Universidad Surcolombia
Mínimos cuadrados y Splines
Presentado al docente: Yamil Armando Cerquera Rojas
Presentado por: Rafael A. Beltrán Cabrera Cód.: 2009288517
Facultad de Ingeniería
Métodos Numéricos Neiva-Huila 2019
I.
tabla incremento salarial últimos 15 años. Año 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Salario mínimo mensual 236460 260100 286000 309000 332000 358000 381500 408000 433700 461500 496900 515000 535600 566700 589500
grafico porcentual aumento salario mínimo últimos 15 años.
incremento porcentual del salario minimo en colombia durante los ultimos 15 años. 18 16 14 12
Axis Title
II.
Variación % anual 16,01 10 9,96 8,04 7,44 7,83 6,56 6,95 6,3 6,41 7,68 3,64 4 5,81 4,02
10 8
6 4 2 0
Variación % anual
III.
desarrollo
A. sacar la tabla. Xº Yº
1 16,01
2 10
3 9,96
4 8,04
5 7,44
6 7,83
7 6,56
8 6,95
9 6,3
B. desarrollo de variables. N=15 ∑y=110,60 ∑x=120 ∑x^2=1240 ∑yx=726,35 Y^=a+bx^2
C. remplazamos la variable en la matriz N
∑x
∑y
a =
∑x
∑x^2
∑yx
b
D. remplazamos en la matriz 15
120
a
110,60 =
120
1240
b
726,35
E. sacamos las ecuaciones 15a + 120b = 110,60 120a +1240b = 726,35
10 6,41
11 7,68
12 3,64
13 4
14 5,81
15 4,02
F. desarrollamos las ecuaciones y obtenemos a=11,89 b=-0,5658 G. ahora utilizamos a y b para calcular y^ y^=a+bxº
y1=11,89-0,5658*1 = 11,3242 y2=11,89-0,5658*2 = 10,7584 y3=11,89-0,5658*3 = 10,1926 y4=11,89-0,5658*4 = 9,6268 y5=11,89-0,5658*5 = 9,061 y6=11,89-0,5658*6 = 8,4952 y7=11,89-0,5658*7 = 7,9294 y8=11,89-0,5658*8 = 7,3636 y9=11,89-0,5658*9 = 6,7978 y10=11,89-0,5658*10 = 6,232 y11=11,89-0,5658*11 = 5,6662 y12=11,89-0,5658*12 = 5,1004 y13=11,89-0,5658*13 = 4,5346 y14=11,89-0,5658*14 = 3,9688 y15=11,89-0,5658*15 = 3,403
H. ahora miramos la gráfica con la línea de mínimos cuadrados
incremento porcentual del salario minimo en colombia durante los ultimos 15 años. Axis Title
20 15 10
Variación % anual
5
minimos cuadrados
Xº Yº Y^
1 16,01 11,324
2 10 10,758
3 9,96 10,193
4 8,04 9,6268
5 7,44 9,061
6 7,83 8,4952
7 6,56 7,9294
8 6,95 7,3636
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
0
9 6,3 6,7978
10 6,41 6,232
11 7,68 5,6662
12 3,64 5,1004
13 4 4,5346
14 5,81 3,9688
15 4,02 3,403
SPLINE CUBICO x=1:15; y=[16.01 10 9.96 8.04 7.44 7.83 6.56 6.95 6.3 6.41 7.68 3.64 4 5.81 4.02]; plot(x,y,'or');hold on axis([0 17 0 18]); i=1; while i<=14 a(2*i-1,4*i)=x(i).^3; a(2*i-1,4*i-1)=x(i).^2; a(2*i-1,4*i-2)=x(i).^1; a(2*i-1,4*i-3)=1; i=i+1; end a=[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1248000000000000000000000000000000000000 0000124800000000000000000000000000000000 0 0 0 0 1 3 9 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 9 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 16 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 16 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 25 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 25 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 36 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 36 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 49 343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 49 343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 64 512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 64 512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 81 729 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 81 729 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 100 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 12 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0 1 4 12 0 -1 -4 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 27 0 -1 -6 -27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 48 0 -1 -8 -48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 75 0 -1 -10 -75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 108 0 -1 -12 -108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14 147 0 -1 -14 -147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16 192 0 -1 -16 -192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 18 243 0 -1 -18 -24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20 300 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 22 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0 0 2 12 0 0 -2 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 18 0 0 -2 -18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 24 0 0 -2 -24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 30 0 0 -2 -30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 36 0 0 -2 -36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 42 0 0 -2 -42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 48 0 0 -2 -48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 54 0 0 -2 -54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 60 0 0 -2 0000000000000000000000000000000000000026 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000
0000000000000000000000000000000000000000 0026000000000000000000000000000000000000 0026000000000000000000000000000000000000 ]; b=[16.01;10;10;9.96;9.96;8.04;8.04;7.44;7.44;7.83;7.83;6.56;6.56;6.95;6.95;6.3;6.3 v=inv(a)*b i=1; while i<=14 a=v(4*i-3); b=v(4*i-2); c=v(4*i-1); d=v(4*i); xx=x(i):0.01:x(i+1); fx=a+b*xx+c*xx.^2+d*xx.^3; plot(xx,fx); i=i+1; end v= 1.0e+003 * 0.0220 -0.0025 -0.0053 0.0018 0.0584 -0.0570 0.0220 -0.0028 -0.0590 0.0603 -0.0171 0.0016 0.0557 -0.0257 0.0044 -0.0002 0.1440 -0.0787 0.0150 -0.0009 -0.3524 0.1695 -0.0264 0.0014 0.5109 -0.2004 0.0265 -0.0012 -0.3847 0.1354 -0.0155 0.0006 -0.3993 0.1403 -0.0161 0.0006 2.8301 -0.8286 0.0808 -0.0026 -5.1927 1.3595
-0.1181 0.0034 2.9309 -0.6714 0.0512 -0.0013 2.6739 -0.6121 0.0466 -0.0012 -3.1798 0.6422 -0.0430 0.0010
SPLINE PARABOLA x=1:15; y=[16.01 10 9.96 8.04 7.44 7.83 6.56 6.95 6.3 6.41 7.68 3.64 4 5.81 4.02]; plot(x,y,'or');hold on axis([0 17 0 18]); i=1; while i<=14 a(2*i-1,4*i-1)=x(i).^2; a(2*i-1,4*i-2)=x(i).^1; a(2*i-1,4*i-3)=1; i=i+1; end a=[1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2400000000000000000000000000000000000000 0012400000000000000000000000000000000000 0013900000000000000000000000000000000000 0000013900000000000000000000000000000000 0 0 0 0 0 1 4 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14 196 0000000000000000000000000000000000000011 0000000000000000000000000000000000000011 1 4 0 -1 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 0 -1 -6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 0 -1 -8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 0 -1 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 0 -1 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14 0 -1 -14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16 0 -1 -16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 18 0 -1 -18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20 0 -1 -20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 22 0 -1 -22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 24 0 -1 -24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 26 0 -1 -26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 28 0]; b=[16.01;10;10;9.96;9.96;8.04;8.04;7.44;7.44;7.83;7.83;6.56;6.56;6.95;6.95;6.3;6.3 v=inv(a)*b i=1; while i<=13 a=v(4*i-3); b=v(4*i-2); c=v(4*i-1); xx=x(i):0.01:x(i+1); fx=a+b*xx+c*xx.^2; plot(xx,fx); i=i+1; end
v= 1.0e+003 * 0.0270 -0.0110 0.1120 -0.0849 0.0170 -0.2106 0.1301 -0.0189 0.4140 -0.1822 0.0202 -0.5702 0.2115 -0.0192 0.7517 -0.2292 0.0175 -0.8849 0.2384 -0.0159 1.0799 -0.2528 0.0148 -1.2610 0.2674 -0.0141 1.6690 -0.3186 0.0152 -2.6592 0.4684 -0.0205 3.8900 -0.6231 0.0249 -4.2947 0.6360 -0.0235 4.2078 -0.5786 0.0199
DATOS EVALUADOS CON DIFERENTES CURVAS t = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]; p = [16.01 10 9.96 8.04 7.44 7.83 6.56 6.95 6.3 6.41 7.68 3.64 4 5.81 4.02]; % t=linspace(-1,1,10); % p=1./(1+25*t.^2); x = 1:0.1:16; %x = linspace(-1,1,100); y = interp1 (t, p, x, 'spline') ; plot (t, p,'o',x, y); hold on y = interp1 (t, p, x, 'linear') ; plot (x, y,'r') y = interp1 (t, p, x, 'nearest') ; plot (x, y,'g') y = interp1 (t, p, x, 'pchip') ; plot (x, y,'b') y = interp1 (t, p, x, 'cubic') ; plot (x, y,'c') y = interp1 (t, p, x, 'v5cubic') ; plot (x, y,'m') hold off %