ا‬2 ‫ ا‬6`

88

TotalMarket Potential Customers

Actual Customers

InitialActualCustomers

ConversionFlow

ConversionConstant

(01)

ActualCustomers = INTEG ( ConversionFlow, InitialActualCustomers) Units: **undefined**

(02)

ConversionConstant = 1 Units: **undefined**

(03)

ConversionFlow = ConversionConstant*(PotentialCustomers/TotalMarket)*ActualCustomers Units: **undefined**

(04)

FINAL TIME = 10

Units: Month The final time for the simulation.

(05)

INITIAL TIME = 0 Units: Month The initial time for the simulation.

(06)

InitialActualCustomers = 1 Units: **undefined**

(07)

PotentialCustomers = INTEG ( -ConversionFlow, TotalMarket-InitialActualCustomers) Units: **undefined**

(08)

SAVEPER = TIME STEP Units: Month The frequency with which output is stored.

(09)

TIME STEP = 1 Units: Month The time step for the simulation.

(10)

TotalMarket = 100 Units: **undefined**

89

n(0)

M

M-n(t)

n(t) dn(t)/dt

c

(01)

c = 1 Units: **undefined**

(02)

"dn(t)/dt" = c*("M-n(t)"/M)*"n(t)"

(03)

FINAL TIME = 10

(04)

INITIAL TIME = 0 Units: Month The initial time for the simulation.

(05)

M = 100

(06)

"M-n(t)" = INTEG ( -"dn(t)/dt", M-"n(0)") Units: **undefined**

(07)

"n(0)" = 1 Units: **undefined**

(08)

"n(t)" = INTEG ( "dn(t)/dt", "n(0)")

(09)

SAVEPER = TIME STEP Units: Month The frequency with which output

Units: **undefined**

Units: Month The final time for the simulation.

Units: **undefined**

Units: **undefined**

is stored. (10)

TIME STEP = 1 Units: Month The time step for the simulation.

90

1 Current 1 ActualCustomers 100

1

1

1

1

1

1

1

1

1 1

75

1

50

1 1

25 1 1

1

1

0 ConversionFlow 40 30

1 1

20 1

10 0

1

1 1

0

1

1 1

2.5

5 7.5 Time (Month)

10

9* H2‫ ا‬2 ‫ ت ا‬dK ‫ ا‬n ( t ) 8*P  ‫ ا*;ي‬S ‫ ف‬d  8 "#0‫ ا‬N/P‫ا‬ i8‫ ا‬2‫ي ه‬6‫ب( وا‬2; ‫ة ا‬2T;‫ن ا‬J= ‫س )او‬J‫ ا‬N/! $P8 ‫ي‬6‫ ا‬N82*‫ ل ا‬3 N/!‫و‬ .3* H2‫ ا‬2 ‫ ا‬3= N82*‫ت ا‬S †@ ‫ا‬ : Determining Model Parameters ‫ذج‬2 ‫  ا‬K ‫وري‬i‫  ا‬3* H2‫ = " ا‬،‫ذج‬2 ‫  *)ام ا‬3/  ‫ ا‬L K ‫ا‬H ‫وري‬i‫ ا‬ :3*‫ ا   ^ل ا‬56‫ ه‬8* 9;8D ‫ف  *ض‬2 . M ‫ و‬n0 ‫ و‬c 8K 9 "*‫ و‬1984 9  N*‫ و إ‬X=2‫و‬/ ‫ت‬J*  ‫ق‬2 ‫ ا‬9 L 9  3‫ ه‬9*‫ات ا‬ 1994 Year

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

Market 3.0

2.5

4.0

7.5

7.0

13.0

17.0

29.0

46.5

50.0

49.5

Value

3= ‫ق‬2 ‫ ا‬9 L‫ و‬x XK ‫د‬2‫ ا‬3= 9 ‫ ت ا‬NK Curve Expert a ‫*)ام‬+ S‫او‬ :3*‫ آ‬User-Defined Model ‫*ر‬+ ‫ذج‬2 ‫ ا‬8‫ و‬y XK ‫د‬2 ‫ا‬

91

User-Defined Model: y=a/(1+b*exp(-c*x))

9‫ او‬L ‫د‬ Coefficient Data: a=

57.760559

b=

286.77098

c=

0.72892383 S = 3.46006530 r = 0.98725204 75 54.

Y Axis (units)

67 45. 58 36. 50 27. 42 18. 3 9.3 5 0.2

0.0

2.0

4.0

6.0

X Axis (units) User-Defined Model: y=a/(1+b*exp(-c*x)) Coefficient Data: a=

57.760567

b=

138.3462

c=

0.72892364

92

8.0

10.0

12.0

S = 3.46006530 r = 0.98725204 75 54.

Y Axis (units)

67 45. 58 36. 50 27. 42 18. 3 9.3 5 0.2

0.0

1.8

3.7

5.5

7.3

9.2

11.0

X Axis (units)

Excel ‫ام‬8&f ‫ ذج‬#$‫ ا‬7I 6%%I0 ‫ة‬8H 9`% 3= 3*‫ ا‬N‫أد‬

3*‫دوات أ*ر ا‬0‫ ا‬: 

93

Solver ‫ة‬6= TOK

Equal To 3=‫ و‬5ZK ‫ع ا  ت ا اد‬2 J 9 L ‫ي‬2K Set Target Cell ‫ أن‬S 3*‫ ا‬By Changing Cells ;‫ ا‬Z* ‫ع ا  ت‬2 J ZK *8‫ و‬Z* Min *‫أ‬ "# N Solve "# dZU ‫ و‬$D$1:$D$3 9‫و‬0‫ ا; ا‬8 3=

94

‫‪ S‬ان ا)‪ D1 8‬و ‪ D2‬و ‪2K D3‬ى ا‪b‬ن ا; ا‪ 9@T‬ا ;رة   و ‪2K E16‬ى ا‪NL‬‬ ‫‪2 J  9 L‬ع  ت ا‪:0‬ء‪.‬‬

‫‪95‬‬

The Workforce Inventory Example : 2 4 ‫ ة‬/ ‫ ذج _ون‬# -2 8 2T= 3/8‫ذج د‬2  ‫ ء‬9// # ‫ة‬H ‫ة‬/= ‫ء‬:#A ‫ا‬H T d ‫ذج ا‬2 ‫ا ا‬6‫ه‬ ‫م‬# "‫دي إ‬BK L 9‫ة ا‬2;‫ ا‬l‘2K ‫ب‬2‫ون وا‬G) ‫ ت إدارة ا‬3= N#`*‫ ا‬9`‫آ‬ l‘2K 3= ‫=ع‬A‫ ان ا‬3‫ وه‬9;: \ 9J* 8 i8‫ ا‬9‫ آ  ا‬.‫*ج‬A‫ ا‬3= ‫*;ار‬A‫ا‬ 9/8‫ د‬gU28 3*‫ ا‬N/P‫ ا‬.‫ اآ^ إ*;ارا‬9# ‫ة‬2L 3‫دي ا‬B8 ‫ ان‬/ 8 ‫ ا ل‬g8 K‫و‬ :‫ذج‬2 ‫ا‬

Inventory Production

Sales

InventoryCoverage

Productivity

TargetInventory InventoryCorrection TargetProduction

Workforce NetHireRate

TimeToCorrectInventory

TargeWorkforce TimeToAdjustWorkforce

"# ‫ي‬2*8 ‫ذج‬2 ‫ا‬ ( Level ‫ى‬2* ‫ ) أو ا‬Stocks ‫  ا *ع‬#2 (‫ا‬ Inventory ‫ون‬G) ‫( ا‬1 Workforce 9‫ة ا‬2;‫( ا‬2 Flows ‫ ب‬A‫اع  ا‬2‫ أ‬9 ‫ب( أر‬ ( Inflow N‫ون ) إ ب دا‬G) ‫  *ع ا‬8GK‫ و‬Production ‫*ج‬A‫( ا‬1 ( Outflow 3H‫) أ ب ر‬

‫ون‬G) ‫  *ع ا‬N;K‫ و‬Sales ‫( ا ت‬2

9‫ة ا‬2;‫  *ع ا‬8G8 ‫ أو‬N;8 2‫ وه‬NetHireRate ‫*)ام‬A‫ ل ا‬3=% (4 ‫( و‬3 Auxiliary Variables ‫ة‬#  ‫ات‬Z* (‫ج‬ TargetInventory ‫ف‬T* ‫ون ا‬G) ‫( ا‬1 InventoryCorrection ‫ون‬G) ‫ ا‬gK (2 TargetProduction ‫ف‬T* ‫*ج ا‬A‫( ا‬3 TargetWorkforce 9=T* ‫ ا‬9‫ة ا‬2;‫( ا‬4 Constants ‫ذج‬2 ‫ ا‬X ‫ا‬2Y (‫د‬ Productivity 9H*A‫( ا‬1 96

InventoryCoverage ‫ون‬G) ‫ ا‬9:ZK (2 TimeToCorrectInventory ‫ون‬G) ‫ ا‬g* ‫ب‬2: ‫ ا‬G‫( ا‬3 TimeToAdjustWorkforce 9‫ة ا‬2;‫ ا‬N8* ‫ب‬2: ‫ ا‬G‫( ا‬4

Causal Relationships between Variables :‫ذج‬2 ‫ ا‬3= 9 ‫ت ا‬L‫ا‬ :‫ون‬G) ‫ *ع ا‬:S‫أو‬ Workforce Production Productivity

Inventory Sales

Inventory

InventoryCorrection

TargetProduction

:9‫ة ا‬2;‫ *ع ا‬:Y (Workforce) (TargeWorkforce)

NetHireRate

TimeToAdjustWorkforce

Workforce

Productivity TargeWorkforce TargetProduction

NetHireRate

(Workforce)

Workforce Production

Inventory ‫ف‬T* ‫ون ا‬G) ‫ ا‬# ‫ ا‬Z* ‫ ا‬:^Y

InventoryCoverage TargetInventory Sales

97

TargetInventory

InventoryCorrection

TargetProduction

‫ون‬G) ‫ ا‬gK # ‫ ا‬Z* ‫ ا‬:f ‫را‬ Production (Sales)

Inventory

InventoryCoverage Sales

InventoryCorrection TargetInventory

TimeToCorrectInventory

InventoryCorrection

TargetProduction

TargeWorkforce

‫ف‬T* ‫*ج ا‬A‫ ا‬# ‫ ا‬Z* ‫ ا‬:  Inventory TargetInventory

InventoryCorrection TargetProduction

TimeToCorrectInventory Sales

Workforce TargetProduction

TargeWorkforce NetHireRate

9=T* ‫ ا‬9‫ة ا‬2;‫ ا‬:‫د‬ Productivity InventoryCorrection Sales

TargeWorkforce TargetProduction

98

(NetHireRate) Workforce TargeWorkforce

Production NetHireRate

(Workforce)

Feedback Loops %2‫" ا‬+‫دورات ا‬ :‫ون‬G) ‫  *ع ا‬9`)‫ ا‬986Z*‫دورة ا‬ Loop Number 1 of length 6 Inventory InventoryCorrection TargetProduction TargeWorkforce NetHireRate Workforce Production

:9‫ة ا‬2;‫  *ع ا‬9`)‫ ا‬986Z*‫دورة ا‬ Loop Number 1 of length 1 Workforce NetHireRate Loop Number 2 of length 6 Workforce Production Inventory InventoryCorrection TargetProduction TargeWorkforce NetHireRate

:‫ف‬T* ‫*ج ا‬A‫ ا‬# ‫ ا‬Z*  9`)‫ ا‬986Z*‫دورة ا‬ Loop Number 1 of length 6 TargetProduction TargeWorkforce NetHireRate Workforce

99

Production Inventory InventoryCorrection

:‫ون‬G) ‫ ا‬gK # ‫ ا‬Z*  9`)‫ ا‬986Z*‫دورة ا‬ Loop Number 1 of length 6 TargetProduction TargeWorkforce NetHireRate Workforce Production Inventory InventoryCorrection

:9=T* ‫ ا‬9‫ة ا‬2;‫ ا‬# ‫ ا‬Z*  9`)‫ ا‬986Z*‫دورة ا‬ Loop Number 1 of length 6 TargetProduction TargeWorkforce NetHireRate Workforce Production Inventory InventoryCorrection

:‫ذج‬2 ‫ت ا‬S‫د‬ (01)

FINAL TIME = 100

Units: Month

The final time for the simulation. (02)

INITIAL TIME = 0

Units: Month

The initial time for the simulation. (03)

Inventory = INTEG(Production-Sales ,300) Units: Widget

(04)

InventoryCorrection = (TargetInventory - Inventory)/ TimeToCorrectInventory Units: Widget/Month

(05)

InventoryCoverage = 3

Units: Month

(06)

NetHireRate = (TargeWorkforce Workforce)/TimeToAdjustWorkforce Units: Person/Month

100

(07)

Production = Workforce*Productivity Units: Widget/Month

(08)

Productivity = 1 Units: Widget/Month/Person

(09)

Sales = 100 + STEP(50,20)

Units: Widget/Month

(10)

SAVEPER = TIME STEP

Units: Month

The frequency with which output is stored. (11)

TargetInventory = Sales * InventoryCoverage Units: Widget

(12)

TargetProduction = Sales + InventoryCorrection Units: Widget/Month

(13)

TargeWorkforce = TargetProduction/Productivity Units: Person

(14)

TIME STEP = 1 Units: Month The time step for the simulation.

(15)

TimeToAdjustWorkforce = 3

Units: Month

(16)

TimeToCorrectInventory = 2

Units: Month

(17)

Workforce = INTEG(NetHireRate, TargeWorkforce) Units: Person

:9;  ‫ ا`;ة ا‬3= ‫ة‬: ‫ ا‬9‫و‬0‫ذج ; ا‬2 ‫ آت ا‬9J* 9*‫ل ا‬/!0‫ا‬ runinv01 Inventory 600 450 300 1 150 0 Production 400 300 200 100 1 0 Sales 200 170 140 110 80

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

50 Time (Month)

100

101

1

runinv01 Workforce 400 300 200 100

1

1

1

1

1

1

1

1

1

1

1

1

0 NetHireRate 60 30 1 0 -30 -60

1

0

50 100 Time (Month)

Graph for Inventory 600 1

1

1

450

1

1

1

1

1

1

1

1

1

300

1

1

1

1

150

0 0

10

20

Inventory : runinv01

30 1

40 50 60 Time (Month) 1

1

1

102

1

1

70 1

80 1

1

90 1

100 Widget

Graph for Workforce 400

300

1

200

1

100

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 0

10

20

Workforce : runinv01

Time (Month)

30 1

40 50 60 Time (Month) 1

1

1

1

1

70 1

80 1

1

90

100 Person

1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

"Inventory"

Runs:

Inventory

runinv01

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

250

241.667 269.444 322.685 388.272 453.215 506.799 541.985 555.977 549.973

528.308 497.203 463.414 433.022 410.524 398.355 396.822 404.408 418.328 435.206 451.737 465.224 473.925 477.189 475.377 469.638 461.582 452.939 445.246 439.628 436.675 436.435 438.496 442.13 446.471 450.676 454.068 456.216 456.971 456.438 454.92 452.836 450.626 448.68 447.279 446.565 446.542 447.099 448.047 449.163 450.232 451.084 451.614 451.786 451.632 451.232 450.693 450.128 449.636 449.287 449.115 449.119 449.269 449.516 449.802 450.074 450.288 450.418 450.457 450.414 450.308 450.169 450.025 449.9

449.813 449.772 449.776 449.816 449.88 449.954

103

Time (Month)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

"Workforce" Workforce 100

Runs:

runinv01

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

141.667 177.778 203.241 215.586 214.943 203.584 185.187 163.991 143.997 128.335 118.894 116.212 119.607 127.502 137.831 148.467 157.585 163.92 166.879 166.531 163.486 158.701 153.264 148.188 144.261 141.944 141.357 142.307 144.382 147.047 149.76 152.061 153.635 154.341 154.205 153.392 152.148 150.754 149.467 148.483 147.916 147.79 148.054 148.598 149.286 149.977 150.557 150.948 151.115 151.069 150.852 150.53 150.172 149.846 149.6

149.461 149.435 149.508 149.651 149.828

150.004 150.15 150.247 150.286 150.272 150.214 150.13 150.039 149.956 149.895 149.861 149.856 149.876 149.913 149.959 150.004 150.04 150.064 150.074 150.069

104

Fibonacci Sequence Model :A 9%P I ‫ ذج‬# -3 ‫ وا‬9 Z* ‫ و‬9^‫ ا‬9H‫ ار‬ y ( k + 2 ) = y ( k + 1) + y ( k ) ,

y (1) = 1, y ( 2 ) = 1, k = 1, 2,3,⋯

k = 1 ⇒ y ( 3) = y ( 2 ) + y (1) = 1 + 1 = 2

k = 2 ⇒ y ( 4 ) = y ( 3) + y ( 2 ) = 2 + 1 = 3 k = 3 ⇒ y ( 5 ) = y ( 4 ) + y ( 3) = 3 + 2 = 5 ⋮

:‫ض‬2 9 8Z* ‫و" و‬0‫ ا‬9H‫ إ" ار‬T2 x ( k + 1) = y ( k ) , k = 1,2,3,⋯ ,

x ( 2 ) = y (1) = 1

:9‫ء ا‬i= N/! 3= j82*‫  ا‬3P*2= 9 **  9= ‫ ا‬9‫ ا د‬g*= y ( k + 2 ) = y ( k + 1) + x ( k + 1)

x ( k + 2 ) = y ( k + 1) k = 1, 2,3,...

y (1) = 1, y ( 2 ) = 1, x ( 2 ) = y (1) = 1

k = 1 ⇒ y ( 3) = y ( 2 ) + x ( 2 ) = 1 + 1 = 2 x ( 3) = y ( 2 ) = 1

k = 2 ⇒ y ( 4 ) = y ( 3) + x ( 3) = 2 + 1 = 3 x ( 4 ) = y ( 3) = 2

k = 3 ⇒ y ( 5) = y ( 4 ) + x ( 4 ) = 3 + 2 = 5 x ( 5) = y ( 4 ) = 3



Vensim ‫ام‬8&f A 9%P I#  ‫ء ا‬GP > ‫ ذج‬#

y dy

x dx

105

(1)

dx = y

(2)

dy = y+x

(3)

FINAL TIME = 10

(4)

INITIAL TIME = 1

(5)

SAVEPER = TIME STEP

(6)

TIME STEP = 1

(7)

x= INTEG ( dx,1)

(8)

y= INTEG ( dy,1)

k

1

2

3

4

5

6

7

8

9

y

1

3

8

21

55

144

377

987

2584 6765

x

1

2

5

13

34

89

233

610

1597 4181

10

‫ي اود‬2K) x ‫( و‬9H‫و‬G‫ى اود ا‬2K) y  9 ; 3P*2= 9 ** ‫ ان‬S (98‫ا`د‬ k

1

2

3

4

5

6

y

1

3

8

21

55

144

x

↑ ց ↑ ց ↑ ց



1

13

2

5

ց



ց

34

106

↑ 89



Dynamic Stochastic Models %R‫ ا‬AI‫ ا‬%% $ 8‫ذج ا‬#$‫ ا‬-4 Markovian Property of order k 9H‫  ار‬%P ‫رآ‬#‫ ا‬%H‫ ا‬:l8K

9‫ز‬0‫ ا‬# T L "#  *K t G‫ ا‬# 9@‫ا‬2P‫هة ا‬O‫ ا‬9 L ‫" ان‬# ‫ل‬2;K ‫ن‬+= { yt , −∞ < t < ∞} X‫ = ^ إذا آ‬.d;= t − 1, t − 2,..., t − k

(

)

P yt < s | yt −1 , yt −2 ,..., yt −k , yt −( k +1) ,... = P ( yt < s | yt −1 , yt −2 ,..., yt −k )

.9=2‫ ا رآ‬9%)‫ ا‬Q*K 3*‫ ا‬98‫*د‬LA‫اه ا‬2O‫^  ا‬/‫هك ا‬ : Vensim ‫ام‬8&f %P ‫رآ‬#‫ ا‬%R‫ ا‬AI‫ ا‬%‫ذج ا آ‬#$‫ ا‬%#0 ‫م‬28 98T 3= ‫اد‬2 ‫ ا‬0 ‫`ل‬LA‫هة وا;س ان  ا‬P  8‫*د‬LA‫ أ ا‬H‫ و‬:1 ‫^ل‬ Q8‫ز‬2K $ 3@‫ا‬2P# f: Q ;  ‫ ا‬2‫ ا‬98T 3= ‫`ل  دة‬LA‫"  ا‬#  *8 ‫اول‬K .‫هة‬O‫ ا‬56‫ ه‬l8 ‫ذج‬2  ‫ن‬2‫ آ‬.‫م‬2‫] ا‬6 σ 2 8K‫`ي و‬% d2* 3D R  ‫ن‬2/= ε t 2‫ ه‬3@‫ا‬2P‫ ا‬f:)‫ وا‬yt 2‫م ه‬2‫ ا‬98T 3= ‫`ل‬LA‫ `*ض أن  ا‬:N‫ا‬ 9=2‫ ا آ‬9%)‫ا‬ yt = φ1 yt −1 + φ2 yt −2 + ε t , ε t ~ N ( 0,σ 2 ) , ∀t

9 Z* 9 J* \ 9^‫ ا‬9H‫  ار‬Difference Equation 9L‫ =و‬9‫ د‬56‫وه‬ ‫ن‬2/= xt −1 = yt −2 ‫ `*ض‬،* 3‫ او‬9H‫ در‬3‫ إ‬T2 ‫ف‬2 .‫وا‬ yt = φ1 yt −1 + φ2 xt −1 + ε t , ε t ~ N ( 0, σ 2 ) , ∀t xt = yt −1

9;  ‫ت ا‬S‫ ا د‬N= φ1 = 1.7, φ2 = −0.72, and σ 2 = 1 X‫ ا ^ل ا   إذا آ‬3= :2 ‫^ل‬ y0 = 0, x0 = 0

9‫; أو‬

Vensim ‫*)ام‬+ :N‫ا‬

107

x dx

y dy

phi2

eps phi1

(01) dx = y (02) dy = phi1*y+phi2*x+eps (03) eps= RANDOM NORMAL(-3.99,3.99 ,0 ,1 ,19 ) (04) FINAL TIME = 2

The final time for the simulation.

(05) INITIAL TIME = 0

The initial time for the simulation.

(06) phi1 =

1.7

(07) phi2 =

-0.72

(08) SAVEPER = TIME STEP

The frequency with which output

is stored. (09) TIME STEP = 0.01

The time step for the simulation.

(10) x= INTEG ( dx, 0) (11) y= INTEG ( dy, 0)

108

dy v y 4

2

0

-2

-4 -0.100

-0.050

0 y

0.050

0.100

dy : Current

xvy 0.008

-0.009

-0.026

-0.043

-0.06 -0.100

-0.050

0 y

x : Current

109

0.050

0.100

y 0.2

0.1

0

-0.1

-0.2 0

0.50

1 Time (Day)

1.50

2

1.50

2

y : Current

dy 4

2

0

-2

-4 0

0.50

1 Time (Day)

dy : Current

110

x&y 0.2 0.008

0 -0.026

-0.2 -0.06 0

0.50

1 Time (Day)

y : Current x : Current

111

1.50

2

: bifurcation kIA‫ ذج ا‬# -5 ^‫  آ‬a*K T2/ 3U8‫ ر‬N/P l^/ N/P ‫ن‬b‫رس ا‬K 3*‫  أه ا ذج ا‬RP*‫ ذج ا‬ .‫ ا ذج‬56‫ أ ه‬N^ 8 3*‫ذج ا‬2 ‫ وا‬،92/‫ وا‬9:‫اه ا‬2O‫ ا‬ 9:)‫ ا‬9U`*‫ت ا‬S‫ ا د‬9#2 J ‫ف‬K ‫ف  *ض‬2 ‫ا ارس‬6‫ ه‬3= xɺ = −0.5 x + ay ,

a < 0.4

yɺ = x − 0.5 y

9‫ء ا‬i= N/P T*/‫و‬ a  x   xɺ   −0.5  yɺ  =  1 −0.5   y     a   −0.5 A= −0.5   1  −0.5 − λ det ( A − Iλ ) = det  1 

( −0.5 − λ )

2

 =0 −0.5 − λ  a

−a =0

λ1 = − a − 0.5 λ2 = a − 0.5

:VenSim ?S# kIA‫ ذج ا‬# %#0 x dx/dt b

a

y dy/dt

c

(01) a = -0.3

Units: **undefined**

(02) b = -0.5

Units: **undefined**

(03) c = -0.5

Units: **undefined**

112

(04) "dx/dt" = b*x+a*y

Units: **undefined**

(05) "dy/dt" = x+c*y Units: **undefined** (06) FINAL TIME = 10

Units: Month

The final time for the

Units: Month

The initial time for the

simulation. (07) INITIAL TIME = 0 simulation. (08) SAVEPER = TIME STEP Units: Month

The frequency with

which output is stored. (09) TIME STEP = 0.0625

Units: Month

The time step for the

simulation. (10) x = INTEG ( "dx/dt",

1)

Units: **undefined**

(11) y= INTEG ( "dy/dt",

1)

Units: **undefined** a = −0.3

1 2 0.06 0.6

3

3

1

3

3

3

3

3

3

3

2 3

2 41

-0.2 -0.08 -1 -0.6

2 2

1

2

4

4

4

2 1

0

4

4

3 4 1

4

4

4

4

1 2

1

3

4

2

5 6 Time (Month)

2

2

7

1

1

1

1

1

2

8

1 2

2

9

10

1 1 1 1 1 1 1 1 1 1 x : Current 2 2 2 2 2 2 2 2 2 2 y : Current 3 3 3 3 3 3 3 3 3 "dx/dt" : Current 3 4 4 4 4 4 4 4 4 4 4 "dy/dt" : Current

a = 0.3

113

2 4 0.06 0.6

3

3

3

3

3

3

3

3

3 3 3

4 3

0.8 0 -0.2 0

2

2

2

2

2

2 4

4

1 1

0

1

1

1

4

2

1

3

41

4 1

4

4

5 6 Time (Month)

4

4

4

4

1

1

1

1

1

2

2

2

2

2

2

7

8

9

10

1 1 1 1 1 1 1 1 1 1 x : Current 2 2 2 2 2 2 2 2 2 2 y : Current 3 3 3 3 3 3 3 3 3 "dx/dt" : Current 3 4 4 4 4 4 4 4 4 4 4 "dy/dt" : Current

a = −0.3, b = −0.5, c = 0.5

20 40 4 8

1

2 2 1

3 4

-20 -40 -4 -8

2 3

12

2 1

34 12

2

3

4

4

1

23

4

1

3

4

34

1

4

1

3

4

1

2

3 3 2

2

1 4

2

3

1

4 3

0

23

46

69

92 115 138 Time (Month)

161

184

207

230

1 1 1 1 1 1 1 1 1 1 x : Current 2 2 2 2 2 2 2 2 2 2 y : Current 3 3 3 3 3 3 3 3 3 "dx/dt" : Current 3 4 4 4 4 4 4 4 4 4 4 "dy/dt" : Current

a = −0.3, b = −0.3, c = 0.5

114

800 B 2e+012 200 B 400 B

4 4 123412341234123412341234123412341234123

3 12

-0.8 Tr -2e+012 -0.2 Tr -0.4 Tr 0

23

46

69

92 115 138 Time (Month)

161

184

207

230

1 1 1 1 1 1 1 1 1 1 x : Current 2 2 2 2 2 2 2 2 2 2 y : Current 3 3 3 3 3 3 3 3 3 "dx/dt" : Current 3 4 4 4 4 4 4 4 4 4 4 "dy/dt" : Current

a,b,c  N/ 9`*) ; 9U`*‫ت ا‬S‫ ا د‬9#2 J ‫ف‬K 3# ‫رب‬JK H‫ أ‬:8 K

x dx/dt a

y r

z dz/dt b

115

dy/dt

xɺ = − a ( x − y ) yɺ = − xz + bx − y zɺ = xy − cz

a = −0.1, b = 0.02, c = −0.03

4 1 2 0.4 2 2

2

3 2

5

5

6

6

4 3

0 -1 -0.4 0 -2 -2

6 1

4

1

5

6

5

1

4

12

1

1

4 5

2

6

45 6

2

1 2

4

1

4

5

2

56

4 3

3

2

3

3

3 3

0 x : Current y : Current 2 z : Current 3 "dx/dt" : Current "dy/dt" : Current "dz/dt" : Current

1

2

3

1

1 2 5

5 6

5 6

5 6

116

3 4

5 6

2 3

4

4 5

6

10

1 2

3 4

9

1 2

3 4

8

1 2

3 4

7

1 2

3 4

6

1 2

3 5

4 5 6 Time (Second)

5 6

6

The Pumping Heart Model :k2/‫ ا‬P 2GI 9 /0 ‫ ذج‬# -6 . J‫اء ا‬GH‫ ا‬Q H "‫ إ‬9@‫  ا‬J ‫آ‬S 3Z‫ ام ا‬N;K 9)i ‫ ن آ‬A‫ ا‬RL ‫*ر‬#‫ إ‬/ 8  ‫*دد‬8 ‫م‬O‫ آ‬R;‫ ا‬. Oscillator ‫ا( آ *دد‬H 38;K N/P ) ‫ ن‬A‫ ا‬RL 9H6  / 8  ‫آ‬ .†;K 9 ‫ أي‬Systole ‫)ء و إ;ض‬K‫ إر‬9 ‫ أي‬Diastole ‫ إ ط‬:‫م‬# N/P * Electro-Chemical

3@ ‫وآ‬T‫ آ‬6` R;‫ت ا‬i# ‫ إ;ض وإ ط‬3= R *8

9 ‫ آ‬v ‫ و‬R;‫ ا‬3= Muscle Fiber 9i# 9` ‫ل‬2D 2‫ ه‬x ‫ أن‬U*=‫ذا إ‬+= . Stimulus R;‫ ا‬9i# 9` ‫ل‬2D 3= ‫;ض‬A‫ ط وا‬A‫ أن ل ا‬9  ‫رب ا‬J*‫  ا‬H‫ =; و‬،6` ‫ا‬ 9`‫ ا‬J VY  ‫ ا`ق‬Q ( µ > 0 RK X ^ ) * †;8‫ و‬6` ‫ ا‬9 ‫ آ‬Q ‫داد‬G8 .9`‫ل ا‬2D Q †L*K 6` ‫ ا‬9 ‫ أن ل آ‬H‫ آ  و‬.T2D‫و‬ ‫ت‬: ‫" ا‬# ‫ * ا‬R;‫  ا‬9i# 9` 9‫ذج آ‬2  9U`*‫ت ا‬S‫ن ا د‬2‫ آ‬:S‫أو‬ .9;  ‫ا‬ :a@*‫‰ ا‬L‫ و‬9*‫ ; ا‬Vensim ‫ذج‬2  ‫ن‬2‫ آ‬:Y µ = 2 cm / sec, x ( 0 ) = 2 cm

v ( 0 ) = 1 microgrm, t = 0 ( 0.1) 100 sec

:N‫ا‬ †;8‫ و‬6` ‫ ا‬9 ‫ آ‬Q ‫داد‬G8 R;‫ ا‬9i# 9` ‫ل‬2D 3= ‫;ض‬A‫ ط وا‬A‫  أن ل ا‬:S‫أو‬ ‫ إذا‬T2D‫ و‬9`‫ ا‬J VY  ‫ ا`ق‬Q ( µ > 0 RK X ^ ) * dx ( t ) = v ( t ) − µ  x 3 ( t ) 3 − x ( t )  dt

‫ إذا‬9`‫ل ا‬2D Q †L*K 6` ‫ ا‬9 ‫و  أن ل آ‬ dv ( t ) = − x (t ) dt

d  N/P T*/‫و‬ dx = v − µ ( x3 3 − x ) dt dv = −x dt

Vensim Q 9 # ‫ ذج‬#$‫ ا‬:%c

117

x dx

mu

v dv

(01) dv = -x

Units: microgrm/sec

(02) dx = v-mu*(((x^3)/3)-x) Units: cm/sec (03) FINAL TIME = 100

Units: Second

The final time for the

simulation. (04) INITIAL TIME = 0

Units: Second The initial time for the

simulation. (05) mu = 2

Units: cm/sec

(06) SAVEPER = TIME STEP

Units: Second

The frequency with which output is stored. (07) TIME STEP = 0.1

Units: Second

The time step for the

simulation. (08) v = INTEG (

dv, 1)

Units: microgrm

(09) x = INTEG (

dx, 2)

Units: cm

118

Current 1 x 4 2 1 0 -2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1 1

1

1

1

1

-4 dx 1

4 2 0 -2 -4

1

1 1

1

1

1

1

1

1

1

1

1 1

1

1

0

25

50 Time (Second)

75

100

(1) N/! 1

Current v 4 2 0 -2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

-4 dv 4 2 0 -2 -4

1

1

0

1

1

1

25

1

1

1

1

50 Time (Second)

1

1

1

1

75

100

(2) N/!

119

Heart Rate v Fiber Length 4

2

0

-2

-4 -3 dx : Current

-2

-1

1

1

1

0 x 1

1

1

1 1

1

2

1

1

1

3 cm/sec

1

(3) N/!

Heart Rate v Stimulus 4

2 1 1

1

1

1

0

-2

-4 -3 dx : Current

-2 1

-1 1

1

0 v 1

1

1

1 1

1

1

2 1

1

1

3 cm/sec

(4) N/!

120

Stimulus v Fiber Length 4

2

0

-2

-4 -3

-2

v : Current

1

-1 1

1

0 x 1

1

1

1 1

1

2

1

1

1

3 microgrm

1

(5) N/!

Stimulus v Heart Rate 4 1

1

1

1

1

1

1

2 1

0

-2

1

-4 -4 v : Current

-3

-2 1

1

-1 1

1

0 dx 1

1

1 1

1

2 1

1

3 1

1

4

microgrm

(6) N/! :a@*‫ ا‬9PL Systole ‫;ض‬A‫( إ" ا‬982D ‫ )أف‬Diastole ‫ ط‬A‫*;ل  ا‬A‫( أن ا‬1) N/!  8

‫ي‬6‫ وا‬3` ‫ إ ب‬3= R *8S 3* ) ‫ول‬0‫ ا‬3= ‫ء‬d ‫;ض‬A‫ ا‬T= ‫ث‬K (‫ة‬L ‫)أف‬ 121

‫‪B8‬ذي ا;‪ (R‬و‪ # /‬آ ‪  9# 9‬ا `‪+= 6‬ن ا‪0‬ف ‪ Q= Q8 N/P j;K‬ام إ"‬ ‫ا)رج‪ 8 (2) N/! .‬ا*دد ‪2*  3= Oscilation‬ي ا `‪ 6‬ول ‪ .5ZK‬ا‪/!0‬ل  )‪(3‬‬ ‫إ" )‪ 9D gU2K (6‬ا*ددات اور‪ "= 98‬ا *‪82‬ت‪:‬‬ ‫‪ -1‬ل ‪i‬ت ‪ 9i#‬ا;‪2D U R‬ل ا‪(3) N/! 9i‬‬ ‫‪ -2‬ل ‪i‬ت ‪ 9i#‬ا;‪ U R‬آ ‪ 9‬ا `‪(4) N/! 6‬‬ ‫‪ -3‬آ ‪ 9‬ا `‪2D U 6‬ل ا‪(5) N/! 9i‬‬ ‫‪ -4‬آ ‪ 9‬ا `‪ U 6‬ل ‪i‬ت ‪ 9i#‬ا;‪(6) N/! R‬‬ ‫‪:8 K‬‬ ‫‪H+ L -1‬اء ‪JK‬رب ‪ "#‬ا ‪2‬ذج ) ون ‪2‬ف  وث ‪2D0 (9L 9*/‬ال )*`‪9i 9‬‬ ‫ا;‪ R‬وآ ت )*`‪ 6`  9‬و‪L‬رن ا*@‪a‬‬ ‫‪8 3* -2‬ث إ‪TH‬د ‪ 9i‬ا;‪ R‬و ‪ #‬اي  *‪82‬ت  `‪6‬؟‬ ‫‪ -3‬ه‪ X Y YfK 2‬ا*‪ µ R‬؟‬ ‫‪ -4‬د ‪ #‬أي  *‪2‬ى  ا `‪ 6‬أو ‪ #‬أي ‪K µ X ^ 9 L‬ث ‪ 9L 9*/‬؟ )أي ‪lL2*K‬‬ ‫‪ 9i#‬ا;‪ # R‬ا*دد ‪2 R‬ف او =ح =‪(3@J‬‬

‫‪122‬‬

:Lorenz Attractors Models $ ‫ ذج !ذت  ر‬# -7 ‫ ا إدوارد‬9:‫ا‬2 ‫رت‬2D ‫ت ا دة‬S‫  ا د‬9: 9#2 J 3‫ ه‬c*8‫ر‬2 ‫ذ ت‬H ZK ‫ أن أي‬2J‫ ا‬# B* 90‫ ا‬9/P ‫ ا‬.‫ر‬/*KS 3*‫ ا‬2J‫ ط ا‬0 $*‫ء درا‬Y‫ أ‬c*8‫ر‬2 ‫* د‬#0‫  ا‬# 9# 8 ‫ي‬6‫( وا‬9!‫ح =ا‬H ` " 8 YfK ) 9‫و‬0‫ ط ا‬0‫ ا‬3= d 2‫و‬ .9 /# ‫ أو‬9 ‫ر‬i* a@* "‫دي إ‬B8 9‫و‬0‫وط ا‬P‫ ا‬3# ‫ا س‬ \ 9U`K ‫ت‬S‫ث د‬Y  ‫ن‬2/*8 3‫م آ‬O ‫  ر‬N/! # ‫رة‬# 2‫ ه‬c*‫ر‬2 9 ‫ذ‬H Z* ‫ا ا‬6‫ ه‬6‫ إذا ا‬،‫ وا‬Z*  9TJ* 9‫ دا‬2‫ة ه‬6‫ت ه‬S‫ ا د‬N ،"‫و‬0‫ ا‬9H‫  ار‬9: 3= 98‫  زاو‬T ‫و‬G  ‫ن‬2/ ‫ ا ار‬.‫  ر ار‬Q**8 N‫ن ا‬+= G‫ ا‬$‫" أس ا‬# :3*‫ آ‬3‫ت ه‬S‫ ا د‬.‫ أ د‬9YY d x ( t ) = −ax ( t ) + ay ( t ) dt d y ( t ) = bx ( t ) − y ( t ) − z ( t ) x ( t ) dt d z ( t ) = −cz ( t ) + x ( t ) y ( t ) dt

Vensim S&‫ ذج  ا‬#$‫ ا‬%#0 x dx/dt a

y

b

dy/dt

z dz/dt

c

dx/dt=a(y-x)

a=10

x(0)=0

dy/dy=bx-y-xz

b=28

y(0)=0. 1

start time=0

c=2.67

z(0)=25

end time=100

dz/dt=xy-cz

dt=0.02

123

(01) a = 10

Units: **undefined**

(02) b = 28

Units: **undefined**

(03) c = 2.67

Units: **undefined**

(04) "dx/dt" = a*(y-x) Units: **undefined** (05) "dy/dt" = b*x-y-x*z

Units: **undefined**

(06) "dz/dt" = x*y-c*z

Units: **undefined**

(07) FINAL TIME = 100

Units: Second

The final time for the

Units: Second

The initial time for the

simulation. (08) INITIAL TIME = 0 simulation. (09) SAVEPER = TIME STEP Units: Second The frequency with which output is stored. (10) TIME STEP = 0.02

Units: Second

The time step for the

simulation. (11) x = INTEG ( "dx/dt",

0)

Units: **undefined**

(12) y = INTEG ( "dy/dt",

0.1) Units: **undefined**

(13) z = INTEG ( "dz/dt",

25)

Units: **undefined**

124

40 40 60 400 600 600

2

6

1 56

-40 -40 0 -400 -600 -600

1

1

1

4

4

12

2

4

5

3

56

2

5

5 2

6

3

4

456

345 1

3

4

6

5

12

2

2

2 1

1 6

4

56

6

3

5

12

3

3 4 3

3

4

3

0

1

2

3

4

5 6 Time (Second)

7

8

9

10

1 1 1 1 1 1 1 1 1 x : Current 2 2 2 2 2 2 2 2 2 y : Current 3 3 3 3 3 3 3 3 3 z : Current 4 4 4 4 4 4 4 4 "dx/dt" : Current 4 5 5 5 5 5 5 5 5 5 "dy/dt" : Current 6 6 6 6 6 6 6 6 "dz/dt" : Current

1

Current x 40 20

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

0

1

1

1

1

1

1 1

1

1

1

1

1

1

-20 -40 "dx/dt" 400 200 1

0

1

1

1

1

1

1

1

1

1

1

-200 -400

0

2.5

5 Time (Second)

125

7.5

10

1

Current y 40 20 0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1 1

1

-20 -40 "dy/dt" 600 300 1

0

1

1

1

1

1

1

1

1

1

1 1

-300 -600

0

2.5

5 Time (Second)

126

7.5

10

1

Current z 60

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

45 1

1

30 1

15

1 1

1

1

1

1

1

1

1

1

1

1

1

0 "dz/dt" 600 300 1

0

1

1

1

1

1

1

1

1

1

1

1

1

-300 -600

0

2.5

5 Time (Second)

7.5

10

xy-plane 40 1

1

1

1

20

1

1 1 1

0

-20

-40 -19 y : Current

-9 1

1

2 x 1

1

1

1

12 1

1

1

127

1

22 1

1

1

1

xz-plane 60

45 1 1

30 1

15

1 1 1

1

1

0 -19

-9

z : Current

1

1

2 x 1

1

1

12

1

1

1

1

1

22 1

1

1

1

yz-plane 60

45

30 1

15

1 1

1

1

1

1

1

0 -24

-20

-16

-12

-8

-4

0

4

8

12

16

20

24

28

y z : Current

1

1

1

1

1

1

1

1

128

1

1

1

1

1

1

‫‪ # -8‬ذج ا‪#‬س وا‪: Prey and Predator Model % G‬‬ ‫ه‪6‬ا  ‪2‬ذج ‪O‬م ‪2/*8‬ن  ‪2‬رد و *‪ ]T‬وا‪6‬ي ‪ "# d;= ‰8‬ه‪6‬ا ا ‪2‬رد‪ .‬ا ‪2‬ذج ه‪6‬ا‬ ‫‪* 8‬ض إ*‪G‬اف ا ‪2‬ارد و‪YfK‬ة ‪ "#‬ا ‪ Q *J‬ا‪ 3`:‬ا‪6‬ي ‪2/8 L ^ = .T# ‰8‬ن‬ ‫ا ‪2‬رد ‪  Q:L‬ا‪0‬را‪ R‬وا *‪  Q:L ]T‬ا^‪ Y/*K ،R‬ا‪0‬را‪  R‬دورة ز‪„ 9‬ى‬ ‫ ل ‪# Q R*8‬ده =‪ 3‬اورة ا  ;‪ 9O Q 9‬أن ا ‪2‬ارد ا *‪=2‬ة „را‪g KS R‬‬ ‫ ‪f‬ن ‪ ‰8‬أآ^  ‪ 500‬أر‪*;8 .R‬ت ‪ "#‬ه‪ 56‬ا‪0‬را‪  Q *J R‬ا^‪ R‬وا‪6‬ي ‪ 2 8‬و‪G8‬داد‬ ‫آ  آن هك ‪#‬د آف آ ا‪0‬را‪ .R‬رس ‪O‬م ا د‪S‬ت ا`و‪ 9L‬ا*‪ lK 3‬ه‪6‬ا ا‪O‬م‬ ‫ا د‪ 9‬اآ‪„ 9‬را‪R‬‬ ‫‪r ‬‬ ‫‪‬‬ ‫‪rk +1 = rk + g  1 − k  rk − 0.001 rk f k‬‬ ‫‪ 500 ‬‬

‫ا د‪ 9‬اآ‪R^ 9‬‬ ‫‪f k +1 = f k + 0.001 rk f k − 0.02 f k‬‬

‫ا د‪ 9‬اآ‪„ 9‬را‪ K R‬أن ا‪0‬را‪GK R‬داد ل ‪# Q R*8‬ده ‪ "#‬ا‪# 8G8S‬ده‬ ‫‪ 500 #‬أر‪ R‬و‪; †L*K‬ار ‪#  0.001‬د ا^‪ .R‬ا ‪ 9‬اآ‪ K R^ 9‬ان‬ ‫ا^‪G8 R‬داد ‪#‬ده * ‪#  0.001 Q‬د ا‪0‬را‪ R‬و‪; †L*K‬ار ‪#  0.02‬ده آ‪N‬‬ ‫دورة‪.‬‬ ‫‪ %#0‬ا‪ #$‬ذج ‪8&f‬ام ‪:Vensim‬‬ ‫ا‪ a‬ا*‪)*+ 3‬ام ‪ l8 Vensim‬آ‪ 9‬ا‪O‬م‬

‫‪Rabbits‬‬ ‫‪change‬‬ ‫‪changeRate‬‬ ‫‪Foxes‬‬ ‫‪foxesChange‬‬

‫)‪R(t)=R(t-1)+G[1-R(t-1)/500]R(t-1)-0.0001R(t-1)F(t-1‬‬ ‫)‪F(t)=F(t-1)+0.0001R(t-1)F(t-1)-0.02F(t-1‬‬

‫‪129‬‬

0 200 400

3

1

3

3

1

3

3

3

3

1

3

3

1

3

1

3

3

1

3

1

-1 100 300

3 3

1 1 1

-2 0 200

2

0

2

10

change : Current Foxes : Current Rabbits : Current

2

2

2

2

2

2

2

2

1

2

2

2 1

1 1

20

30

1

1 2

40 1

2 3

50 60 Time (Day)

1 2

3

1 2

3

1 2

3

1 2

3

70 1

2 3

1 2

3

change

3

changeRate

(Rabbits)

Rabbits foxesChange

Loop Number 1 of length 1 Rabbits change Loop Number 2 of length 3 Rabbits foxesChange Foxes Change

130

1 2

3

Foxes

1

90

1 2

Rabbits

change

1

80

Foxes (Rabbits)

2

2

2

1 2

3

100 1 2

3

3

(01)

change = changeRate*(1-Rabbits/500)*Rabbits-0.0001*Rabbits*Foxes

(02)

changeRate = 0.01

(03)

FINAL TIME = 100 Units: Day

(04)

Foxes = INTEG ( foxesChange, 20)

(05)

foxesChange = 0.001*Rabbits*Foxes-0.02*Foxes

(06)

INITIAL TIME = 0 Units: Day

(07)

Rabbits = INTEG ( change, 400)

(08)

SAVEPER = TIME STEP Units: Day

The final time for the simulation.

The initial time for the simulation.

The frequency with which output is stored.

(09)

TIME STEP = 1 Units: Day

Current 1 Rabbits 400 1

1

1

1

1

1

1

The time step for the simulation.

1

1

1

1 1

350

1 1

300 250 200 change 0

1 1

-0.5

1 1

-1

1

-1.5

1 1

-2

0

25

50 75 Time (Day)

100

131

Graph for Rabbits 1

400

1

1

1

1

1

1

1

1

1 1

1

350

1 1 1 1

300

250

200 0

10

Rabbits : Current

20 1

30 1

40 1

50 60 Time (Day)

1

1

1

1

70 1

80 1

1

90 1

1

100 1

: %99‫ت ا‬FaI‫أ‬

(Foxes) foxesChange

Foxes

Rabbits

change

Rabbits

Foxes foxesChange

(Foxes) : %2‫ورات ا‬8‫ا‬

Loop Number 1 of length 1 Foxes foxesChange Loop Number 2 of length 3 Foxes change Rabbits FoxesChange

132

1

Current Foxes 200

1

1

1

1

1

1

1

150 1

100

1 1 1

50 1

1

1

1

0 foxesChange 2 1.5 1

1

1

1

1

1 1

0.5 0

1

1

0

25

50 75 Time (Day)

100

Graph for Foxes 200

150

100

50 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 0

10

Foxes : Current

20 1

30 1

40 1

1

50 60 Time (Day) 1

133

1

1

70 1

80 1

1

90 1

1

100 1

‫ ‪: 1‬‬

‫ا‪ 90‬وا‪ HA‬ت ƒ*رات ا  ;‪9‬‬

‫‪134‬‬

‫  ا ا  ا‬ ‫ث ا ت‬2 ‫ء و‬A‫  ا‬L V 203 ‫ ء ا ذج‬: ‫ا دة‬ 9`‫ ل ا‬#„ ‫ول‬S‫*ر ا‬S‫ا‬ ‫ هـ‬1422/1421 3^‫ ا‬N`‫ا‬ *# : G‫ا‬ :9*‫ ا‬90‫ ا‬Q H 3# RH‫أ‬ :‫ال اول‬r‫ا‬ :T N/ S^ 3:#‫ وأ‬9*‫ت ا‬: ‫ف ا‬# ‫ ب ا)رج‬A‫ )د( أ‬Inflow N‫ ب اا‬A‫ )ج( أ‬Flow ‫ ب‬A‫ )ب( أ‬Stock ‫)أ( ا *ع‬ 9` 986ZK ‫ )ز( دورة‬Sink (9#2‫ر )ا‬2Z‫ )و( ا‬Source ‫ )هـ( ا ر‬Outflow System ‫م‬O‫ ا‬9H6  (‫ )ط‬Auxiliary Variable # ‫ ا‬Z* ‫ )ح( ا‬Feedback Loop Dynamic Mathematical Model (3/8‫ *ك )د‬3U8‫ذج ر‬2  (‫ )ي‬Modeling

(‫ =;ة‬N/ 9# l _ ‫ت‬# 9 ) :‫ال ا‬r‫ا‬ ‫د ا زل‬# 3# ‫*  !ة‬8 ‫ت‬H^‫ ا‬$ Q8 ‫ي‬6‫ أن ا ل ا‬9G ‫ت‬HY ‫زع‬2 S ‫ إذا‬.‫ت‬HY ] K 3*‫د ا زل ا‬# ‫د‬8‫زد‬+ †L*8 ‫ا ا ل‬6‫ت  وأن ه‬HY T H28S 3*‫ا‬ ‫ و‬T‫" إ*آ‬# ‫ي‬2K /‫  و‬9HY ] K S 3*‫  زل ا‬3%0‫ اد ا‬N^ 8 H ‫ أن‬U*=‫إ‬ .9HY ] K 3*‫د ا زل ا‬# x G‫ وة ا‬6)   ‫م ا‬O‫ ا‬9H6  Difference Equation 9L‫ ا`و‬9‫)أ(  أن ا د‬ :3‫م( ه‬2‫ا‬ xt = xt −1 + k ( H − xt −1 )

(l‫* و‬#) ‫ و‬H = 20000 ‫  زل‬3%0‫ذج د ا‬2 ‫ا ا‬6‫ ه‬N ، t = 0 # x = 0 ‫)ب( إ=*ض أن‬ (l‫* و‬#) t = 0,1, 2,⋯,10 ; ، k = 0.05 RK X Y

135

‫)ج( ‪ #‬ا *ع و ا‪ A‬ب وا *‪Z‬ات ا ‪#‬ة وا ر ودورة ا*‪ 986Z‬ا)`‪9#) 9‬‬ ‫واة(‬ ‫)د( أر !‪*  3::)K N/‬ع وأ‪ A‬ب ‪ ، Stock and Flow Diagram‬و`‪)*+ 56‬ام‬ ‫‪ Vensim‬و‪) .]J@* NJ‬أر ‪# 9‬ت(‬

‫‪136‬‬

‫ا‪ HA‬ت ا ‪2‬ذ‪:9H‬‬ ‫)‪– 1‬أ( ا *ع ‪ Stock‬أي !‚ ‪ Q Z*8‬ا‪) G‬د‪* ،3/8‬ك( ‪G8‬داد و‪ †;8‬و‪ " 8‬ا‪i8‬‬ ‫ *‪2‬ى ‪ Level‬او *‪ State Variable 9 Z‬و‪ N^ 8‬آ*‪:3‬‬

‫‪Stock‬‬ ‫‪Source/Sink‬‬ ‫‪Flow‬‬

‫‪Information‬‬ ‫‪Link‬‬

‫‪AuxiliaryVariable‬‬

‫أ^‪ :9‬آ ‪ 9‬ا ‪G 3= 5‬ان‪# ،‬د ا‪ T0‬ا*‪  ^*  T/* 8 3‬اˆ‬ ‫)‪-1‬ب( ا‪ 0‬ب ‪ Flow‬ه‪ 2‬ل ‪ 8G8 Rate‬أو ‪* †;8‬ع‪ .‬أ^‪ :9‬آ ‪ 9‬ا ‪ 5‬ا ‪G) 986Z‬ان‬ ‫او ا ‪# ،$ 9 2‬د ا‪ T0‬ا ‪*P‬اة أو ا ‪9#‬‬ ‫)‪-1‬ج( أ‪ A‬ب اا‪ N‬ه‪ 2‬ل ‪ 8G8‬ا *ع‪ .‬أ^‪ :9‬آ ‪ 9‬ا ‪ 5‬ا ‪G) 986Z‬ان‪# ،‬د ا‪T0‬‬ ‫ا ‪*P‬اة‬ ‫)‪-1‬د( أ‪ A‬ب ا)رج ه‪ 2‬ل ‪ †;8‬ا *ع‪ .‬أ^‪ :9‬آ ‪ 9‬ا ‪ 5‬ا ‪  9 2‬ا)‪G‬ان‪# ،‬د‬ ‫ا‪ T0‬ا ‪9#‬‬ ‫)‪-1‬هـ( ا ر ه‪ 2‬ا ‪ Q‬او ا‪ N%0‬ا‪6‬ي ‪6Z8‬ي ا *ع‪ .‬أ^‪G :9‬ان ‪ 9‬ا ة‪ ،‬ا‪T0‬‬ ‫ا ‪:‬و‪* 9‬اول‬ ‫)‪-1‬و( ا‪2Z‬ر )ا‪ (9#2‬ه‪ 2‬ا;ع او ا = او ا ‪J‬ري ا‪6‬ي ‪ †;8‬ا *ع‪ .‬أ^‪ :9‬ا ‪J‬ري او‬ ‫اف ا‪  3‬ة ا)ر‪  9H‬ا)‪G‬ان‪ ،‬ا‪ T0‬ا ‪:‬و‪* 9‬دل )‪2/8 L :9O‬ن‬ ‫ا ر وا‪2Z‬ر `‪ c‬ا‪ ‚P‬آ  =‪ 3‬ا ^ل ا‪(0‬‬ ‫)‪-1‬ز( دورة ‪ 9` 986ZK‬ه‪ 3‬ا*‪ T= YB8 3‬ا *ع ‪ "#‬ا‪ 0‬ب ا ‪6Z‬ي ‪ .$‬أ^‪ :9‬ا)‪G‬ان‬ ‫ا ‪6Z‬ى  ‪  5‬ل ا‪2‬ب ‪ ،9=D $ /*K 5‬آ  ‪ Q`KK‬ا ة =‪ 3‬ا)‪G‬ان ‪$ Q`KK‬‬ ‫ا‪ 9=:‬و‪ N;K‬آ ‪ 9‬ا ‪ 5‬اا‪9‬‬ ‫)‪-1‬ح( ا *‪ Z‬ا ‪ #‬ه‪ 3= N8 Z* 2‬و‪ l%‬و‪ N #‬ا‪O‬م و‪ 3= YB8‬ا‪ A‬ب و‪Yf*8 L‬‬ ‫  *ع‪ .‬أ^‪ :9‬ا ‪ 9‬ا;‪2‬ى )‪G‬ان‪ ،‬رأس ا ل ا *ح ‪ ^*A‬ر‬ ‫‪137‬‬

lK 9U8‫ت ر‬L# N^ .‫م‬O‫ ا‬N # l8 3U8‫ذج ر‬2  QU‫ و‬،‫م‬O‫ ا‬9H6  (‫ط‬-1) T0‫" ا‬# R:‫ اض وا‬9 lK 3L ‫*د‬L‫ت إ‬S‫ د‬،5  ‫ان‬G)‫ل إ*ء ا‬ ‫ن‬2/*8 ‫ و‬G‫ ا‬Q Z*K ‫ت‬S‫ د‬l%28 ‫ي‬6‫ ا‬2‫( ه‬3/8‫ *ك )د‬3U8‫ذج ر‬2  (‫ي‬-1) 9  ‫!*;ق‬A‫" ا‬# ‫ل‬K G‫ق ا‬2= 9:;‫ )ا‬xɺ = kx N^ .9L‫ او =و‬9U`K ‫ت‬S‫ د‬ 3‫ ا‬2  9 3= ‫م‬O N^ K‫و" و‬S‫ ا‬9H‫  ار‬9U`K 9‫ د‬3‫( وه‬G (‫أ‬-2) x ( t ) − x ( t − dt ) ∝  H − x ( t − dt )  dt =k  H − x ( t − dt )  x ( t ) − x ( t − dt ) = k  H − x ( t − dt )  dt x ( t ) = x ( t − dt ) + k  H − x ( t − dt )  dt = x ( t − 1) + k  H − x ( t − 1) 

،9L‫ =و‬9‫ إ" د‬T2 Y (92T ) 9U`K 9‫ أ ء د‬2 Ni=0‫!*;ق  ا‬A‫ ا‬3= xt = xt −1 + k ( H − xt −1 )

(‫ب‬-2) xt = xt −1 + 0.05 ( 20000 − xt −1 ) , x0 = 0, t = 0,1, 2,⋯ ,10 x1 = x0 + 0.05 ( 20000 − 0 ) = 1000

x2 = x1 + 0.05 ( 20000 − x1 ) = 1000 + 0.05 ( 20000 − 1000 ) = 1950 x3 = 1950 + 0.05 ( 20000 − 1950 ) = 2852.5 x4 = 3709.875

⋮ x 9HY ] K 3*‫د ا زل ا‬# 2‫ج( ا *ع ه‬-2) xt − xt −1 ‫ت‬H^‫ ا‬$ ‫ع‬K ‫ي‬6‫ ا ل ا‬2‫ ب ه‬A‫ا‬ H T‫ى إ*آ‬2K /‫  و‬9HY ] KS 3*‫  زل ا‬3%0‫ اد ا‬# ‫ ا‬Z* ‫ا‬

N‫ ب اا‬A‫ وا‬xt − xt −1 †;8 3* ‫ و‬H − x †;8 x ‫داد‬G8  ‫ آ‬9`)‫ ا‬986Z*‫دورة ا‬ .‫ا‬6/‫ وه‬x  8G8 ‫ا‬6T‫ و‬9 9 ‫ن آ‬2/8 ‫ ان‬/ 8S (‫د‬-2)

138

x dx/dt

k

H

(x) H

dx/dt

x

k

x

dx/dt

(x)

Loop Number 1 of length 1 x dx/dt

139

1

Current x 20,000 15,000

1

1

1

1

1

1

1

1

1

1

1

10,000 5,000 1

0 "dx/dt" 1,000 750

1

500 250 0

1 1

0

50 Time (Day)

100

Graph for x 20,000

1

1

1

1

1

1

1

1

1

1

1 1

15,000 1 1

10,000 1

5,000

0

1

0

10

x : Current

x

1

0

20 1

30 1

1

1000

40 1

50 60 Time (Day) 1

1

1950

140

1

70 1

1

80 1

2852.5

90 1

1

100 1

3709.88

4524.38

5298.

‫  ا ا  ا‬

‫‪ 9H‬ا ] ‪2‬د‬ ‫آ‪ 9‬ا‪2‬م‬ ‫‪  L‬ا‪A‬ء و ‪2‬ث ا ت‬ ‫ا‪*A‬ر ا^‪ #0 3‬ل ا`‪ N‬ا^‪ 1422/1421 3‬هـ‬ ‫ دة ‪ ) V 203‬ء ا ذج (‬ ‫ا_ ‪4& 2 :6‬‬ ‫أ‪ Q H "# RH‬ا‪ 90‬ا*‪:9‬‬ ‫ا ‪B‬ال ا‪0‬ول‪:‬‬ ‫‪ N‬ا د‪S‬ت ا`و‪ 9L‬ا*‪ ; 9‬ا‪0‬و‪ 9‬ا ‪:‬ة ‪/K‬ار‪t = 1, 2,...,15 ; (Iterate) 8‬‬ ‫‪x0 = 5, x1 = −1‬‬ ‫‪x0 = 3, x1 = −15‬‬

‫‪xt + xt −1 − 2 xt −2 = 0,‬‬ ‫‪xt + 6 xt −1 + 9 xt −2 = 0,‬‬

‫و=‪ 3‬آ‪ 9 N‬أر ‪. t = 1, 2,...,15 Q xt‬‬ ‫ا ‪B‬ال ا^‪:3‬‬ ‫هك ا‪  ^/‬ا‪2O‬اه ا‪ N^ 9:‬ا‪2O‬اه ا‪ 982‬وا‪ 9H2‬وا‪ 9# *HA‬وا‪*LA‬د‪ 98‬اˆ‬ ‫) ‪2‬ت اآ^ إ‪L‬أ ‪2/K ( Fibonacci Numbers #‬ن =‪ T‬آ ‪O 9‬م د‪ # 3/8‬ا‪G‬‬ ‫‪!  *K t‬ة ‪ 3#‬آ ‪ 9‬ا‪O‬م ‪ #‬ا‪0‬ز‪ t − 1 9‬و ‪+= . t − 2‬ذا آ‪N^ K T V xt , t ∈ T X‬‬ ‫=*ة ز‪  ;K ،9 9‬أن ا د‪ 9‬ا`و‪  9L‬ار‪ 9H‬ا^‪ 9‬وا*‪ lK 3‬د‪ 9/8‬ا‪O‬م‬ ‫‪ #‬أي ‪ 9O‬ز‪ 9‬ه‪:3‬‬ ‫‪xt − xt −1 − xt −2 = 0, ∀t ∈ T‬‬

‫)أ( ‪  xt = λ t , λ ≠ 0 QU2‬أن ا د‪ 9‬ا ‪#‬ة ‪ "# R*/K‬ا‪ λ 2 − λ − 1 = 0 N/P‬و‪T‬‬ ‫ا‪ N‬ا*‪:3‬‬

‫‪141‬‬

1+ 5 ≈ 1.6180339 2 1− 5 λ2 = ≈ 0.6180339 2

λ1 =

N/P‫ ا‬3# R*/K xt ‫)ب(  أن‬ t

t

1+ 5  1− 5  xt = A   + B  , ∀t ∈ T  2   2 

:N/P‫ ا‬3# R*/K xt ‫ن‬+= 3* ‫ و‬B = xt =

(

) (

−1 1 ‫ و‬A= ‫ن‬+= x1 = 1 ‫ و‬x0 = 0 9‫و; أو‬ 5 5

)

t t 1  1 + 5 − 1 − 5  , t = 0,1, 2,...  2 5 

(T = {0,1, 2,...})

:QU2 ]‫ وذ‬t = 1, 2,..., 25 ; xt H‫ أو‬Excel ‫*)ام‬+ (‫)ج‬ A1=1 A2=1 A3=A1+A2 . . . A(n)=A(n-1)+A(n-2) A4-A25 8)‫ إ*)م ا ˆ وا  ‚ ا‬:9O

‫; ان‬K B1=A2/A1 QU2 B(n) → λ1 ≈ 1.6180339, As n → ∞

‫; ان‬K C1=A1/A2 QU2 ‫و‬ C(n) → λ2 ≈ 0.6180339, As n → ∞

n=30 6 :9O

:V^‫ال ا‬B ‫ا‬

142

Markovian 9=2‫ ا آ‬9%)‫ ا‬T 9 98‫*د‬L‫*د أن ‘هة إ‬LA‫ل أ اء ا‬2;8 (‫)أ‬

‫؟‬38 ‫ = ذا‬9^‫ ا‬9H‫  ار‬Property 9‫ ا د‬R  9^‫ ا‬9H‫  ار‬9=2‫ ا آ‬9%)‫ ا‬Q*8  9‫ !آ‬T  ‫`ل‬LA‫)ب(  ا‬ 9L‫ا`و‬ xt − axt −1 − bxt −2 = ε t , ∀t ∈ T , ε t ~ N ( 0, 4 )

(Second Order one State

‫ وا‬9 Z* 9Y 9H‫  در‬9‫ ا د‬56‫ل ه‬2

]‫( وذ‬First Order two State Variables) 9 ‫ى‬Z* "‫ أو‬9H‫ إ" در‬Variable) . yt −1 = xt −2 QU2 ; (Steady State) 5‫م وأ* إ*;ار‬O‫ا ا‬6T ‫ذج‬2  ‫ن‬2‫ آ‬Vensim ‫*)ام‬+ (‫)ج‬ 1) a = 1.2, b = −0.7 2) a = −1.2, b = −0.7

9*‫ إ*)م ا; ا‬:9O RANDOM NORMAL(-3.99,3.99 , mean ,standard deviation ,seed=Prime Number ) INITIAL TIME = 0 FINAL TIME = 2 SAVEPER = TIME STEP TIME STEP = 0.01

143

‫  ا ا  ا‬ V 203 ‫*ر‬A 9/ ‫ل ا‬2‫أ ا‬ :‫ول‬0‫ال ا‬B  $ H‫إ‬ xt = − xt −1 + 2 xt − 2 , x0 = 5, x1 = −1 5,-1,11,-13,35,-61,131,-253,515,-1021,2051,-4093,8195,-16381,32771

30000

C2

20000 10000 0 -10000 -20000 Index

5

10

15

xt = −6 xt −1 − 9 xt −2 , x0 = 3, x1 = −15 3,-15,-39,-57,-21,-93,51,-237,339,-813,1491,-3117,6099,-12333,24531

20000

C3

10000

0

-10000 Index

5

10

15

:3^‫ال ا‬B  9 H‫إ‬

144

‫ أي‬9f ‫ق ا‬2: R  xt −2 ‫ و‬xt −1 3#  *K xt 8 xt = xt −1 + xt −2 xt − xt −1 − xt −2 = 0, ∀t ∈ T

J xt = λ t , λ ≠ 0 QU2 (‫)أ‬ λ t − λ t −1 − λ t −2 = 0

λ t −2 ( λ 2 − λ − 1) = 0

∵λ ≠ 0 ∴λ 2 − λ − 1 = 0

λ1,2 = λ1 =

  if  

1± 1+ 4 2

ax 2 + bx + c = 0, then x1,2 =

−b ± b 2 − 4ac    2a 

1 5 1 5 + ≈ 1.6180339, λ2 = − ≈ 0.6180339 2 2 2 2

2‫ ه‬9L‫ ا`و‬9‫ ام  د‬N‫ن ا‬+= 9`*)‫ و‬9;; ‫ة‬# ‫ ا‬9‫ور ا د‬GH ‫)ب(  ان‬ xt = Aλ1t + Bλ2t , ∀t ∈ T t

t

1+ 5  1− 5  xt = A   + B  , ∀t ∈ T  2   2  ∵ x0 = 0, x1 = 1 ∴ x0 = A + B = 0 ⇒ A = − B 1+ 5  1− 5  and x1 = A   + B  =1  2   2  1+ 5  1− 5  ∴− B   + B  =1  2   2  −1 1 ∴B = ⇒ A= 5 5 t t 1  ∴ xt = 1 + 5 + 1 − 5  , t = 0,1, 2,...  2 5 

(

) (

)

(‫)ج‬ A

B

C

1

1

1

1

1

1

2

2

0.5

3

1.5

0.666666667

5

1.666666667

0.6

145

8

1.6

0.625

13

1.625

0.615384615

21

1.615384615

0.619047619

34

1.619047619

0.617647059

55

1.617647059

0.618181818

89

1.618181818

0.617977528

144

1.617977528

0.618055556

233

1.618055556

0.618025751

377

1.618025751

0.618037135

610

1.618037135

0.618032787

987

1.618032787

0.618034448

1597

1.618034448

0.618033813

2584

1.618033813

0.618034056

4181

1.618034056

0.618033963

6765

1.618033963

0.618033999

10946

1.618033999

0.618033985

17711

1.618033985

0.61803399

28657

1.61803399

0.618033988

46368

1.618033988

0.618033989

75025

1.618033989

0.618033989

121393

1.618033989

0.618033989

196418

1.618033989

0.618033989

317811

1.618033989

0.618033989

514229

1.618033989

0.618033989

832040

1.618033989

0.618033989

‫ أن‬ B ( n ) → λ1 ≈ 1.6180339, As n → ∞

C ( n ) → λ2 ≈ 0.6180339, As n → ∞

:V^‫ال ا‬B  9 H‫إ‬ Markovian Property of order k 9H‫  ار‬9=2‫ ا رآ‬9%)‫)أ( ا‬

9‫ز‬0‫ ا‬# T L "#  *K t G‫ ا‬# 9@‫ا‬2P‫هة ا‬O‫ ا‬9 L ‫" ان‬# ‫ل‬2;K ‫ن‬+= { yt , −∞ < t < ∞} X‫ = ^ إذا آ‬.d;= t − 1, t − 2,..., t − k

146

(

)

P yt < s | yt −1 , yt −2 ,..., yt −k , yt −( k +1) ,... = P ( yt < s | yt −1 , yt −2 ,..., yt −k )

(‫)ب‬ xt − axt −1 − bxt −2 = ε t , ∀t ∈ T , ε t ~ N ( 0, 4 )

∵ yt −1 = xt −2 ⇒ yt = xt −1 ∴ xt = axt −1 + byt −1 + ε t yt = xt −1

( ‫)ج‬

x dx

a

eps b y dy

(01) a = 1.2

(02) b = -0.7

(03) dx = a*x+b*y+eps

(04) dy = x

(05) eps = RANDOM NORMAL(-3.99,3.99 , 0 ,2 ,19 )

(06) FINAL TIME = 2

147

(07) INITIAL TIME = 0

(08) SAVEPER = TIME STEP

(09) TIME STEP = 0.01

(10) x = INTEG ( dx, 0)

(11) y= INTEG ( dy, 0)

Current x 0.2 0.1 0 -0.1 -0.2 dx 4 2 0 -2 -4

0

0.50

1 Time (Day)

1.50

2

;*  \ ‫م‬O‫ا‬

(01) a = -1.2 148

(02) b = -0.7

(03) dx = a*x+b*y+eps

(04) dy = x

(05) eps = RANDOM NORMAL(-3.99,3.99 , 0 ,2 ,19 )

(06) FINAL TIME = 2

(07) INITIAL TIME = 0

(08) SAVEPER = TIME STEP

(09) TIME STEP = 0.01

(10) x = INTEG ( dx, 0)

(11) y = INTEG ( dy, 0)

149

Current x 0.2 0.1 0 -0.1 -0.2 dx 4 2 0 -2 -4

0

0.50

1 Time (Day)

1.50

2

;*  ‫م‬O‫ا‬

150

‫  ا ا  ا‬

‫ﻗﺴﻢ ﺍﻹﺣﺼﺎﺀ ﻭﺑﺤﻮﺙ ﺍﻟﻌﻤﻠﻴﺎﺕ‬ ‫ﻛﻠﻴﺔ ﺍﻟﻌﻠﻮﻡ‬ ‫ﺟﺎﻣﻌﺔ ﺍﻟﻤﻠﻚ ﺳﻌﻮﺩ‬

‫هـ‬1422/1421 3^‫ ا‬N` 3@T‫*ر ا‬A‫ا‬ (‫ ) ء ا ذج‬V 203 ‫ دة‬ ‫ت‬4& 3 6 _‫ا‬ :9*‫ ا‬90‫ ا‬Q H "# RH‫أ‬ :‫ول‬0‫ال ا‬B ‫ا‬ :9*‫ ا‬Linear Differential Equations 9:)‫ ا‬9U`*‫ت ا‬S‫ ا د‬9#2 J  xɺ = −0.5 x + ay ,

a < 0.4

yɺ = x − 0.5 y

‫ة‬G ‫ور ا‬GJ‫ ا‬H‫ وأو‬xɺ = Ax State Space 9‫ء ا‬i= N/! "# T*‫)أ( أآ‬ .9U`*‫ت ا‬S‫   *;ا  د‬3:K ‫ة‬: ‫ ا‬a 9 L ‫ و  أن‬A 9=2`  Eigenvalues 9#2 J  9=/ ‫ ا‬Linear Difference Equations 9:)‫ ا‬9L‫ت ا`و‬S‫ ا د‬R*‫)ب( أآ‬ ‫ط‬P‫ ا‬N‫ ه‬. x i +1 = Axi , i = 0,1, 2,… State Space 9‫ء ا‬i= N/! "# T*‫ وأآ‬9;  ‫ا‬ .i8‫   *;ا ه ا‬3:8 a 9 L "# ;‫ و‬x0 = 1, y0 = 1 9‫و‬0‫ ; ا‬9L‫ت ا`و‬S‫ ا د‬9#2 J N Excel ‫*)ام‬+ (‫)ج‬ . a = 0.3 ‫ و‬i = 1, 2,… , 20 :3^‫ال ا‬B ‫ا‬ Drilling ‫رة‬2` ‫ ر ا‬b‫  )ا‬N‫ ب دا‬+ ‫داد‬G8 ‫ *ول‬N; 3= x (Wells‫ ر‬b‫د ا‬#) d

(Drilling Fraction `‫ ا‬9 ) 3#‫ ر و‬b‫د ا‬# 3#  *K 3*‫ وا‬xɺ ( Wells

YfK) ‫ و‬n (Normal Drilling Fraction 98‫ ا` اد‬9 ) ‫ب‬U N% 2‫ي ه‬6‫وا‬ ‫ا‬6‫ وه‬e ( Effict of Reserves on Drilling Fraction `‫ ا‬9  "# 3D*A‫ا‬ 3;* ‫ ا‬r

(Petroleum Reserves ‫ ا*ول‬3D*‫  )إ‬9H2 9L# 3:8 0‫ا‬ 151

3D*A 3‫ى ا‬2* ‫ ا‬9  # ‫رة‬# 2‫ ا*ول ه‬3D*‫  إ‬3;* ‫ء ا‬GJ‫ ا‬.`‫ ا‬9 ‫و‬ †;‫ وا‬i

(Initial Petroleum Reserves ‫ ا*ول‬3D*A 9‫و‬0‫ ا‬9 ;‫ا*ول ا" )ا‬

/ ‫ ا*ول ا‬9 ‫ آ‬XL  ‫ ا*ول آ‬3D*‫  إ‬NL‫ ;ار أ‬3;K  ‫ ان آ‬38 9 ‫ ا‬56‫ ه‬3= .†;K `‫ ا‬9  ‫ن‬+= ‫ا‬6/‫ وه‬TH‫ إا‬3= 98‫*د‬LA‫ ا‬9 ;‫ ا‬XL  ‫ وآ‬TH‫إ*)ا‬ 3‫ ه‬3*‫ وا‬− xɺ ( Closing Wells 9;Z ‫ ر ا‬b‫ )ا‬2‫ ب رج ه‬+ †L*8 ‫ ر‬b‫د ا‬# ‫*)اج‬A‫ ا‬YfK) ‫ و‬c (Normal Closing Fraction 98‫\ق اد‬A‫ ا‬9 ) ‫ب‬U N% ‫*)اج‬A‫ ا‬YfK . f (Effect of Extraction on Closing Fraction ‫\ق‬A‫ ا‬9  3# (Extraction per Well  N/ ‫*)اج‬A‫ )ا‬3# Yf*‫ ا‬K 9‫ دا‬2‫\ق ه‬A‫ ا‬9  3# m (Maximum Extraction per Well  N/ O#0‫*)اج ا‬A‫ )ا‬Q 9‫  ;ر‬

p

3K  N/ O#0‫*)اج ا‬A‫  إ" ا‬N/ ‫*)اج‬A‫ ا‬9  3= †;f= . ‫\ق‬A‫ ا‬9  3# ‫داد‬GK ‫ا‬6T ‫ و‬98‫*د‬LA‫ ا‬5‫وا‬H ‫ ا م‬N`L Ni=0‫  ا‬$‫ وا‬9 2% ^‫ أآ‬g%‫*)اج ا‬A‫أن ا‬ YfK) ‫  و‬N/ O#0‫*)اج ا‬A‫ب ا‬U N% 2‫  ه‬N/ ‫*)اج‬A‫ ا‬.‫\ق‬A‫ ا‬9  ( Effect of Reserves on Extraction per Well  N/ ‫*)اج‬A‫" ا‬# 3D*A‫ا‬ 9  XLK  /= .3D*A‫  ا*ول ا *)ج وا‬9H2 9L# ‫ي‬8 0‫ا ا‬6‫ وه‬h .†L*8  N/ ‫*)اج‬A‫ن ا‬+= 3* ‫ و‬9 2% ^‫ اآ‬g8 ‫*)اج‬A‫ن ا‬+= ‫ ا*ول‬3D*‫إ‬ .N‫ إ ب دا‬$ c ‫ ا*ول‬3D*‫ى إ‬2*  ‫ن‬+= ‫د‬J* \ ‫ ر‬2‫ن ا*ول ه‬0‫أا و‬ g ( Extraction ‫*)اج‬A‫  )ا‬9/‫ ا‬9 /‫ ا‬2‫ ا*ول ه‬3D*‫  إ‬rɺ ‫ ب ا)رج‬A‫ا‬

.‫ ر‬b‫د ا‬# ‫  و‬N/ ‫*)اج‬A‫ب ا‬U N% 3‫ ه‬3*‫ وا‬982 ‫ا‬ 9L‫ت ا`و‬S‫ ا د‬R*‫م وأآ‬O‫ا ا‬6T (9 ‫ت‬L# ) ‫ى وإ ب‬2*  d:) ‫)أ( أر‬ .$= /*K 3*‫ ا‬Difference Equations Vensim ‫*)ام‬+ ‫*)اج ا*ول‬A ‫ذج‬2  ‫ن‬2‫)ب( آ‬

:V^‫ال ا‬B ‫ا‬ . J‫اء ا‬GH‫ ا‬Q H "‫ إ‬9@‫  ا‬J ‫آ‬S 3Z‫ ام ا‬N;K 9)i ‫ ن آ‬A‫ ا‬RL ‫*ر‬#‫ إ‬/ 8  ‫*دد‬8 ‫م‬O‫ آ‬R;‫ ا‬. Oscillator ‫ا( آ *دد‬H 38;K N/P ) ‫ ن‬A‫ ا‬RL 9H6  / 8  ‫آ‬ .†;K 9 ‫ أي‬Systole ‫)ء و إ;ض‬K‫ إر‬9 ‫ أي‬Diastole ‫ إ ط‬:‫م‬# N/P * Electro-Chemical

3@ ‫وآ‬T‫ آ‬6` R;‫ت ا‬i# ‫ إ;ض وإ ط‬3= R *8

9 ‫ آ‬v ‫ و‬R;‫ ا‬3= Muscle Fiber 9i# 9` ‫ل‬2D 2‫ ه‬x ‫ أن‬U*=‫ذا إ‬+= . Stimulus

152

R;‫ ا‬9i# 9` ‫ل‬2D 3= ‫;ض‬A‫ ط وا‬A‫ أن ل ا‬9  ‫رب ا‬J*‫  ا‬H‫ =; و‬،6` ‫ا‬ 9`‫ ا‬J VY  ‫ ا`ق‬Q ( µ > 0 RK X ^ ) * †;8‫ و‬6` ‫ ا‬9 ‫ آ‬Q ‫داد‬G8 .9`‫ل ا‬2D Q †L*K 6` ‫ ا‬9 ‫ أن ل آ‬H‫ آ  و‬.T2D‫( و‬98‫ د * و‬0‫* ا‬#‫)أ‬  9i# 9` 9‫ذج آ‬2  Difference Equations 9U`*‫ت ا‬S‫ن ا د‬2‫ آ‬:S‫أو‬ .9;  ‫ت ا‬: ‫" ا‬# ‫ * ا‬R;‫ا‬ :a@*‫‰ ا‬L‫ و‬9*‫ ; ا‬Vensim ‫ذج‬2  ‫ن‬2‫ آ‬:Y µ = 2 cm / sec, x ( 0 ) = 2 cm

v ( 0 ) = 1 microgrm, t = 0 ( 0.1) 100 sec

:Q ‫ال اا‬B ‫ا‬ Logistic

9* H2‫ ا‬9‫ ا‬T*‫ آ‬l%2K 3*‫ ا‬9:‫اه ا‬2O‫^  ا‬/‫هك ا‬

3‫ه ا‬2  g8 Y ( cf*‫ ا‬9 ) ‚: 2  ‫أ‬K ‫ ‘هة‬lK 9‫ اا‬56‫ ه‬.Function ‫ه‬2  lL2*8 Y (ai‫ ا‬9) ‫ه‬2  BD*8 Y (‫زدهر‬A‫ ا‬9) ‫ `*ة‬Exponential "‫ إ‬GK n0 ‫ن‬+= n ( t ) G t G‫ ا‬# ‫هة‬O‫ ا‬9 ; G‫ذا ر‬+= .(‫*;ار‬A‫ ا‬9) 2‫ )وه‬M 2‫هة ه‬O‫ ا‬56T 2 ‫ ا‬l; ‫ وإذا آن‬Initial Value 9@ ‫ او ا‬9‫و‬0‫ ا‬9 ;‫ا‬ (98TS "‫ إ‬G‫ول ا‬B8 # $K 9;;‫ ا‬3= – ‫هة‬O‫ ا‬9 L $‫ ا‬NK ‫ ان‬/ 8 "L‫أ‬ :3‫ ه‬9‫ز‬0‫ ا‬N‫ آ‬# ‫هة‬O‫ ا‬lK 3*‫ ا‬Dynamic Model 9‫ اآ‬9‫ن ا د‬+= n (t ) =

M , t≥0 1 +  ( M − n0 ) n0  e − ct

.‫هة‬O‫ ا‬56T Vensim d:) ‫ن‬2‫)أ( آ‬ :9*‫)ب(  ات ا‬ Year

Volume

Year

Volume

1984

0.0

1992

15.0

1985

1.5

1993

18.5

1986

2.0

1994

20.0

1987

2.5

1995

22.5

1988

4.0

1996

23.5

1989

5.0

1997

23.0

153

1990

8.5

1991

11.5

1998 1999

27.0 27.5

. c ‫ و‬n0 ‫ و‬M  ‫ر ا‬L ‫ أ*)م‬y =

a N/P‫" ا‬# 9‫ ا د‬6‫ و‬Excel ‫ أو‬Curve Expert ‫ أ*)م‬:9O 1 + be − cx

.9 ‫ه‬JK ‫ اى‬L ‫ أو أي‬a0 = 30, b0 = 30, c0 = 0.5 9‫آ; او‬ .a@*‫‰ ا‬L‫م و‬O ‫ي آة‬H‫ ا`;ة )أ( وأ‬3= d:)   ‫ ا; ا ;رة آ‬6 (‫)ج‬ .‫ƒ ب‬

dn ( t ) M − n (t ) = c× × n ( t ) 9L‫ أ*)م ا‬:9O dt M

154

‫  ا ا  ا‬ ‫هـ‬1422/1421 3^‫ ا‬N` 3@T‫ ƒ*ر ا‬9 * ‫ ت‬H‫إ‬ V 203 ‫ا دة‬ :‫ول‬0‫ال ا‬B  9 H‫إ‬ ( ‫)أ‬ a  x   xɺ   −0.5  yɺ  =  1 −0.5   y     a   −0.5 A= −0.5   1  −0.5 − λ det ( A − Iλ ) = det  1 

( −0.5 − λ )

2

 =0 −0.5 − λ  a

−a =0

λ1 = − a − 0.5 λ2 = a − 0.5

.‫  *;ا‬N‫ن ا‬2/8 ‫ !وط أن‬56‫ وه‬λ2 < 1 ‫ و‬λ1 < 1  ‫ أن آ‬J −0.4 < a < 0.4 ; (‫)ب‬ xi +1 = −0.5 xi + ayi ,

a < 0.4, i = 0,1, 2,...

yi +1 = xi − 0.5 yi a   xi   xi +1   −0.5 , i = 0,1, 2,... y = 1 −0.5   yi   i +1  

.i8‫ ه ا‬:K 9;  ‫ ا`;ة ا‬3= 9 HA‫ن ا‬+= $#‫ و‬T ` 3‫ ه‬State Matrix 9‫ ا‬9=2` (‫)ج‬ x

y

1

1

=-0.5*A2+0.3*B2

=A2-0.5*B2

=-0.5*A3+0.3*B3

=A3-0.5*B3

=-0.5*A4+0.3*B4

=A4-0.5*B4

=-0.5*A5+0.3*B5

=A5-0.5*B5

=-0.5*A6+0.3*B6

=A6-0.5*B6

=-0.5*A7+0.3*B7

=A7-0.5*B7

=-0.5*A8+0.3*B8

=A8-0.5*B8

=-0.5*A9+0.3*B9

=A9-0.5*B9

155

=-0.5*A10+0.3*B10

=A10-0.5*B10

=-0.5*A11+0.3*B11

=A11-0.5*B11

=-0.5*A12+0.3*B12

=A12-0.5*B12

=-0.5*A13+0.3*B13

=A13-0.5*B13

=-0.5*A14+0.3*B14

=A14-0.5*B14

=-0.5*A15+0.3*B15

=A15-0.5*B15

=-0.5*A16+0.3*B16

=A16-0.5*B16

=-0.5*A17+0.3*B17

=A17-0.5*B17

=-0.5*A18+0.3*B18

=A18-0.5*B18

=-0.5*A19+0.3*B19

=A19-0.5*B19

x

y

1

1

-0.2

0.5

0.25

-0.45

-0.26

0.475

0.2725

-0.4975

-0.2855

0.52125

0.299125

-0.546125

-0.3134

0.5721875

0.32835625

-0.59949375

-0.34402625 0.628103125 0.360444063 -0.65807781 -0.377645375 0.689482969 0.395667578 -0.72238686 -0.414549847 0.756861008 0.434333226 -0.79298035 -0.455060718 0.830823401 0.476777379 -0.87047242 -0.499530415 0.912013589 0.523369284 -0.95553721

:3^‫ال ا‬B  9 H‫إ‬

156

x ( t ) = x ( t − dt ) + (u − v )dt , u = xɺ , v =< − xɺ > y ( t ) = y ( t − dt ) − wdt , w = yɺ

xɺ = bx,

yɺ = px, < − xɺ >= gx, g = cf

b = ne,

p = mh,

f = p m, e = y a, h = y a

(‫)ب‬

c

n dx/dt

<-dx/dt> x

m

u

v f

g

p

b dy/dt y w

h

e a

b u (x) x g v (x)

157

x

w

y

u

(x)

v

(x)

p w

y

e

b

h

p

x

y

a h y

p m

c g m

f

158

:V^‫ال ا‬B  9 H‫إ‬ †;8‫ و‬6` ‫ ا‬9 ‫ آ‬Q ‫داد‬G8 R;‫ ا‬9i# 9` ‫ل‬2D 3= ‫;ض‬A‫ ط وا‬A‫)أ(  أن ل ا‬ ‫ إذا‬T2D‫ و‬9`‫ ا‬J VY  ‫ ا`ق‬Q ( µ > 0 RK X ^ ) * dx ( t ) = v ( t ) − µ  x 3 ( t ) 3 − x ( t )  dt

‫ إذا‬9`‫ل ا‬2D Q †L*K 6` ‫ ا‬9 ‫و  أن ل آ‬ dv ( t ) = − x (t ) dt

d  N/P T*/‫و‬ dx = v − µ ( x3 3 − x ) dt

dv = −x dt

Vensim a N^  ‫ذج‬2 ‫)ب( ا‬ x dx

mu

v dv

(01) dv= -x Units: microgrm/sec

(02) dx= v-mu*(((x^3)/3)-x) Units: cm/sec

(03) FINAL TIME = 100

159

Units: Second The final time for the simulation.

(04) INITIAL TIME = 0 Units: Second The initial time for the simulation.

(05) mu= 2 Units: cm/sec

(06) SAVEPER = TIME STEP Units: Second The frequency with which output is stored.

(07) TIME STEP = 0.1 Units: Second The time step for the simulation.

(08) v= INTEG ( dv, 1) Units: microgrm

(09) x= INTEG ( dx, 2) Units: cm

160

Current 1 x 4 2 1 0 -2

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

-4 dx 1

4 2 0 -2 -4

1

1 1

1

1

1

1

1

1

1

1

1

1

1 1

0

25

50 Time (Second)

75

100

(1) N/! 1

Current v 4 2 0 -2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

-4 dv 4 2 0 -2 -4

1

1

0

1

1

1

25

1

1

1

1

50 Time (Second)

1

1

1

1

75

100

(2) N/!

161

Heart Rate v Fiber Length 4

2

0

-2

-4 -3

-2

dx : Current

-1

1

1

1

0 x 1

1

1

1 1

1

2

1

1

1

3 cm/sec

1

(3) N/! Heart Rate v Stimulus 4

2 1 1

1

1

1

0

-2

-4 -3 dx : Current

-2 1

-1 1

1

0 v 1

1

1

1 1

1

1

2 1

1

1

3 cm/sec

(4) N/!

162

Stimulus v Fiber Length 4

2

0

-2

-4 -3 v : Current

-2

-1

1

1

1

0 x 1

1

1

1 1

1

2

1

1

1

3 microgrm

1

(5) N/!

Stimulus v Heart Rate 4 1

1

1

1

1

1

1

2 1

0

-2

1

-4 -4 v : Current

-3

-2 1

1

-1 1

1

0 dx 1

1

1 1

1

2 1

1

3 1

1

4

microgrm

(6) N/! :a@*‫ ا‬9PL Systole ‫;ض‬A‫( إ" ا‬982D ‫ )أف‬Diastole ‫ ط‬A‫*;ل  ا‬A‫( أن ا‬1) N/!  8

‫ي‬6‫ وا‬3` ‫ إ ب‬3= R *8S 3* ) ‫ول‬0‫ ا‬3= ‫ء‬d ‫;ض‬A‫ ا‬T= ‫ث‬K (‫ة‬L ‫)أف‬ 163

"‫ ام إ‬Q= Q8 N/P j;K ‫ف‬0‫ن ا‬+= 6` ‫  ا‬9# 9 ‫ آ‬# /‫( و‬R;‫ذي ا‬B8 (3)  ‫ل‬/!0‫ ا‬.5ZK ‫ ول‬6` ‫ي ا‬2*  3= Oscilation ‫ ا*دد‬8 (2) N/! .‫ا)رج‬ :‫ت‬82* ‫ =" ا‬98‫ ا*ددات اور‬9D gU2K (6) "‫إ‬ (3) N/! 9i‫ل ا‬2D U R;‫ ا‬9i# ‫ت‬i ‫ ل‬-1 (4) N/! 6` ‫ ا‬9 ‫ آ‬U R;‫ ا‬9i# ‫ت‬i ‫ ل‬-2 (5) N/! 9i‫ل ا‬2D U 6` ‫ ا‬9 ‫ آ‬-3 (6) N/! R;‫ ا‬9i# ‫ت‬i ‫ ل‬U 6` ‫ ا‬9 ‫ آ‬-4 :Q ‫ال اا‬B  9 H‫إ‬ ( ‫)أ‬

M-n(t)

n(t) dn(t)/dt M

n(0) c

 ‫ ا‬8;K (‫)ب‬ Excel ‫*)ام‬+ S‫او‬

A

B

C

D

c=

0.473488084598268

M=

27.218780487999

n0=

0.691567114138888

E

Year

Delta Year

Value

Logistic

Sq Error

1980

=A5-$A$5

0

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B5))

=(D5-C5)^2

1981

=A6-$A$5

1.5

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B6))

=(D6-C6)^2

1982

=A7-$A$5

2

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B7))

=(D7-C7)^2

1983

=A8-$A$5

2.5

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B8))

=(D8-C8)^2

1984

=A9-$A$5

4

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B9))

=(D9-C9)^2

164

1985

=A10-$A$5

5

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B10))

=(D10-C10)^2

1986

=A11-$A$5

8.5

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B11))

=(D11-C11)^2

1987

=A12-$A$5

11.5

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B12))

=(D12-C12)^2

1988

=A13-$A$5

15

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B13))

=(D13-C13)^2

1989

=A14-$A$5

18.5

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B14))

=(D14-C14)^2

1990

=A15-$A$5

20

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B15))

=(D15-C15)^2

1991

=A16-$A$5

22.5

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B16))

=(D16-C16)^2

1992

=A17-$A$5

23.5

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B17))

=(D17-C17)^2

1993

=A18-$A$5

23

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B18))

=(D18-C18)^2

1994

=A19-$A$5

27

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B19))

=(D19-C19)^2

1995

=A20-$A$5

27.5

=$D$2/(1+(($D$2-$D$3)/$D$3)*EXP(-$D$1*B20))

=(D20-C20)^2

Sum=

=SUM(E5:E20)

A

B

C

D

c=

0.473488085

M=

27.21878049

n0=

0.691567114

E

Year

Delta Year

Value

Logistic

Sq Error

1980

0

0

0.691567114

0.478265073

1981

1

1.5

1.093543839

0.165206611

1982

2

2

1.714073963

0.081753699

1983

3

2.5

2.650992755

0.022798812

1984

4

4

4.019328309

0.000373584

1985

5

5

5.923649251

0.85312794

1986

6

8.5

8.403403286

0.009330925

1987

7

11.5

11.36711781

0.017657676

1988

8

15

14.56684923

0.187619589

1989

9

18.5

17.66362481

0.699523461

1990

10

20

20.35934383

0.129127985

1991

11

22.5

22.49780667

4.81069E-06

1992

12

23.5

24.07261592

0.327888994

1993

13

23

25.16994472

4.708660072

1994

14

27

25.90542485

1.198094761

1995

15

27.5

26.38562558

1.241830348

Sum=

10.12126434

Curve Expert ‫*)ام‬+ Y 165

166

167

3‫ ا; ا;رة ه‬J‫و‬ User-Defined Model: y=a/(1+((a-b)/b)*exp(-c*x)) 168

Coefficient Data: a=

27.218854

b=

0.69156932

c=

0.47348677 M = 27.218854, n0 = 0.69156932, c = 0.47348677

‫أي‬

(‫)ج‬

M-n(t)

n(t) dn(t)/dt M

n(0) c

(01) c = 0.47

(02) dn(t)/dt = c*(M-n(t)/M)*n(t)

(03) FINAL TIME = 15

(04) INITIAL TIME = 0

(05) M = 27.22

(06) M-n(t) = INTEG ( -dn(t)/dt, 30)

169

(07) n(0) = 0.69

(08) n(t) = INTEG ( dn(t)/dt, 1)

(09) SAVEPER = TIME STEP

(10) TIME STEP = 1 Current "n(t)" 40 30 20 10 0 "dn(t)/dt" 6 4.5 3 1.5 0

0

3.8

7.5 11.3 Time (Month)

15

Current "M-n(t)" 40 30 20 10 0 "dn(t)/dt" 6 4.5 3 1.5 0

0

7.5 Time (Month)

15

170

M-n(t) (n(t)) dn(t)/dt

n(t)

c M

(M-n(t)) n(t) dn(t)/dt

M-n(t)

c M

M-n(t) n(t)

dn(t)/dt (n(t))

(M-n(t)) M-n(t)

dn(t)/dt n(t) :a@*‫ ا‬9PL

‫ أن ا *ع‬V ‫ال‬B ‫ ا‬3= ‫ف‬2%2 ‫ ا‬3* H2‫ ا*ف ا‬9JK‫ ا‬9‫ت ا‬2‫  ا‬ dn ( t ) dt Flow ‫ ب‬A‫ ا‬.lL2*8 Y 3‫ ا‬2  "‫ إ‬52  ‫ل‬2*8 Y ‫ء‬d 2 8 n ( t ) Stock

†L*‫ ا‬fD*8‫ و‬Q8 †LK‫دة و‬8G‫ ا‬3= lL2K Y 98 ‫دة‬8‫ ا" ز‬9:‫دة ا‬8G‫  ا‬Z*8 .lL2*8 "* ‫ ا*طء‬3=  * 8‫و‬

171

‫  ا ا  ا‬

‫ﻗﺴﻢ ﺍﻹﺣﺼﺎﺀ ﻭﺑﺤﻮﺙ ﺍﻟﻌﻤﻠﻴﺎﺕ‬ ‫ﺍﻟﻤﺎﺩﺓ ‪ :‬ﺑﻨﺎﺀ ﺍﻟﻨﻤﺎﺫﺝ ‪ 203‬ﺑﺤﺚ‬ ‫ا‪*S‬ر ا‪S‬ول „‪ #‬ل ا`‪9‬‬ ‫ا`‪ N‬ا^‪ 1423/1422 3‬هـ‬ ‫ا‪*# : G‬‬ ‫أ‪ Q H 3# RH‬ا‪ 90‬ا*‪:9‬‬ ‫ا‪r‬ال اول‪:‬‬ ‫أ( ‪#‬ف ا*‪:3‬‬ ‫ا‪O‬م ‪ ، System‬ا‪ ، Entity @/‬ا`‪ ، Attribute 9‬ا‪P‬ط ‪ 9 ، Activity‬ا‪O‬م‬ ‫‪System State‬‬

‫ب( أذآ أ‪2‬اع ا‪.9 O0‬‬ ‫ج( آ‪ N^ 8 l‬ا‪O‬م =‪ 3‬ا*`‪ /‬ا‪.3O‬‬ ‫ا‪r‬ال ا‪:‬‬ ‫ ‪)*+‬ام ‪ N Excel‬ا د‪S‬ت ا`و‪ 9L‬ا*‪ 9‬وار  ر ا‪ ; N‬ا ‪:‬ة‪:‬‬ ‫‪1) xn = 0.3 xn −1 + 10, x0 = 0, n = 1,...,50‬‬

‫‪2) xn = xn −1 (1 + xn −1 ) , x0 = 10, n = 1,...,50‬‬

‫‪3) xn = xn2−1 + 0.7 xn −1 + 0.2, x0 = 1, n = 1,...,10‬‬

‫ا‪r‬ال ا‪:‬‬ ‫‪ D‬ا ‪2‬ذج ‪ "# y = a + bx c‬ات ا*‪Excel Solver )*  9‬‬ ‫‪9‬‬

‫‪8‬‬

‫‪7‬‬

‫‪6‬‬

‫‪5‬‬

‫‪4‬‬

‫‪3‬‬

‫‪2‬‬

‫‪1‬‬

‫‪0‬‬

‫‪x‬‬

‫‪690‬‬

‫‪509‬‬

‫‪312‬‬

‫‪275‬‬

‫‪190‬‬

‫‪132‬‬

‫‪92‬‬

‫‪65‬‬

‫‪47‬‬

‫‪32‬‬

‫‪y‬‬

‫ار ا; ا ‪:‬ة وا; ا ‪.9;:‬‬

‫‪172‬‬

‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬ ‫ﺟﺎﻣﻌﺔ ﺍﻟﻤﻠﻚ ﺳﻌﻮﺩ‬ ‫ﻗﺴﻢ ﺍﻹﺣﺼﺎﺀ ﻭﺑﺤﻮﺙ ﺍﻟﻌﻤﻠﻴﺎﺕ‬

( ‫ذج‬#$‫ء ا‬$)   203 ‫ دة‬ ‫ ﻫـ‬1423/1422 ‫ﺍﻹﺨﺘﺒﺎﺭ ﺍﻝﻨﻬﺎﺌﻲ ﻝﻠﻔﺼل ﺍﻝﺜﺎﻨﻲ‬ ‫ ﺴﺎﻋﺎﺕ‬3 ‫ﺍﻝﺯﻤﻥ‬ : %‫ ا‬2[&‫ ا‬%#! 324 k!‫أ‬ :‫ال اول‬r‫ا‬ gP‫ة ا‬#L ‫( أ او‬2) Occam's Razor ‫م‬T‫س اوآ‬2

(1) : ‫*ر‬+ ‫ف و‬# Parsimony Principle

(5) Endogenous Activities 9‫ اا‬9:P0‫( ا‬4) System State ‫م‬O‫ ا‬9 (3) Stochastic

9@‫ا‬2P‫ ا‬9:P0‫( ا‬6)

Exogenous Activities 9H‫ ا)ر‬9:P0‫ا‬

System ‫م‬O‫ ا‬9H6  (8) Discrete Systems 9` ‫ ا‬9 O0‫( ا‬7) Activities Flow ‫ ب‬0‫( ا‬10) Stock ‫( ا *ع‬9) Modeling

(12) Auxiliary Variables ‫ة‬# ‫ات ا‬Z* ‫ أو ا‬Converters ‫ت‬S2 ‫( ا‬11) Information Link ‫ت‬2 ‫ ا‬d ‫ أو روا‬Connectors ‫ت‬%2 ‫ا‬

:‫ال ا‬r‫ا‬ ˆ‫ ا‬98‫*د‬LA‫ وا‬9# *HA‫ وا‬9H2‫ وا‬982‫اه ا‬2O‫ ا‬N^ 9:‫اه ا‬2O‫^  ا‬/‫هك ا‬ # Z* ‫ع آ ت ا‬2 J ‫ وي‬K t G‫ ا‬# 3/8‫م د‬O 3= Z* 9 ‫ آ‬T= ‫ن‬2/K ‫ =*ة‬N^ K T V t G‫ ا‬# Z* ‫ ا‬9 ‫ آ‬N^ K xt , t ∈ T X‫ذا آ‬+= . t − 2 ‫ و‬t − 1 9‫ز‬0‫ا‬ .9 9‫ز‬ 9‫ ز‬9O ‫ أي‬# ‫م‬O‫ ا‬9/8‫ د‬lK 3*‫ وا‬9^‫ ا‬9H‫  ار‬9L‫ ا`و‬9‫( إ!* ا د‬1 . t ∈T

173

9 ‫ء‬i= N/! 3= 9;  ‫ ا‬9L‫ ا‬QU (2State Space Form N/P‫ ا‬3# xt = Axt −1 , t = 0,1,..., T

V  1 1 A=   0 1

. A 9=2`  Eigenvalues ‫ة‬G ‫ور ا‬6J‫ ا‬H‫( أو‬3 T# X 3*‫ ا‬9L‫ ا`و‬9‫ ا د‬N EXCEL ‫*)ام‬+ ‫ و‬x1 = 1, x2 = 1 9‫ أو‬L 6f (4 .( A1, A2,..., A30 8)‫ ا‬3= N‫ ا‬QU) . t = 1, 2,...,30 ; (1) 3= ;‫رن ا‬L C1 = A2 A1,..., C 29 = A30 A29 ‫ و‬B1 = A1 A2,..., B 29 = A29 A30 QU2 (5 . A 9=2`  ‫ة‬G ‫ور ا‬6J‫ ا‬Q 9JK‫ا‬ :‫ال ا‬r‫ا‬ Markovian 9=2‫ ا آ‬9%)‫ ا‬T 9 98‫*د‬L‫*د أن ‘هة إ‬LA‫ل أ اء ا‬2;8 (‫)أ‬

‫؟‬38 ‫ = ذا‬9^‫ ا‬9H‫  ار‬Property R  9^‫ ا‬9H‫  ار‬9=2‫ ا آ‬9%)‫ ا‬Q*8  9‫ !آ‬T  32‫`ل ا‬LA‫)ب(  ا‬ 9L‫ ا`و‬9‫ا د‬ xt − axt −1 − bxt −2 = ε t , ∀t ∈ T , ε t ~ N ( 0, 4 )

(Second Order one State

‫ وا‬9 Z* 9Y 9H‫  در‬9‫ ا د‬56‫ل ه‬2

]‫( وذ‬First Order two State Variables) 9 ‫ى‬Z* "‫ أو‬9H‫ إ" در‬Variable) . yt −1 = xt −2 QU2 ; (Steady State) 5‫م وأ* إ*;ار‬O‫ا ا‬6T ‫ذج‬2  ‫ن‬2‫ آ‬Vensim ‫*)ام‬+ (‫)ج‬ ‫ و‬y0 = 1 ‫ و‬x0 = 1 1) a = 1.2, b = −0.7 2) a = −1.2, b = −0.7

9*‫ إ*)م ا; ا‬:9O RANDOM NORMAL(-3.99,3.99 , 0 ,2 ,seed=19 ) INITIAL TIME = 0

FINAL TIME = 2

SAVEPER = TIME STEP

TIME STEP = 0.01

174

‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬ ‫ هـ‬1423/1422 ‫ ا‬2 R;$‫ر ا‬9\t 2# ‫إ!ت‬ ( ‫ذج‬#$‫ء ا‬$ )   203 ‫ دة‬ :‫ال اول‬r2 !‫إ‬ ‫!ء‬0‫ ا‬d * :‫ل‬2;8 3 # 3` = ‫ أ‬2‫ وه‬Occam’s Razor ‫م‬T‫س اوآ‬2 (1) N%`*‫ه ا‬f ‫أ‬8‫ إ‬NL0‫" ا‬# ‫ أو‬98‫ور‬i‫ \ ا‬N%`*‫ ا‬N‫( إ* آ‬N‫آ‬P ‫)ا‬ (9/P ‫‚ )ا‬P‫ا ا‬6‫د ه‬K 3*‫ا‬ ‫ إذا‬: ‫ل‬2;8 ‫ي‬6‫ وا‬3 ‫ ا‬V‫ ا‬3= Parsimony Principle gP‫ة ا‬#L ‫( أ او‬2) NL‫ي ا‬28 ‫ي‬6‫ذج ا‬2 = ‫ * م‬a@*‫ ا‬c` 3:8 ‫ذج وا‬2   ^‫آن هك أآ‬ .Ni=0‫ذج ا‬2 ‫ ا‬2‫ات وا  ه‬Z* ‫د  ا‬# TK`%‫@ت و‬/‫ ا‬N‫ آ‬lK ‫ات‬Z* 3‫ وه‬System State

‫م‬O‫ ا‬9 (3)

3= ‫ات‬Z*‫ ا‬Q** ‫م‬O‫ر ا‬2:K ‫رس‬8‫ و‬.9 9O # ‫م‬O‫ ا‬3= 9:P0‫وا‬ .$* .‫م‬O‫ ا‬N‫ دا‬9:P0‫ ا‬lK‫ و‬Endogenous Activities 9‫ اا‬9:P0‫( ا‬4) ‫م‬O‫ ا‬9 3= 9:P0‫ ا‬lK‫ و‬Exogenous Activities 9H‫ ا)ر‬9:P0‫( ا‬5) Z ‫م‬O 3 8 9H‫ ر‬9:Pf Yf*8S ‫ي‬6‫م ا‬O‫ ا‬.‫م‬O‫ا ا‬6‫ ه‬3# YBK 3*‫وا‬ .‫ح‬2*` ‫م‬O $f l%28 ‫ي‬6‫ وا‬9H‫ ا)ر‬9:P0 Yf*8 ‫ي‬6‫م ا‬O‫ ا‬c/ N/P ‫ه‬YfK Z*8 3*‫ ا‬3‫ وه‬Stochastic Activities 9@‫ا‬2P‫ ا‬9:P0‫( ا‬6) ‫ي‬6‫ ا‬XL2‫ = ^ ا‬3 *‫ إ‬Q8‫ز‬2* l%2K ‫ت *دة‬/‫ إ‬TJ@* ‫ن‬2/K‫ و‬3@‫ا‬2P# Z*8 9& ‫ل‬:#‫  إ‬G‫ آ  ان ا‬3 *‫ إ‬Q8‫ز‬2* l%28 Q J* 9& $LZ* K .3@‫ا‬2P# N/P Q:;* N/P ‫م‬O‫ ا‬9 T= Z*K 3*‫ وا‬Discrete Systems 9` ‫ ا‬9 O0‫( ا‬7) 3# RD ‫ل‬2%‫ و‬،Q:;* N/P ‫ث‬8 Q‫ ا‬3= 9#i ‫ = ^ إآ ل‬G‫ ا‬Q .ˆ‫ ا‬Q:;* N/P ‫ث‬8 Q@i‫ا‬

175

‫)‪ 9H6  (8‬ا‪O‬م ‪ System Modeling‬را‪O 9‬م  ‪ RJ8‬ان ‪2/‬ن او ‪2  3‬ذج‬ ‫‪ l%2 Model‬ه‪6‬ا ا‪O‬م ‪Z‬ض إ‪H‬اء ا*‪J‬رب ƒ‪ 3# 9 H‬أ‪ 9‬وإ=*ا‪U‬ت‬ ‫‪ / 8S‬إ‪H‬ا@‪ 3# T‬ا‪O‬م !ة وذ] *‪:i8S 3‬ب ا‪O‬م ا‪ 3%0‬و‪8‬ث‬ ‫إر‪K‬ك =‪B8 $ # 3‬دي ا‪ ZK 3‬ا‪O‬م و=;ا‪2) $‬ا‪ $%‬ا‪ 9%0‬آ  ان درا‪9‬‬ ‫ا ‪2‬ذج ‪  S‬ا‪O‬م ‪# R8JK  / K‬ة ‪2‬ارات ‪2‬ل ا‪O‬م وذ] ‪#+‬دة‬ ‫ا ‪2‬ذج ا‪ 3‬ا‪ 9‬ا‪ # 9%0‬إ‪H‬اء آ‪2 N‬ار ‪ c/‬ا‪O‬م ا‪ 3%0‬ا‪6‬ي إذا‬ ‫‪ / 8S ZK‬إ‪#‬د‪ 9K‬ة اى *‪ 9‬ا‪ ^ = 9%0‬را‪O 9‬م إ‪*L‬دي *‪Z‬‬ ‫ت اض وا‪B8 L R:‬دي ا‪ .T /# / 8S a@* 3‬آ  أن ا ‪2‬ذج ‪/ 8‬‬ ‫ان ‪8‬رس =‪ 3‬أز‪ 9‬إ=*ا‪ / 8 ^ = 9U‬إ‪H‬اء آة ‪O‬م ‪)*+‬ام ا ‪2‬ذج‬ ‫و=‪=K j 9‬ت ا‪O‬م `*ات ‪#‬ة ا!‪ T‬او  =‪ 3‬د‪ .9L @L‬وآ‪]6‬‬ ‫‪ 8D # / 8‬ا ‪2‬ذج درا‪ 9‬ا‪O‬م ‪ NL‬إ‪ $@P‬وو‪2H‬د‪ 5‬ا‪ 8 ^ = %‬ء‬ ‫‪ Q‬و‪# 8‬ة رات ء =*‪ 8‬اي ر ا=‪2/ Ni‬ن  ‪2‬ذج ‪ N/‬ر‬ ‫وآ‪K 3‬ف ا ‪ XK Q‬ه‪ 56‬ا)رات‪.‬‬ ‫)‪ (9‬ا *ع ‪ Stock‬أي !‚ ‪ Q Z*8‬ا‪) G‬د‪* ،3/8‬ك( ‪G8‬داد و‪ †;8‬و‪" 8‬‬ ‫ا‪2*  i8‬ى ‪ Level‬او *‪ ، State Variable 9 Z‬ا *ع ‪ R#2* 8‬ا‪!0‬ء‬ ‫`*ة ز‪ 9‬وه‪ 56‬ا‪!0‬ء ا *‪ TOKS 9#2‬أو ‪ O 3`*)K‬إذ ا‪iK T‬ف أو‬ ‫‪ (N;K) R K‬ل =*ة ز‪.9‬‬ ‫)‪ (10‬ا‪ A‬ب ‪ Flow‬ه‪ 2‬ل ‪ 9  Z8 Rate‬ا *ع‪ 8Gُ8 2T= ،‬أو ‪  †ِ;ُ8‬ا *ع‪.‬‬ ‫ا‪ A‬ب ا‪6‬ي‬ ‫‪ 8G8‬ا *ع ‪ " 8‬أ‪ A‬ب اا‪ N‬أو ا ر ‪ ،Source‬وا‪6‬ي ‪ †;8‬ا *ع ‪" 8‬‬ ‫أ‪ A‬ب ا)رج‬ ‫أو ا‪2Z‬ر ‪. Sink‬‬ ‫)‪ (11‬ا ‪S2‬ت ‪ Converters‬أو ا *‪Z‬ات ا ‪#‬ة ‪2K Auxiliary Variables‬ى‬ ‫أر‪L‬م‪2;K ،‬م  ت‬ ‫  ‪ 9‬أو‪ 98H‬أو ‪ 9;:‬و‪ *K‬ا *‪ 3= Controllers 9 /‬ا ‪2‬ذج‪.‬‬ ‫)‪ (12‬ا ‪%2‬ت ‪ Connectors‬أو روا ‪ d‬ا ‪2‬ت ‪ Information Link‬وه‪ 3‬ا*‪3‬‬ ‫‪ N K‬أو ‪d K‬‬ ‫ا ‪2‬ت  ‪GH‬ء إ" & =‪ 3‬ا ‪2‬ذج‪  ،‬ا ‪ T‬أن  ان ا ‪%2‬ت ‪N;KS‬‬ ‫آ ت د‪N^) 98‬‬ ‫‪176‬‬

‫ء‬GJ N;*K ‫ذج‬2 ‫ء  ا‬GH 9 ;= d;= ‫ت‬2 N;K 3‫ ه‬N (‫د‬2;‫ او ا‬9L:‫ او ا‬5 ‫ا‬ .& :‫ال ا‬r2 !‫إ‬ xt −1 3‫ ه‬t − 1 G‫ ا‬#‫ و‬xt 3‫ ه‬t G‫ ا‬# Z* ‫ ا‬9 ‫ال آ‬B ‫ت ا‬:  (1

‫ إذا‬xt −2 3‫ ه‬t − 2 G‫ ا‬#‫و‬ xt = xt −1 + xt − 2 , t ∈ T

:9L‫ =و‬9‫ د‬N/! "# ‫أو‬ xt − xt −1 − xt − 2 = 0, t ∈ T

:N/P‫ ا‬3# 9L‫ ا`و‬9‫ ا د‬Qi (2 xt = xt −1 + xt − 2 , t ∈ T

J yt −1 = xt −2 QU2 ‫و‬ xt = xt −1 + yt −1 yt = xt −1

N/P‫" ا‬# 3‫وه‬  xt   1 1   xt −1  y =    t   1 0   yt −1 

.‫ب‬2: ‫ ا‬N/P‫ ا‬2‫وه‬ 9L‫ *)ج  ا‬K ‫ة‬G ‫ور ا‬6J‫( ا‬3 A − λI = 0 1 1   1 0  −λ  =0 1 0   0 1 1− λ

1

1

−λ

=0

(1 − λ )( −λ ) − 1 = 0 λ 2 − λ −1 = 0 1+ 5 1− 5 , λ2 = 2 2 λ1 = 1.618034

∴ λ1 =

λ2 = 0.618034

177

‫‪(4‬‬ ‫‪1‬‬

‫‪1‬‬

‫‪1‬‬

‫‪2‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪1.5‬‬

‫‪0.666667‬‬

‫‪2‬‬

‫‪1.666667‬‬

‫‪0.6‬‬

‫‪3‬‬

‫‪1.6‬‬

‫‪0.625‬‬

‫‪5‬‬

‫‪1.625‬‬

‫‪0.615385‬‬

‫‪8‬‬

‫‪1.615385‬‬

‫‪0.619048‬‬

‫‪13‬‬

‫‪1.619048‬‬

‫‪0.617647‬‬

‫‪21‬‬

‫‪1.617647‬‬

‫‪0.618182‬‬

‫‪34‬‬

‫‪1.618182‬‬

‫‪0.617978‬‬

‫‪55‬‬

‫‪1.617978‬‬

‫‪0.618056‬‬

‫‪89‬‬

‫‪1.618056‬‬

‫‪0.618026‬‬

‫‪144‬‬

‫‪1.618026‬‬

‫‪0.618037‬‬

‫‪233‬‬

‫‪1.618037‬‬

‫‪0.618033‬‬

‫‪377‬‬

‫‪1.618033‬‬

‫‪0.618034‬‬

‫‪610‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪987‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪1597‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪2584‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪4181‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪6765‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪10946‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪17711‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪28657‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪46368‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪75025‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪121393‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪196418‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪317811‬‬

‫‪1.618034‬‬

‫‪0.618034‬‬

‫‪514229‬‬ ‫‪832040‬‬

‫ أن ا; ‪BK Bi 3= 9‬ول إ" ‪ λ1 = 1.618034‬و ا; ‪BK Ci 3= 9‬ول إ"‬ ‫‪λ2 = 0.618034‬‬

‫إ! ‪r2‬ال ا‪:‬‬

‫‪178‬‬

‫" ان‬# ‫ل‬2;K Markovian Property of order

k 9H‫  ار‬9=2‫ ا رآ‬9%)‫ ا‬: (‫)ا‬

.d;= t − 1, t − 2,..., t − k 9‫ز‬0‫ ا‬# T L "#  *K t G‫ ا‬# 9@‫ا‬2P‫هة ا‬O‫ ا‬9 L ‫ن‬+= { yt , −∞ < t < ∞} X‫= ^ إذا آ‬

(

)

P yt < s | yt −1 , yt −2 ,..., yt −k , yt −( k +1) ,... = P ( yt < s | yt −1 , yt −2 ,..., yt −k )

(Second Order one State ‫ وا‬9 Z* 9^‫ ا‬9H‫  ار‬9L‫ ا`و‬9‫)ب( ا د‬ Variable) xt − axt −1 − bxt −2 = ε t , ∀t ∈ T , ε t ~ N ( 0, 4 )

(First Order two State Variables) 9 ‫ى‬Z* "‫ أو‬9H‫ در‬N/! "# QU2K xt = axt −1 + byt − 2 + ε t , ε t ~ N ( 0, 4 ) yt = xt −1

Vensim ‫*)ام‬+ ‫م‬O ‫ذج‬2 ‫)ج( ا‬ a

epsil on

x(t) dx(t) b y(t) dy(t) a = 1.2, b = −0.7 ; -1

(01)

a= 1.2

Units: **undefined**

(02)

b= -0.7

Units: **undefined**

179

(03)

"dx(t)"= a*"x(t)"+b*"y(t)"+epsilon

Units: **undefined**

(04)

"dy(t)"= "x(t)"

Units: **undefined**

(05)

epsilon= RANDOM NORMAL(-3.99, 3.99 , 0 , 2 , 19 )

Units: **undefined**

(06)

FINAL TIME = 2 Units: Day

The final time for the simulation.

(07)

INITIAL TIME = 0

Units: Day

The initial time for the simulation.

(08)

SAVEPER = TIME STEP

Units: Day The frequency with which output is stored.

(09)

TIME STEP = 0.01

Units: Day

The time step for the simulation.

(10)

"x(t)"= INTEG ("dx(t)", 1)

Units: **undefined**

(11)

"y(t)"= INTEG ("dy(t)", 1)

Units: **undefined**

180

Graph for epsilon 4

2

0

-2

-4 0

0.50

1 Time (Day)

1.50

epsilon : Current

Current "x(t)" 2 1.7 1.4 1.1 0.8 "dx(t)" 6 3 0 -3 -6

0

0.50

1 Time (Day)

181

1.50

2

2

Current "y(t)" 4 3 2 1 0 "dy(t)" 2 1.7 1.4 1.1 0.8

0

0.50

1 Time (Day)

1.50

2

6

3

0

-3

-6 0.80

0.95

1.10 "x(t)"

1.25

"dx(t)" : Current

a = 1.2, b = −0.7 ; ;*  ‫ذج‬2 ‫ ان ا‬0‫ ا‬N/P‫  ا‬gU‫وا‬ a = −1.2, b = −0.7 ; -2

(01)

a= -1.2

Units: **undefined**

(02)

b= -0.7

Units: **undefined** 182

1.40

(03)

"dx(t)"= a*"x(t)"+b*"y(t)"+epsilon

Units: **undefined**

(04)

"dy(t)"= "x(t)"

Units: **undefined**

(05)

epsilon= RANDOM NORMAL(-3.99, 3.99 , 0 , 2 , 19 )

Units: **undefined**

(06)

FINAL TIME = 2

Units: Day

The final time for the simulation.

(07)

INITIAL TIME = 0

Units: Day

The initial time for the simulation.

(08)

SAVEPER =

TIME STEP

Units: Day

The frequency with which output is stored.

(09)

TIME STEP = 0.01

Units: Day

The time step for the simulation.

(10)

"x(t)"= INTEG ("dx(t)", 1)

Units: **undefined**

(11)

"y(t)"= INTEG ("dy(t)", 1)

Units: **undefined**

183

Current "x(t)" 1 0.5 0 -0.5 -1 "dx(t)" 6 3 0 -3 -6

0

0.50

1 Time (Day)

0.50

1 Time (Day)

1.50

2

Current "y(t)" 2 1.7 1.4 1.1 0.8 "dy(t)" 1 0.5 0 -0.5 -1

0

184

1.50

2

2

1.7

1.4

1.1

0.8 -1

-0.50

0 "x(t)"

0.50

1

-0.50

0 "x(t)"

0.50

1

"y(t)" : Current

6

3

0

-3

-6 -1 "dx(t)" : Current

a = −1.2, b = −0.7 ; ;*  \ ‫ذج‬2 ‫ ان ا‬0‫ ا‬N/P‫  ا‬gU‫وا‬

185

:QH‫ا ا‬ 1) A Course in Mathematical Modeling By: Douglas D. Mooney and Randall J. Swift Published and Distributed by: The Mathematical Association of America.

2) Mathematics for Dynamic Modeling, 2nd ed. By: Edwaed Beltrami Published by: Academic Press

3) An Introduction to Mathematical Modeling By: Edward A. Bender Published by: Dover Publications, inc.

4) Mathematical Modelling Techniques By: Rutherford Aris Published by: Dover Publications, inc.

5) Introduction to Difference Equations By: Samuel Goldberg Published by: Dover Publications, inc.

6) Matrix Computations By: Gene H. Golub & Charles F. Van Loan Published by: North Oxford Academic

7) The State Space Equations and Their Time Domain Solution Lecture Notes By: Dr. J. R. White, UMass-Lowell 186

Related Documents


More Documents from "api-445759289"

December 2019 2
Model Building
December 2019 6
December 2019 0
December 2019 0
December 2019 1
Untitled.docx
May 2020 13