Midterm Solution

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Midterm Solution as PDF for free.

More details

  • Words: 2,083
  • Pages: 6
‫ﺑﻪ ﻧﺎم ﺣﻀﺮت دوﺳﺖ‬

‫زﻣﺎن ‪ 100‬دﻗﻴﻘﻪ‬

‫اﻣﺘﺤﺎن ﻣﻴﺎنﺗﺮم درس ﺳﻴﺴﺘﻤﻬﺎي ﻛﻨﺘﺮل ﺧﻄﻲ )ﭘﺎﺳﺦ(‬ ‫ﺷﻤﺎره داﻧﺸﺠﻮﻳﻲ‪:‬‬ ‫ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ‪:‬‬ ‫ د ‪   9‬ﯾ    ز ‬

‫ﺳﻬﺮاب ﺳﭙﻬﺮي‬

‫‪ -1‬ﻣﺸﺨﺺ ﻧﻤﺎﻳﻴﺪ ﻫﺮ ﻳﻚ از ﺳﻴﺴﺘﻢﻫﺎي زﻳﺮ ﭼﻪ ﻧﻮع ﺳﻴﺴﺘﻤﻲ ﻫﺴﺘﻨﺪ‪:‬‬

‫‪ -‬ﺧﻄﻲ ﻧﻴﺴﺖ زﻳﺮا‪:‬‬

‫) ‪r1 (t ) ↔ r12 (t‬‬ ‫) ‪r2 (t ) ↔ r22 (t‬‬ ‫) ‪ar1 (t ) + br2 (t ) ↔ (ar1 (t ) + br2 (t )) 2 ≠ ar12 (t ) + br22 (t‬‬ ‫)ﺑﻪ ﻋﺒﺎرت دﻳﮕﺮ ﺷﺮوط ﺟﻤﻊ آﺛﺎر و ﻫﻤﮕﻨﻲ ﺑﺮﻗﺮار ﻧﻤﻲ ﺑﺎﺷﺪ(‬ ‫‪ -‬ﺗﻐﻴﻴﺮ ﻧﺎﭘﺬﻳﺮ ﺑﺎ زﻣﺎن اﺳﺖ زﻳﺮا ﺧﺮوﺟﻲ ﺗﻨﻬﺎ ﺗﺎﺑﻌﻲ از ورودي اﺳﺖ )ﻧﻪ ورودي و زﻣﺎن(‪.‬‬

‫ ﺧﻄﻲ اﺳﺖ زﻳﺮا‪:‬‬‫) ‪r1 (t ) ↔ tr1 (t‬‬ ‫) ‪r2 (t ) ↔ tr2 (t‬‬ ‫) ‪ar1 (t ) + br2 (t ) ↔ t (ar1 (t ) + br2 (t )) = atr1 (t ) + btr2 (t‬‬ ‫‪ -‬ﺗﻐﻴﻴﺮ ﭘﺬﻳﺮ ﺑﺎ زﻣﺎن اﺳﺖ زﻳﺮا ﺧﺮوﺟﻲ ﻋﻼوه ﺑﺮ آﻧﻜﻪ ﺗﺎﺑﻌﻲ از ورودي اﺳﺖ ﺗﺎﺑﻌﻲ اﺳﺖ از زﻣﺎن‪.‬‬

‫ ﺧﻄﻲ ﻧﻴﺴﺖ زﻳﺮا‪:‬‬‫‪r1 (t ) ↔ 2r1 (t ) + 5‬‬ ‫‪r2 (t ) ↔ 2r2 (t ) + 5‬‬ ‫)‪ar1 (t ) + br2 (t ) ↔ 2(ar1 (t ) + br2 (t )) + 5 ≠ a (2r1 (t ) + 5) + b(2r2 (t ) + 5‬‬ ‫‪ -‬ﺗﻐﻴﻴﺮ ﻧﺎﭘﺬﻳﺮ ﺑﺎ زﻣﺎن اﺳﺖ زﻳﺮا ﺧﺮوﺟﻲ ﺗﻨﻬﺎ ﺗﺎﺑﻌﻲ از ورودي اﺳﺖ )ﻧﻪ ورودي و زﻣﺎن(‪.‬‬

‫ ﺧﻄﻲ اﺳﺖ زﻳﺮا‪:‬‬‫) ‪r1 (t ) ↔ 2r1 ' (t‬‬ ‫) ‪r2 (t ) ↔ 2r2 ' (t‬‬ ‫)) ‪ar1 (t ) + br2 (t ) ↔ 2(ar1 (t ) + br2 (t ))' = a (2r1 ' (t )) + b(2r2 ' (t‬‬ ‫‪ -‬ﺗﻐﻴﻴﺮ ﻧﺎﭘﺬﻳﺮ ﺑﺎ زﻣﺎن اﺳﺖ زﻳﺮا ﺧﺮوﺟﻲ ﺗﻨﻬﺎ ﺗﺎﺑﻌﻲ از ورودي اﺳﺖ )ﻧﻪ ورودي و زﻣﺎن(‪.‬‬

‫‪ -2‬ﺧﻄﺎي ﺣﺎﻟﺖ ﻣﺎﻧﺪﮔﺎر ﻳﻚ ﺳﻴﺴﺘﻢ ﻛﻨﺘﺮل ﺧﻄﻲ ﺗﻐﻴﻴﺮﻧﺎﭘﺬﻳﺮ ﺑﺎ زﻣﺎن ﺑﻪ دو ورودي ) ‪ r1 (t‬و ) ‪ r2 (t‬ﺑﻪ ﺗﺮﺗﻴﺐ ‪ 0/2‬و ‪ 0/1‬اﺳﺖ‪ .‬ﺧﻄﺎي‬ ‫ﺣﺎﻟﺖ ﻣﺎﻧﺪﮔﺎر اﻳﻦ ﺳﻴﺴﺘﻢ را ﺑﻪ وروديﻫﺎي ) ‪ r1 (t ) + r2 (t‬و ) ‪ 2r1 (t ) + 3r2 (t‬ﺑﺪﺳﺖ آورﻳﺪ‪.‬‬ ‫ﺧﻄﺎي ﺧﻮاﺳﺘﻪ ﺷﺪه ﺑﻪ دو ورودي ﻣﺬﻛﻮر ﺑﺎ ﺟﻤﻊ آﺛﺎر ﺑﻪ ﺻﻮرت زﻳﺮ ﺑﺪﺳﺖ ﻣﻲآﻳﺪ‪:‬‬

‫‪ess1 = 0.2 + 0.1 = 0.3‬‬ ‫‪ess1 = 2 × 0.2 + 3 × 0.1 = 0.7‬‬

‫‪ -3‬ﺗﺎﺑﻊﺗﺒﺪﻳﻞ ﻳﻚ ﺳﻴﺴﺘﻢ ﻛﻨﺘﺮل ﺣﻠﻘﻪ ﺑﺴﺘﻪ ﺑﺎ ﻓﻴﺪﺑﻚ واﺣﺪ ﺑﻪ ﺻﻮرت زﻳﺮ داده ﺷﺪه اﺳﺖ‪ .‬ﻧﻮع و ﻣﺮﺗﺒﻪ ﺳﻴﺴﺘﻢ را ﻣﺸﺨﺺ ﻧﻤﺎﻳﻴﺪ‪ 2) .‬ﻧﻤﺮه(‬ ‫)‪C (s‬‬ ‫‪2‬‬ ‫‪= 3‬‬ ‫‪R(s) s + 2s 2 + 2‬‬

‫ﻣﺮﺗﺒﻪ ﺳﻴﺴﺘﻢ ﻫﻤﺎن ﻣﺮﺗﺒﻪ ﭼﻨﺪ ﺟﻤﻠﻪاي ﻣﺸﺨﺼﻪ اﺳﺖ‪ .‬ﺑﺮاي ﺑﺪﺳﺖ آوردن ﻧﻮع ﺳﻴﺴﺘﻢ ﺑﻪ ﺗﺎﺑﻊ ﺗﺒﺪﻳﻞ ﺣﻠﻘﻪ ﺑﺎز ﺳﻴﺴﺘﻢ ))‪ (GH(s‬ﻧﻴﺎز اﺳﺖ‪ .‬ﺑﺎ ﺗﻮﺟﻪ ﺑـﻪ آﻧﻜـﻪ ﺑﻬـﺮه‬ ‫ﻓﻴﺪﺑﻚ واﺣﺪ اﺳﺖ )‪:(H(s)=1‬‬ ‫)‪C (s‬‬ ‫)‪G(s‬‬ ‫‪2‬‬ ‫)‪G ( s‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫=‬ ‫‪⇒ 3‬‬ ‫=‬ ‫‪⇒ 2 + 2G = G ( s 3 + 2 s 2 + 2) ⇒ G = 3‬‬ ‫‪= 2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫) ‪R( s) 1 + G ( s‬‬ ‫)‪s + 2s + 2 1 + G( s‬‬ ‫‪s + 2s‬‬ ‫)‪s ( s + 2‬‬ ‫ ﺳﻴﺴﺘﻢ ﻣﺮﺗﺒﻪ ﺳﻪ و ﻧﻮع دو اﺳﺖ‪.‬‬‫)‪C (s‬‬ ‫‪2‬‬ ‫‪= 3‬‬ ‫‪R ( s) s − 4s + 2‬‬ ‫)‪C (s‬‬ ‫)‪G(s‬‬ ‫‪2‬‬ ‫)‪G(s‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫=‬ ‫‪⇒ 3‬‬ ‫=‬ ‫‪⇒ 2 + 2G = G ( s 3 − 4 s + 2) ⇒ G = 3‬‬ ‫=‬ ‫‪2‬‬ ‫) ‪R( s) 1 + G ( s‬‬ ‫)‪s − 4s + 2 1 + G (s‬‬ ‫)‪s − 4 s s( s − 4‬‬ ‫ ﺳﻴﺴﺘﻢ ﻣﺮﺗﺒﻪ ﺳﻪ و ﻧﻮع ﻳﻚ اﺳﺖ‪.‬‬‫)‪C (s‬‬ ‫‪s‬‬ ‫‪= 2‬‬ ‫‪R(s) s + s − 1‬‬ ‫)‪C (s‬‬ ‫)‪G(s‬‬ ‫‪s‬‬ ‫)‪G(s‬‬ ‫‪s‬‬ ‫=‬ ‫‪⇒ 2‬‬ ‫=‬ ‫‪⇒ s + sG = G ( s 2 + s − 1) ⇒ G = 2‬‬ ‫) ‪R( s) 1 + G ( s‬‬ ‫)‪s + s − 1 1 + G ( s‬‬ ‫‪s −1‬‬ ‫‪ -‬ﺳﻴﺴﺘﻢ ﻣﺮﺗﺒﻪ دو و ﻧﻮع ﺻﻔﺮ )ﻳﺎ ﻣﻨﻬﺎي ﻳﻚ( اﺳﺖ‪.‬‬

‫‪C (s) s 2 − 1‬‬ ‫=‬ ‫)‪R ( s‬‬ ‫‪2s 2‬‬ ‫)‪C (s‬‬ ‫)‪G(s‬‬ ‫‪s2 − 1‬‬ ‫)‪G ( s‬‬ ‫‪s2 − 1‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫=‬ ‫⇒‬ ‫=‬ ‫⇒‬ ‫‪2‬‬ ‫‪s‬‬ ‫‪G‬‬ ‫=‬ ‫‪s‬‬ ‫‪G‬‬ ‫‪+‬‬ ‫‪s‬‬ ‫‪−‬‬ ‫‪G‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫⇒‬ ‫‪G‬‬ ‫=‬ ‫) ‪R( s) 1 + G ( s‬‬ ‫)‪1 + G(s‬‬ ‫‪2s 2‬‬ ‫‪s2 + 1‬‬ ‫‪ -‬ﺳﻴﺴﺘﻢ ﻣﺮﺗﺒﻪ دو و ﻧﻮع ﺻﻔﺮ اﺳﺖ‪.‬‬

‫‪ -4‬ﺑﺮاي ﺳﻴﺴﺘﻢ ﻣﻜﺎﻧﻴﻜﻲ روﺑﺮو‪:‬‬ ‫اﻟﻒ‪ -‬ﻣﺪارﻣﻌﺎدل اﻟﻜﺘﺮﻳﻜﻲ ﺳﻴﺴﺘﻢ‬ ‫ب‪ -‬ﻣﻌﺎدﻟﻪ دﻳﻔﺮاﻧﺴﻴﻞ ﺳﻴﺴﺘﻢ‬ ‫ج‪ -‬ﻧﻤﺎﻳﺶ ﻓﻀﺎي ﺣﺎﻟﺖ‬ ‫)‪X ( s‬‬ ‫د‪ -‬و ﺗﺎﺑﻊ ﺗﺒﺪﻳﻞ ﺳﻴﺴﺘﻢ )‬ ‫)‪F ( s‬‬

‫( اراﺋﻪ ﻧﻤﺎﻳﻴﺪ‪.‬‬

‫))‪ f(t‬ورودي و )‪ x(t‬ﺧﺮوﺟﻲ ﺳﻴﺴﺘﻢ(‬

F (s)

V1 =

=

:‫ درﻧﻈﺮ ﺑﮕﻴﺮﻳﻢ‬V1 ‫ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻣﺪار اﻟﻜﺘﺮﻳﻜﻲ ﻣﻌﺎدل اﮔﺮ وﻟﺘﺎژ دو ﺳﺮ ﺧﺎزن را‬ Bs + K

F ( s) = F ( s) KB   MBs 2 + MKs + KB  Ms +  Bs + K  

   1   Ms +  s 1  +   K B  1 K B V ( s) = V1 ( s ) = V1 ( s ) 1 s Bs + K + B K Bs + K K K ⇒ V ( s) = F ( s ) × = 2 2 MBs + MKs + KB Bs + K MBs + MKs + KB V (s) K ⇒ = 2 F ( s) MBs + MKs + KB X ( s) K v(t ) = x& (t ) ⇒ V ( s ) = sX ( s) ⇒ = 2 F ( s) s( MBs + MKs + KB) :‫ﺗﺎﺑﻊ ﺗﺒﺪﻳﻞ ﺑﻪ ﺻﻮرت ﻓﻮق و از روي آن ﻣﻌﺎدﻟﻪ دﻳﻔﺮاﻧﺴﻴﻞ ﺳﻴﺴﺘﻢ ﺑﻪ ﺷﻜﻞ زﻳﺮ ﺑﺪﺳﺖ ﻣﻲآﻳﺪ‬

(

)

⇒ X ( s ) MBs 3 + MKs 2 + KBs = KF ( s ) ⇒ MB&x&&(t ) + MK&x&(t ) + KBx& (t ) = Kf (t ) :‫و ﺑﺮاي ﻧﻤﺎﻳﺶ ﻣﺪل ﻓﻀﺎي ﺣﺎﻟﺖ ﭼﻮن ﻣﺸﺘﻘﺎت ورودي در ﻣﻌﺎدﻟﻪ ﻇﺎﻫﺮ ﻧﺸﺪه اﺳﺖ‬ x1 (t ) = x(t ) x2 (t ) = x&1 (t ) = x& (t ) x3 (t ) = x&2 (t ) = &x&(t ) x&3 (t ) = &x&&(t ) =

K 1 1 K 1 1 &x&(t ) − x& (t ) = f (t ) − f (t ) − x3 (t ) − x2 (t ) MB M B MB M B

 0   x1 (t )   0   x&1 (t )  0 1  x& (t ) = 0 0 1   x2 (t ) +  0  f (t )  2    K  1 1  x&3 (t )  0 − −   x3 (t )    B M  MB   x1 (t )  x(t ) = [1 0 0] x2 (t ) + 0  x3 (t )  .‫در ﻫﺮ ﻣﺮﺣﻠﻪ ﻣﻲﺗﻮان ﻣﻘﺎدﻳﺮ اﻟﻤﺎﻧﻬﺎ را در رواﺑﻂ ﺑﺪﺳﺖ آﻣﺪه ﻗﺮار داد‬

‫)‪F (s‬‬ ‫) ‪sF ( s‬‬ ‫=‬ ‫‪2‬‬ ‫‪K K‬‬ ‫‪‬‬ ‫‪ Ms + Bs + 2 K‬‬ ‫‪ Ms + + + B ‬‬ ‫‪s‬‬ ‫‪s‬‬ ‫‪‬‬ ‫‪‬‬ ‫)‪V (s‬‬ ‫‪s‬‬ ‫⇒‬ ‫=‬ ‫‪2‬‬ ‫‪F ( s) Ms + Bs + 2 K‬‬ ‫)‪X ( s‬‬ ‫‪1‬‬ ‫⇒ )‪v(t ) = x& (t ) ⇒ V ( s ) = sX ( s‬‬ ‫=‬ ‫‪2‬‬ ‫‪F ( s ) Ms + Bs + 2 K‬‬

‫)‬

‫=‪V‬‬

‫(‬

‫(‬

‫)‬

‫) ‪⇒ X ( s ) Ms 2 + Bs + 2 K = F ( s ) ⇒ M&x&(t ) + Bx& (t ) + 2 Kx(t ) = f (t‬‬ ‫ﺑﺮاي ﻧﻤﺎﻳﺶ ﻣﺪل ﻓﻀﺎي ﺣﺎﻟﺖ ﭼﻮن ﻣﺸﺘﻘﺎت ورودي در ﻣﻌﺎدﻟﻪ ﻇﺎﻫﺮ ﻧﺸﺪه اﺳﺖ‪:‬‬ ‫) ‪x1 (t ) = x(t‬‬ ‫) ‪x2 (t ) = x&1 (t ) = x& (t‬‬

‫‪1‬‬ ‫‪B‬‬ ‫‪2K‬‬ ‫‪1‬‬ ‫‪B‬‬ ‫‪2K‬‬ ‫‪f (t ) −‬‬ ‫‪x& (t ) −‬‬ ‫= ) ‪x(t‬‬ ‫‪f (t ) −‬‬ ‫‪x2 (t ) −‬‬ ‫) ‪x1 (t‬‬ ‫‪M‬‬ ‫‪M‬‬ ‫‪M‬‬ ‫‪M‬‬ ‫‪M‬‬ ‫‪M‬‬

‫‪1   x (t )   0 ‬‬ ‫‪B 1‬‬ ‫) ‪+  1  f (t‬‬ ‫‪−   x2 (t )  ‬‬ ‫‪M‬‬ ‫‪M ‬‬

‫= ) ‪x&2 (t ) = &x&(t‬‬

‫‪ x&1 (t )   0‬‬ ‫‪ x& (t ) = − 2 K‬‬ ‫‪ 2   M‬‬

‫‪ x (t ) ‬‬ ‫‪x(t ) = [1 0] 1  + 0‬‬ ‫‪ x2 (t )‬‬

‫‪ -5‬اﻟﻒ( ﺑﺮاي ﻳﻚ ﺳﻴﺴﺘﻢ ﻣﺮﺗﺒﻪ دوم اﺳﺘﺎﻧﺪارد )در ﺣﺎﻟﺖ زﻳﺮﻣﻴﺮا( ﻣﻲﺧﻮاﻫﻴﻢ زﻣﺎن ﺣﺪاﻛﺜﺮ ﺟﻬﺶ ) ‪ ( t p‬از ﻳﻚ ﺛﺎﻧﻴﻪ ﺑﻴﺸﺘﺮ و زﻣﺎن ﻧﺸـﺴﺖ‬ ‫ﺑﺎ ﻣﻌﻴﺎر ‪ %2‬از ‪ 4‬ﺛﺎﻧﻴﻪ ﻛﻤﺘﺮ ﺑﺎﺷﺪ‪ .‬روي ﺷﻜﻞ زﻳﺮ‪ ،‬ﻣﺤﺪودهاي از ﺻﻔﺤﻪ ‪ s‬ﻛﻪ ﻗﻄﺒﻬﺎي ﺳﻴﺴﺘﻢ ﻣـﻲﺗﻮاﻧﻨـﺪ در آن ﻗـﺮار ﺑﮕﻴﺮﻧـﺪ را ﻣـﺸﺨﺺ‬ ‫ﻧﻤﺎﻳﻴﺪ‪.‬‬ ‫‪π‬‬ ‫‪> 1 ⇒ ωd < π‬‬ ‫‪ωd‬‬ ‫)‪< 4 ⇒ ζωn > 1 (−ζωn < −1‬‬

‫‪4‬‬

‫‪ζωn‬‬

‫⇒ ‪t p> 1‬‬

‫⇒ ‪t s (%2) < 4‬‬

‫ب( ﭼﮕﻮﻧﻪ ﻣﻲﺗﻮان ﺑﺪون ﻣﺤﺎﺳﺒﻪ رﻳﺸﻪﻫﺎي ﻣﻌﺎدﻟﻪ ﻣﺸﺨﺼﻪ ﻳﻚ ﺳﻴﺴﺘﻢ ﻣﺮﺗﺒﻪ دوم و ﺗﻨﻬـﺎ ﺑـﺎ ﺑﺪﺳـﺖ آوردن ﻧـﺴﺒﺖ ﻣﻴﺮاﻳـﻲ و ﻓﺮﻛـﺎﻧﺲ‬ ‫ﻃﺒﻴﻌﻲ ﻧﺎﻣﻴﺮاي ﺳﻴﺴﺘﻢ ﺑﻪ ﻣﺤﻞ ﻗﻄﺒﻬﺎي ﺳﻴﺴﺘﻢ روي ﺻﻔﺤﻪ ‪ s‬دﺳﺖ ﭘﻴﺪا ﻛﺮد؟‬ ‫ ﻳﻚ داﻳﺮه ﺑﻪ ﻣﺮﻛﺰ ﻣﺒﺪا ﺻﻔﺤﻪ ‪ s‬و ﺷﻌﺎع ‪ ωn‬رﺳﻢ ﻣﻲﻛﻨﻴﻢ و ﻣﺤﻞ ﺗﻘﺎﻃﻊ آﻧﺮا ﺑﻪ ﺧﻄﻬﺎﻳﻲ ﻛﻪ ﺑﺎ ﺑﺨﺶ ﻣﻨﻔﻲ ﻣﺤﻮر ﺣﻘﻴﻘﻲ زاوﻳﻪ ‪ θ = cos −1 ζ‬ﺗﺸﻜﻴﻞ‬‫ﻣﻲدﻫﻨﺪ را ﺑﺪﺳﺖ ﻣﻲآورﻳﻢ‪ .‬ﻣﻜﺎن ﻗﻄﺒﻬﺎي ﺳﻴﺴﺘﻢ ﻫﻤﻴﻦ ﻧﻘﺎط ﺑﺮﺧﻮرد اﺳﺖ )ﺷﻜﻞ زﻳﺮ(‪:‬‬

‫‪ -6‬ﺧﻄﺎي ﺣﺎﻟﺖ ﻣﺎﻧﺪﮔﺎر ﺳﻴﺴﺘﻢ زﻳﺮ را ﺑﻪ ورودي ﭘﻠﻪ واﺣﺪ و ورودي زﻳﺮ ﺑﺪﺳﺖ آورﻳﺪ‪ .‬ﺧﻄﺎ را )‪ r(t)-c(t‬در ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ‪:‬‬ ‫‪1‬‬ ‫‪s +1‬‬ ‫‪G6 = s‬‬ ‫= ‪G5‬‬

‫‪1‬‬ ‫‪s‬‬

‫‪H1 = −‬‬

‫‪1‬‬ ‫‪s‬‬ ‫‪G2 = s‬‬ ‫= ‪G1‬‬

‫‪1‬‬ ‫‪s‬‬ ‫‪G4 = s + 1‬‬ ‫= ‪G3‬‬

‫‪0
‫‪t‬‬ ‫‪‬‬ ‫‪r2 (t ) = 1‬‬ ‫‪t − 1‬‬ ‫‪‬‬

‫‪,‬‬

‫) ‪r1 (t ) = u (t‬‬

‫اﺑﺘﺪا ﺑﺎﻳﺪ ﺗﺎﺑﻊ ﺗﺒﺪﻳﻞ ﺳﻴﺴﺘﻢ را ﺑﺪﺳﺖ آورﻳﻢ‪ .‬ﺑﺮاي اﻳﻨﻜﺎر از روش ﻣﻴﺴﻮن اﺳﺘﻔﺎده ﻣﻲﻛﻨﻴﻢ‪:‬‬

‫‪P1 = G1G2G3G4‬‬ ‫‪P2 = G1G2G6‬‬ ‫‪P3 = G5G4‬‬ ‫‪P4 = G5 H1G2G6‬‬ ‫‪L1 = G2G3 H1‬‬

‫‪∆ = 1 − G 2G 3 H 1‬‬ ‫‪∆1 = ∆ 2 = ∆ 3 = ∆ 4 = 1‬‬ ‫‪4‬‬

‫‪s +1‬‬ ‫‪s‬‬ ‫‪+ s +1−‬‬ ‫‪s‬‬ ‫‪s +1‬‬ ‫‪1‬‬ ‫‪1+‬‬ ‫‪s‬‬

‫‪G G G G + G1G 2G6 + G5G 4 + G5 H 1G2 G6‬‬ ‫‪= 1 2 3 4‬‬ ‫=‬ ‫‪1 − G 2 G3 H 1‬‬

‫‪∑ Pi ∆ i‬‬ ‫‪i =1‬‬

‫∆‬

‫)‪C (s‬‬ ‫=‬ ‫)‪R(s‬‬

‫‪C ( s ) s 2 + 2 s + 1 + s 3 + s 2 + s 2 + s − s 2 s 3 + 2 s 2 + 3s + 1‬‬ ‫=‬ ‫=‬ ‫)‪R(s‬‬ ‫‪s 2 + 2s + 1‬‬ ‫‪s 2 + 2s + 1‬‬ ‫ﺑﺮاي ﻣﺤﺎﺳﺒﻪ ﺧﻄﺎ‪:‬‬ ‫‪ s 3 + 2 s 2 + 3s + 1 ‬‬ ‫‪‬‬ ‫‪E ( s) = R( s) − C ( s ) = R( s )1 −‬‬ ‫‪‬‬ ‫‪s 2 + 2 s + 1 ‬‬ ‫‪‬‬ ‫) ‪ess = lim sE ( s‬‬ ‫‪s →0‬‬

‫ﺧﻄﺎي ﺣﺎﻟﺖ ﻣﺎﻧﺪﮔﺎر ﺑﺮاي ورودي ﭘﻠﻪ واﺣﺪ‪:‬‬ ‫‪ s 3 + 2 s 2 + 3s + 1 ‬‬ ‫‪1  s 3 + 2 s 2 + 3s + 1 ‬‬ ‫‪1 −‬‬ ‫‪=0‬‬ ‫‪ess1 = lim s × 1 −‬‬ ‫=‬ ‫‪lim‬‬ ‫‪s →0‬‬ ‫‪s ‬‬ ‫‪s 2 + 2 s + 1  s → 0‬‬ ‫‪s 2 + 2 s + 1 ‬‬ ‫ﺧﻄﺎي ﺣﺎﻟﺖ ﻣﺎﻧﺪﮔﺎر ﺑﻪ ورودي دوم ﻫﻤﺎن ﺧﻄﺎي ﺣﺎﻟﺖ ﻣﺎﻧﺪﮔﺎر ﺳﻴﺴﺘﻢ اﺳﺖ ﺑﻪ ورودي ﺷﻴﺐ‪:‬‬ ‫‪ − s3 − s 2 − s ‬‬ ‫‪1  s 3 + 2 s 2 + 3s + 1 ‬‬ ‫‪1  s 3 + 2 s 2 + 3s + 1 ‬‬ ‫‪‬‬ ‫‪ = −1‬‬ ‫‪1‬‬ ‫‪−‬‬ ‫=‬ ‫‪lim‬‬ ‫‪1‬‬ ‫‪−‬‬ ‫=‬ ‫‪lim‬‬ ‫‪s 2 ‬‬ ‫‪s 2 + 2 s + 1  s → 0 s ‬‬ ‫‪s 2 + 2 s + 1  s → 0 s ( s 2 + 2 s + 1) ‬‬

‫× ‪ess 2 = lim s‬‬ ‫‪s →0‬‬

‫ﺗﻮﺟﻪ‪ :‬در اﻳﻨﺠﺎ ﻫﺪف اراﺋﻪ روش ﺣﻞ ﻣﺴﺎﺋﻞ اﻣﺘﺤﺎن ﺑﻮده اﺳﺖ‪ .‬ﺑﻨﺎﺑﺮاﻳﻦ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ آﻧﻜﻪ در اﻣﺘﺤﺎن ﺳﻮاﻻت ﻣﺘﻔﺎوت اراﺋﻪ ﺷﺪه ﺑﻮد‪ ،‬ﻣﻤﻜﻦ‬ ‫اﺳﺖ ﭘﺎﺳﺨﻬﺎي ﻧﻬﺎﻳﻲ ﺑﺮﺧﻲ ﻣﺴﺎﺋﻞ ﻏﻴﺮ از ﭘﺎﺳﺨﻬﺎي ﻧﻬﺎﻳﻲ ﻓﻮق ﺑﺎﺷﻨﺪ‪.‬‬

Related Documents

Midterm Solution
October 2019 16
Midterm 1 A Solution
November 2019 15
Solution To Midterm 1
November 2019 17
Midterm
May 2020 23
Midterm
November 2019 37