Metode Numerik - Diferensial Newton Terbagi

  • Uploaded by: Fajrin Siddiq
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Metode Numerik - Diferensial Newton Terbagi as PDF for free.

More details

  • Words: 1,202
  • Pages: 5
Al Kahfi

Fajrin Siddiq 0310610029

TUGAS MATA KULIAH

METODE NUMERIK

Disusun Oleh : Fajrin Siddiq 0310610029 DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN SIPIL - MALANG 2005 1. Diketahui data hubungan antara temperatur dan kedalaman suatu danau :

Metode Numerik

Al Kahfi

Fajrin Siddiq 0310610029 TEMPERATUR ( CO ) 19.1

a. Buktikan nilai-nilai berikut, ketika mencari

KEDALAMAN (M)

temperatur danau pada kedalaman – 7.5 m 0

dengan menggunakan metode Diferensial

19.1

-1

19

-2

18.8

-3

b0 = 9.9

b2 = 2.05

18.7

-4

b1 = 1.8

b3 = −1.5667

18.3

-5

18.2

-6

17.6

-7

11.7

-8

9.9

-9

9.1

- 10

Newton Terbagi (Interpolasi Kubik) :

Jika diketahui : z0 = −9

z 2 = −7

z1 = −8

z3 = −6

b. Dengan metode yang sama, tentukan temperatur danau pada kedalaman – 7.5 m untuk : z 0 = −10 z 2 = −8 z1 = −9 •

z3 = −7

Penyelesaian : a. Persamaan umum Metode Diferensial Newton Terbagi dengan Interpolasi Kubik : T ( z ) = b0 + b1 ( z − z 0 ) + b2 ( z − z 0 )( z − z1 ) + b3 ( z − z 0 )( z − z1 )( z − z 2 ) Diketahui : z 0 = −9

T ( z 0 ) = 9.9

z1 = −8 z 2 = −7

T ( z1 ) = 11.7

z 3 = −6

T ( z 3 ) = 18.2

T ( z 2 ) = 17.6

• T ( z 0 ) = b0 + b1 ( z 0 − z 0 ) + b2 ( z 0 − z 0 )( z 0 − z1 ) + b3 ( z 0 − z 0 )( z 0 − z1 )( z 0 − z 2 ) 9.9 = b0 + 0 + 0 + 0

b0 = 9.9

• T ( z1 ) = b0 + b1 ( z1 − z 0 ) + b2 ( z1 − z 0 )( z1 − z1 ) + b3 ( z1 − z 0 )( z1 − z1 )( z1 − z 2 ) 11.7 = b0 + b1 (−8 + 9) + 0 + 0

b1 = 11.7 − 9.9

11.7 = 9.9 + b1 (1)

b1 = 1.8

Metode Numerik

Al Kahfi

Fajrin Siddiq 0310610029

• T ( z 2 ) = b0 + b1 ( z 2 − z 0 ) + b2 ( z 2 − z 0 )( z 2 − z1 ) + b3 ( z 2 − z 0 )( z 2 − z1 )( z 2 − z 2 )

17.6 = b0 + b1 (−7 + 9) + b2 ( −7 + 9)(−7 + 8) + 0 17.6 = 9.9 + 1.8(2)(1) + b2 (2) 17.6 = 9.9 + 3.6 + b2 ( 2) b2 =

17.6 − 13.5 2

b2 = 2.05

• T ( z 3 ) = b0 + b1 ( z 3 − z 0 ) + b2 ( z 3 − z 0 )( z 3 − z1 ) + b3 ( z 3 − z 0 )( z 3 − z1 )( z 3 − z 2 ) 18.2 = b0 + b1 (−6 + 9) + b2 ( −6 + 9)(−6 + 8) + b3 (−6 + 9)(−6 + 8)(−6 + 7) 18.2 = 9.9 + 1.8(3) + 2.05(3)(2) + b3 (3)(2)(1) 18.2 = 9.9 + 5.4 + 12.3 + b3 (6) b3 =

18.2 − 27.6 6

b3 = −1.5667

Dari hasil perhitungan diperoleh : b0 = 9.9

b2 = 2.05

b1 = 1.8

b3 = −1.5667

Dengan demikian, nilai-nilai tersebut Terbukti. b. Persamaan Metode Diferensial Newton Terbagi dengan Interpolasi Kubik : T ( z ) = b0 + b1 ( z − z 0 ) + b2 ( z − z 0 )( z − z1 ) + b3 ( z − z 0 )( z − z1 )( z − z 2 ) Dengan : z 0 = −10

T ( z 0 ) = 9.1

z1 = −9 z 2 = −8

T ( z1 ) = 9.9

z3 = −7

T ( z 3 ) = 17.6

T ( z 2 ) = 11.7

Metode Numerik

Al Kahfi

Fajrin Siddiq 0310610029

• T ( z 0 ) = b0 + b1 ( z 0 − z 0 ) + b2 ( z 0 − z 0 )( z 0 − z1 ) + b3 ( z 0 − z 0 )( z 0 − z1 )( z 0 − z 2 ) 9.1 = b0 + 0 + 0 + 0

b0 = 9.1

• T ( z1 ) = b0 + b1 ( z1 − z 0 ) + b2 ( z1 − z 0 )( z1 − z1 ) + b3 ( z1 − z 0 )( z1 − z1 )( z1 − z 2 )

9.9 = 9.1 + b1 ( −9 + 10) + 0 + 0 9.9 = 9.1 + b1 (1) b1 = 9.9 − 9.1

b1 = 0.8

• T ( z 2 ) = b0 + b1 ( z 2 − z 0 ) + b2 ( z 2 − z 0 )( z 2 − z1 ) + b3 ( z 2 − z 0 )( z 2 − z1 )( z 2 − z 2 )

11.7 = 9.1 + 0.8(−8 + 10) + b2 ( −8 + 10)(−8 + 9) + 0 11.7 = 9.1 + 0.8(2) + b2 (2)(1) 11.7 = 9.1 + 1.6 + b2 (2) b2 =

11.7 − 10.7 2

b2 = 0.5

• T ( z 3 ) = b0 + b1 ( z 3 − z 0 ) + b2 ( z 3 − z 0 )( z 3 − z1 ) + b3 ( z 3 − z 0 )( z 3 − z1 )( z 3 − z 2 ) 17.6 = 9.1 + 0.8(−7 + 10) + 0.5(−7 + 10)(−7 + 9) + b3 ( −7 + 10)(−7 + 9)(−7 + 8) 17.6 = 9.1 + 0.8(3) + 0.5(3)(2) + b3 (3)(2)(1) 17.6 = 9.1 + 2.4 + 3 + b3 (6) 17.6 − 14.5 b3 = 0.5167 6 Temperatur danau pada kedalaman -7.5 m : b3 =

T (−7.5) = b0 + b1 (−7.5 − z 0 ) + b2 (−7.5 − z 0 )(−7.5 − z1 ) + b3 (−7.5 − z 0 )(−7.5 − z1 )(−7.5 − z 2 ) T (−7.5) = 9.1 + 0.8(−7.5 + 10) + 0.5(−7.5 + 10)(−7.5 + 9) + 0.5167(−7.5 + 10)(−7.5 + 9)(−7.5 + 8) T (−7.5) = 9.1 + 0.8(2.5) + 0.5(2.5)(1.5) + 0.5167(2.5)(1.5)(0.5) T (−7.5) = 9.1 + 2 + 1.875 + 0.9688 T ( −7.5) =13.944 o C

Metode Numerik

Al Kahfi

Fajrin Siddiq 0310610029

Perbandingan antara nilai temperatur danau pada kedalaman -7.5 m dengan menggunakan Interpolasi Kuadrat, Interpolasi Kubik z 0 = −9 , dan Interpolasi Kubik z 0 = −10 :

Interpolasi z0 Temperatur Kesalahan Relatif

Kuadrat

Kubik

Kubik

-9

-9

-10

o

14.138 C ---

o

14.725 C 3.986 %

13.944 o C 5.6 %

Metode Numerik

Related Documents


More Documents from "Cahyo Dwi Pambudi"