MATH 1920-01
SPRING
CALCULUS II
2006
MIT Integration Bee The MIT Integration Bee is a yearly competition open to undergraduates. The initial phase of the competition consists of an hour-long written competition consisting of forty integration problems. The subsequent phases are handled like a Spelling Bee. At the end of the 1991 competition, there were four finalists, who were given the following four problems.
r ex(x 2) − x3
r
x sec2 x dx
r dx r
cot x dx log(sin x)
x sec x(x tan x + 2) dx.
The problems for the first round are given below. Have fun! r 1. e1991x dx r log x dx
2. r
(sin x − cos x)2 dx
3. r
2
esin xecos
4.
2
x
dx
r dx πx r x e +x e dx 6. 5.
r 7. 8.
r r
9.
x x4 + 1
dx
dx x log x e5x + e7x ex + e−x
dx
1
r 10.
r
11. r
xex sin x dx x+1 √ dx 3 2 x + 2x + 2 (cosh x − sinh x) dx
12. r 13. r
x2 + 1 x4 − x2 + 1
dx
sec3 x dx
14. 15. r
dx sec x + tan x sin x r '\ 16. −1 + 2/(1 + 3x) dx r 17. r 18.
sin x esec x dx cos2 x dx πx2 + tan−1 x + x2 tan−1 x + π
dx 19. r 12 + 13 cos x r 3 x +1 dx 20. x +1 x +1 r 21. e1991 dx 22. r
dx x2 − 10x + 26 23. r dx x2 − 11x − 26 r (1 − 4x4)−1/2 dx 24. (4x)−1 (4x)−1 r 25. (log x + 1)xx dx
2
r 26.
r
(cos 2x)(sin 6x) dx dx
√
27.
√ dx x(1 + x)
r
e1/xx−3 dx
28. r 29. r 30.
√
csc x − sin x dx
x2 + 1 dx x3 + 1
r 42x dx
31. r
x5ex dx
32. r
2
xex dx
33. 34. r 35. r r
dx (x2 + 1)2 dx ex + e−x tan x log | sec x| dx
36. r 37.
cos(sin x) cos x dx
38. r
dx x2 − 9
r 39.
√
π dx
16 − e2 r √ 40. tan x dx
3