Midterm2009_markingscheme

  • Uploaded by: Rabiah
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Midterm2009_markingscheme as PDF for free.

More details

  • Words: 2,100
  • Pages: 5
MID TERM EXAM 2009 –Matematics T paper 1 (MARKING SCHEME) No Marking Scheme 1 (A – B)’ ∩ A = (A ∩ B’)’ ∩ A = (A’ ∪ B) ∩ A = (A’ ∩ A) ∪ (B ∩ A) = 0 ∪ (B ∩ A) = B ∩ A = A∩ B 2

Marks B1 B1 B1

Total

B1

4M

1

− dy 1 = x. (2 − x) 2 (−1) + 2 − x dx 2

= 7 4

∫ 1

4 − 3x 2 2− x

M1 A1

7 4

4 − 3x 4 − 3x dx = 2∫ dx 2− x 1 2 2− x

M1

7

1 4   = 2 x 2 − x 2     1

A1

1

2 = 14  1  − 2(1) 4 4

A1

=-0.25 3

( x + yi) 2 = 5 − 12i x 2 − y 2 + 2 xyi = 5 − 12i x 2 − y 2 = 5, 2 xy = −12 6 y=− x

2

 6 x 2 −  −  = 5,  x 4 2 x − 5 x − 36 = 0 ( x 2 − 9)( x 2 + 4) = 0 x 2 = 9, x 2 = −4(reject ) x = ±3, y = 2 5 − 12i = ±(3 − 2i ) 4

y = e 2 x cos x dy = e 2 x ( − sin x) + cos x(2e 2 x ) dx

5M

M1 M1

M1 A1 A1 A1

6M

M1

= e 2 x (2 cos x − sin x)

d2y = e 2 x ( −2 sin x − cos x) + (2 cos x − sin x)(2e 2 x ) 2 dx = e 2 x (3 cos x − 4 sin x)

d2y dy =k + hy 2 dx dx e 2 x (3 cos x − 4 sin x) = ke 2 x (2 cos x − sin x) + h(e 2 x cos x) Compare coefficient of cos x : 3 = 2k + h Compare coefficient of sin x : − 4 = −k Therefore, k = 4 and h = −3

M1

M1 M1 A1, A1

6M

5

f ( x) = x 2 + 5 − f (0.5) = −0.75 f (0.6) = 0.36

3 x M1

since f(0.5) < 0 and f(0.6) > 0, there is a root between 0.5 and 0.6

3 f ′( x) = 2 x + 2 x x0 = 0.5

B1

3   2  0.5 + 5 −  0.5  x1 = 0.5 −  3    2 x 0.5 + 2  0.5   = 0.5577

M1

x2 = 0.5640 x3 = 0.5641

A1 M1 A1

The root is 0.564 correct to 3 s.f. 6

1 A B = + (1 + x) ( 2 + x) 1 + x 2+ x A(2 + x) + B(1 + x) ≡ 1 A= 1

B = -1

A1

(1 + x)-1 = 1 – x + x2 + …

B1

1 x (1 + )-1 2 2 (−1) (−2)  x  2 1 x = [ 1 + (-1) +   +…] 1− 2 2 2 2 1 1 1 2 = x + x + …. 2 4 8 1 1 1 1 2 = (1 – x + x2 + …) - ( x + x …) (1 + x) ( 2 + x) 2 4 8 1 3 7 − x + x 2 + .... 2 4 8

=

1 y = x+ x x2 +

M1

A1 M1 8M

M1

1 = y2 − 2 x2 3

B1

A1

1 ⇒ y2 = x2 + 2 + 2 x

A1

x − 2x − 6x − 2x + 1 = 0 2 1 x 2 − 2x − 6 − + 2 = 0 x x 4

7M

M1

1 1 1 = (1 + x) ( 2 + x) 1 + x 2 + x (2 + x)-1 =

7

A1

2

1 1 x 2 + 2 − 2( x + ) − 6 = 0 x x

( y − 4)( y + 2) = 0 y = 4, y = −2 1 When y = 4 , x + = 4 x When y = −2 , x +

1 = −2 x

M1

y2 − 2y − 8 = 0 M1 A1

⇒ x 2 − 4x + 1 = 0

M1

x = 2± 3

A1

⇒ x 2 + 2x + 1 = 0

x =1

A1

8M

8

f ( x) = g ( x)( x − 1)( x + 1)( x − 2) + ( ax 2 + bx + c) f (1) = a + b + c = 3 (1) f (−1) = a − b + c = 1 (2) f (2) = 4a + 2b + c = −2 (3) (1)+(2), 2a+2c=4, a+c=2 2(2)+(3), 6a+3c=0, 2a+c=0 a = -2, c = 4, b = 1 Remainder = f ( x) = −2 x 2 + x + 4

9

B1 B1 B1 M1 A1A1A1 M1

0 0 1 0  1 0 a 0      (a) P =  − 1 − 2 0  = m b − 5 0  + n 0 1  c − 3 − 2  0 0  −1 − 3 1      0 0   ma 0 0  n 0 1      0  + 0 n  − 1 − 2 0  =  mb − 5m  − 1 − 3 1   mc − 3m − 2m   0 0     

0  0 1 

0  0 n  0 0   ma + n 0 0 1      − 5m + n 0  − 1 − 2 0  =  mb   − 1 − 3 1   mc  − 3 m − 2 m + n    

8M

M1

M1

ma + n = 1

mb = −1 − 5m + n = −2 − 3m = −3

M1

mc = −1 − 2m + n = 1

m = 1, n = 3, a = −2, b = −1, c = −1 2

0 0  1 0 0  1     2 (b) P =  − 1 − 2 0  = 1 4 0   − 1 − 3 1  1 3 1     

B1

0 0 1 0 0 1 0 0   1       1 4 0  = s  − 1 − 2 0  + t  0 1 0  1 3 1   − 1 − 3 1   0 0 1        0 0  1 0 0   s + t     0  1 4 0  =  − s − 2 s + t 1 3 1   − s − 3s s + t     s = -1, t = 2 P 2 = − P + 2I P 4 = P 2 P 2 = (− P + 2 I ) 2 = P 2 − 4 P + 4 I = (− P + 2 I ) − 4 P + 4 I = −5P + 6 I 10

 1 1 − 1  − 5 − 5 5  10 0 0       6 − 4  =  0 10 0  AB =  2 3 2   8 5 4 1  − 7 1 1   0 0 10    = 10 I 1  A B  = I  10 

 5 −  10 1 8 −1 A = B=  10 10  7 −  10

5 10 6 10 1 10



5   10   − 0.5  4 −  =  0.8 10  1   − 0.7  10 

A1

− 0.5 0.5   0.6 − 0.4  0.1 0.1 

M1

M1 A1 M1 A1

M1 A1

M1 A1

10M

x+ y−z =0 2 x + 3 y + 2 z = 16 5 x + 4 y + z = 19

B1 B1 B1

 1 1 − 1 x   0        2 3 2  y  = 16   5 4 1  z  19      

M1

 x  − 5 − 5 5  0    1   6 − 4 16   y =  8  z  10  − 7 1 1 19    

M1

 1.5    = =  2.0   3.5   

A1

x = RM 1.50, y = RM 2.00, z = RM 3.50

11

S n = a + ar + ar + ar + ... + ar 2

3

n −1

A1

→ (1)

rS n = ar + ar 2 + ar 3 + ar 4 + ... + ar n → (2)

M1

(1) − (2), S n − rS n = a − ar

M1

n

12M

S n (1 − r ) = a(1 − r n ) a (1 − r n ) 1− r 1 − 1 r= 2 =− , a=2 2 4 Sn =

S∞ =

2

=

1 1+ 4

A1 B1

8 5

B1

  1 n  21 −  −   n   4   8   1   Sn =  = 1 −  −   1 5   4   1+ 4

M1

n

S∞ − S n =

8 8 8 1 − +  −  < 10− 5 5 5 5 4

M1

n

8 1 − < 10− 5 5 4 1 5  n lg < lg10− 5 ×  4 8 

M1 M1

5  lg10− 5 ×  8  n> 1 lg 4

M1

n > 8.64 ∴n = 9

A1 A1

12 y 12

y=12-x3 x

0

y=12-4x

D1 D1 D1

12 M

M1

12 − 4 x = 12 − x 3 x( x 2 − 4) = 0 x = 0, 2, − 2 (0,12) ( 2,4) (−2,20)

A1 A1

0

2

−2

0

3 3 A= ∫ [(12 − 4 x) − (12 − x )]dx + ∫ [(12 − x ) − (12 − 4 x )]dx 0

M1

2





3 = ( x − 4 x)]dx + (4 x − x )dx 3

−2

0

0

2

 x4   x4  =  − 2 x 2  + 2 x 2 −  4 0 4 −2    16   16   = 0 −  − 8  +  8 −  − 0 4     4

A1 M1

=8

A1 2

0





3 2 2 2 3 2 V= π [(12 − 4 x) − (12 − x ) ]dx + π [(12 − x ) − (12 − 4 x) ]dx −2



0

2

0

∫ [24 x

−2

M1,M1

3

+ 16 x 2 − 96 x − x 6 ]dx + π ∫ [−24 x 3 − 16 x 2 + 96 x + x 6 ]dx 0

0

2

  16 x 3 x7  16 x 3 x7  = π 6 x 4 + − 48 x 2 −  + π − 6 x 4 − + 48 x 2 +  3 7 −2 3 7 0     2528   1504   = π 0 −  −  + π   − 0   21   21   = 192π

A1 M1 A1

15M

More Documents from "Rabiah"