MID TERM EXAM 2009 –Matematics T paper 1 (MARKING SCHEME) No Marking Scheme 1 (A – B)’ ∩ A = (A ∩ B’)’ ∩ A = (A’ ∪ B) ∩ A = (A’ ∩ A) ∪ (B ∩ A) = 0 ∪ (B ∩ A) = B ∩ A = A∩ B 2
Marks B1 B1 B1
Total
B1
4M
1
− dy 1 = x. (2 − x) 2 (−1) + 2 − x dx 2
= 7 4
∫ 1
4 − 3x 2 2− x
M1 A1
7 4
4 − 3x 4 − 3x dx = 2∫ dx 2− x 1 2 2− x
M1
7
1 4 = 2 x 2 − x 2 1
A1
1
2 = 14 1 − 2(1) 4 4
A1
=-0.25 3
( x + yi) 2 = 5 − 12i x 2 − y 2 + 2 xyi = 5 − 12i x 2 − y 2 = 5, 2 xy = −12 6 y=− x
2
6 x 2 − − = 5, x 4 2 x − 5 x − 36 = 0 ( x 2 − 9)( x 2 + 4) = 0 x 2 = 9, x 2 = −4(reject ) x = ±3, y = 2 5 − 12i = ±(3 − 2i ) 4
y = e 2 x cos x dy = e 2 x ( − sin x) + cos x(2e 2 x ) dx
5M
M1 M1
M1 A1 A1 A1
6M
M1
= e 2 x (2 cos x − sin x)
d2y = e 2 x ( −2 sin x − cos x) + (2 cos x − sin x)(2e 2 x ) 2 dx = e 2 x (3 cos x − 4 sin x)
d2y dy =k + hy 2 dx dx e 2 x (3 cos x − 4 sin x) = ke 2 x (2 cos x − sin x) + h(e 2 x cos x) Compare coefficient of cos x : 3 = 2k + h Compare coefficient of sin x : − 4 = −k Therefore, k = 4 and h = −3
M1
M1 M1 A1, A1
6M
5
f ( x) = x 2 + 5 − f (0.5) = −0.75 f (0.6) = 0.36
3 x M1
since f(0.5) < 0 and f(0.6) > 0, there is a root between 0.5 and 0.6
3 f ′( x) = 2 x + 2 x x0 = 0.5
B1
3 2 0.5 + 5 − 0.5 x1 = 0.5 − 3 2 x 0.5 + 2 0.5 = 0.5577
M1
x2 = 0.5640 x3 = 0.5641
A1 M1 A1
The root is 0.564 correct to 3 s.f. 6
1 A B = + (1 + x) ( 2 + x) 1 + x 2+ x A(2 + x) + B(1 + x) ≡ 1 A= 1
B = -1
A1
(1 + x)-1 = 1 – x + x2 + …
B1
1 x (1 + )-1 2 2 (−1) (−2) x 2 1 x = [ 1 + (-1) + +…] 1− 2 2 2 2 1 1 1 2 = x + x + …. 2 4 8 1 1 1 1 2 = (1 – x + x2 + …) - ( x + x …) (1 + x) ( 2 + x) 2 4 8 1 3 7 − x + x 2 + .... 2 4 8
=
1 y = x+ x x2 +
M1
A1 M1 8M
M1
1 = y2 − 2 x2 3
B1
A1
1 ⇒ y2 = x2 + 2 + 2 x
A1
x − 2x − 6x − 2x + 1 = 0 2 1 x 2 − 2x − 6 − + 2 = 0 x x 4
7M
M1
1 1 1 = (1 + x) ( 2 + x) 1 + x 2 + x (2 + x)-1 =
7
A1
2
1 1 x 2 + 2 − 2( x + ) − 6 = 0 x x
( y − 4)( y + 2) = 0 y = 4, y = −2 1 When y = 4 , x + = 4 x When y = −2 , x +
1 = −2 x
M1
y2 − 2y − 8 = 0 M1 A1
⇒ x 2 − 4x + 1 = 0
M1
x = 2± 3
A1
⇒ x 2 + 2x + 1 = 0
x =1
A1
8M
8
f ( x) = g ( x)( x − 1)( x + 1)( x − 2) + ( ax 2 + bx + c) f (1) = a + b + c = 3 (1) f (−1) = a − b + c = 1 (2) f (2) = 4a + 2b + c = −2 (3) (1)+(2), 2a+2c=4, a+c=2 2(2)+(3), 6a+3c=0, 2a+c=0 a = -2, c = 4, b = 1 Remainder = f ( x) = −2 x 2 + x + 4
9
B1 B1 B1 M1 A1A1A1 M1
0 0 1 0 1 0 a 0 (a) P = − 1 − 2 0 = m b − 5 0 + n 0 1 c − 3 − 2 0 0 −1 − 3 1 0 0 ma 0 0 n 0 1 0 + 0 n − 1 − 2 0 = mb − 5m − 1 − 3 1 mc − 3m − 2m 0 0
0 0 1
0 0 n 0 0 ma + n 0 0 1 − 5m + n 0 − 1 − 2 0 = mb − 1 − 3 1 mc − 3 m − 2 m + n
8M
M1
M1
ma + n = 1
mb = −1 − 5m + n = −2 − 3m = −3
M1
mc = −1 − 2m + n = 1
m = 1, n = 3, a = −2, b = −1, c = −1 2
0 0 1 0 0 1 2 (b) P = − 1 − 2 0 = 1 4 0 − 1 − 3 1 1 3 1
B1
0 0 1 0 0 1 0 0 1 1 4 0 = s − 1 − 2 0 + t 0 1 0 1 3 1 − 1 − 3 1 0 0 1 0 0 1 0 0 s + t 0 1 4 0 = − s − 2 s + t 1 3 1 − s − 3s s + t s = -1, t = 2 P 2 = − P + 2I P 4 = P 2 P 2 = (− P + 2 I ) 2 = P 2 − 4 P + 4 I = (− P + 2 I ) − 4 P + 4 I = −5P + 6 I 10
1 1 − 1 − 5 − 5 5 10 0 0 6 − 4 = 0 10 0 AB = 2 3 2 8 5 4 1 − 7 1 1 0 0 10 = 10 I 1 A B = I 10
5 − 10 1 8 −1 A = B= 10 10 7 − 10
5 10 6 10 1 10
−
5 10 − 0.5 4 − = 0.8 10 1 − 0.7 10
A1
− 0.5 0.5 0.6 − 0.4 0.1 0.1
M1
M1 A1 M1 A1
M1 A1
M1 A1
10M
x+ y−z =0 2 x + 3 y + 2 z = 16 5 x + 4 y + z = 19
B1 B1 B1
1 1 − 1 x 0 2 3 2 y = 16 5 4 1 z 19
M1
x − 5 − 5 5 0 1 6 − 4 16 y = 8 z 10 − 7 1 1 19
M1
1.5 = = 2.0 3.5
A1
x = RM 1.50, y = RM 2.00, z = RM 3.50
11
S n = a + ar + ar + ar + ... + ar 2
3
n −1
A1
→ (1)
rS n = ar + ar 2 + ar 3 + ar 4 + ... + ar n → (2)
M1
(1) − (2), S n − rS n = a − ar
M1
n
12M
S n (1 − r ) = a(1 − r n ) a (1 − r n ) 1− r 1 − 1 r= 2 =− , a=2 2 4 Sn =
S∞ =
2
=
1 1+ 4
A1 B1
8 5
B1
1 n 21 − − n 4 8 1 Sn = = 1 − − 1 5 4 1+ 4
M1
n
S∞ − S n =
8 8 8 1 − + − < 10− 5 5 5 5 4
M1
n
8 1 − < 10− 5 5 4 1 5 n lg < lg10− 5 × 4 8
M1 M1
5 lg10− 5 × 8 n> 1 lg 4
M1
n > 8.64 ∴n = 9
A1 A1
12 y 12
y=12-x3 x
0
y=12-4x
D1 D1 D1
12 M
M1
12 − 4 x = 12 − x 3 x( x 2 − 4) = 0 x = 0, 2, − 2 (0,12) ( 2,4) (−2,20)
A1 A1
0
2
−2
0
3 3 A= ∫ [(12 − 4 x) − (12 − x )]dx + ∫ [(12 − x ) − (12 − 4 x )]dx 0
M1
2
∫
∫
3 = ( x − 4 x)]dx + (4 x − x )dx 3
−2
0
0
2
x4 x4 = − 2 x 2 + 2 x 2 − 4 0 4 −2 16 16 = 0 − − 8 + 8 − − 0 4 4
A1 M1
=8
A1 2
0
∫
∫
3 2 2 2 3 2 V= π [(12 − 4 x) − (12 − x ) ]dx + π [(12 − x ) − (12 − 4 x) ]dx −2
=π
0
2
0
∫ [24 x
−2
M1,M1
3
+ 16 x 2 − 96 x − x 6 ]dx + π ∫ [−24 x 3 − 16 x 2 + 96 x + x 6 ]dx 0
0
2
16 x 3 x7 16 x 3 x7 = π 6 x 4 + − 48 x 2 − + π − 6 x 4 − + 48 x 2 + 3 7 −2 3 7 0 2528 1504 = π 0 − − + π − 0 21 21 = 192π
A1 M1 A1
15M