Mcce 2009 Proceedings

  • Uploaded by: Juan Manuel Dodero
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Mcce 2009 Proceedings as PDF for free.

More details

  • Words: 34,295
  • Pages: 92
Proceedings  of  the  2nd  Workshop  on

Methods  and  Cases  in  Computing   Education  

  Held  in  Barcelona  (Spain),  April  22nd  2009.   Published  by  the  Spanish  Chapter  of  the  ACM  Special  Interest  Group  on  Computer  Science   Education  with  the  collaboration  of  the  Universitat  Oberta  de  Catalunya.  

 

 

 

 

www.uoc.edu  

www.sigcse.es  

     

        ISBN  XXX-­‐XX-­‐XXX-­‐XXXX-­‐X    

 

Methods  and  Cases  in  Computing  Education  by  Spain  ACM  SIGCSE  Chapter  is  licensed  under  a  Creative  Commons  Reconocimiento   2.5  España  License.    

 

[this  page  is  intentionally  left  blank]  

 

Foreword   By  Juan-­‐Manuel  Dodero,  president  of  the  ACM  SIGCSE  Spanish  Chapter     The  ACM  SIGCSE  Spanish  Chapter  is  the  chapter  of  the  Association  for  Computing  Machinery  (ACM)   Special  Interest  Group  on  Computer  Science  Education  (SIGCSE)  serving  Spain.  It  started  operations   in  2008.  The  chapter  provides  a  forum  for  common  problems  among  educators  working  to  develop,   implement  and  evaluate  computing  programs,  curricula  and  courses,  as  well  as  syllabi,   laboratories,  learning  technologies,  and  other  elements  of  teaching  and  pedagogy.  The  Chapter   supports  activities  complimentary  to  SIGCSE,  the  ACM,  and  other  ACM  activities  in  the  Spain  area.   The  Chapter  is  organized  and  operated  for  educational  and  scientific  purposes,  its  aim  being  to   increase  knowledge  about  computing  education,  as  well  as  to  serve  as  a  means  of  communication   for  those  interested  in  this  discipline.  This  workshop  on  Methods  and  Cases  in  Computing  Education   (MCCE)  is  the  second  of  a  series  of  events  intended  to  the  dissemination  of  the  activities  of  the   chapter  members.  As  such,  it  will  publish  articles  dealing  with  the  joy,  pain  and  hope  of  our  daily   teaching  and  research  experiences  in  computing  education.  The  MCCE  workshop  thus  constitutes  a   forum  open  to  anyone  wanting  to  contribute  to  the  chapter  aims.  The  birth  of  the  Chapter  and  the   MCCE  workshop,  have  the  main  objective  of  contributing  to  the  discussions  on  the  European  Higher   Education  Area  held  among  the  Spanish  Higher  Education  community.  For  the  second  edition  of   MCCE,  held  at  Barcelona,  a  number  of  contributions  were  selected  after  a  peer  review  process   carried  out  by  the  chapter  committee  members  and  renowned  international  researchers.    

i  

[this  page  is  intentionally  left  blank]  

ii  

Table  of  contents   Experimental  Inquiry  into  Greedy  Algorithms ........................................................ 1    

J.  Ángel  Velázquez  Iturbide,  Antonio  Pérez  Carrasco    

SET  (Software  Engineering  Tutor),  a  CASE  tool  to  guide  the  creation  of   domain  and  use  case  models.................................................................................. 7    

Sergio  Bravo  Martín,  Francisco  J.  García  Peñalvo,   Miguel  A.  Conde  González  

Digital  Systems  Laboratory  for  Visually  Impaired  Students.................................. 13    

Joaquín  Olivares,  José  M.  Palomares,  Edmundo  Sáez,  José  M.  Soto  

Design  of  an  autonomous  and  cooperative  robots  laboratory............................. 23    

Guillermo  González-­‐de-­‐Rivera,  Ricardo  Ribalda,  Angel  de  Castro,   Javier  Garrido  

Database  design  using  a  web-­‐based  e-­‐learning  tool............................................ 31    

Josep  Soler,  Imma  Boada,  Ferran  Prados,  Jordi  Poch,   Ramon  Fabregat  

The  cost  of  learning  and  teaching  Java  in  the  Bologna  process ........................... 41    

Camino  Fernández  ,  David  Díez,  Jorge  Torres,  Telmo  Zarraonandia  

A  High  School  Educational  Platform  based  on  Virtual  Worlds.............................. 46    

Mariano  Rico,  David  Camacho,  Xavier  Alaman,  Estrella  Pulido  

Comparing  a  fully  online  course  to  a  blended  one:  the  case  of  compilers............ 52    

Salvador  Sánchez  Alonso,  Daniel  Rodriguez  García,   Robert  Clarisó  Viladrosa  

Learning  Engineering  by  Modeling  a  Guitar  Effects  Pedal  with  FPGAs ................ 61    

Joaquín  Olivares,  José  M.  Palomares,  José  M.  Soto,  Juan  C.  Gámez  

Using  IMS-­‐LD  Standard  to  Support  Learning  in  Teaching  ICTs  in  Industrial   Design  Engineering............................................................................................... 71    

Rocio  Garcia-­‐Robles,  Fernando  Díaz-­‐Del-­‐Río  

Devising  instruction  from  errors  in  students’  assignments:  a  case  in   usability  engineering  education ........................................................................... 79    

Elena  García-­‐Barriocanal,  Miguel-­‐Angel  Sicilia,   Salvador  Sánchez-­‐Alonso,  Daniel  Rodríguez   iii  

[this  page  is  intentionally  left  blank]      

iv  

Experimental  Inquiry  into  Greedy  Algorithms   J.  Ángel  Velázquez  Iturbide  (1),  Antonio  Pérez  Carrasco  (1)   (1)  

Departamento  de  Lenguajes  y  Sistemas  Informáticos  I,  Escuela  Técnica  Superior  de  Ingeniería  Informática,   Universidad  Rey  Juan  Carlos   Móstoles,  Madrid,  Spain   {angel.velazquez,antonio.perez.carrasco}@urjc.es

Abstract   Greedy  algorithms  are  one  of  the  most  common  algorithm  design  techniques.  Unfortunately,  they  are   usually  taught  and  learnt  in  a  passive  way.  In  this  paper,  we  propose  a  novel  approach  to  active  learning   of  greedy  algorithms.  The  approach  is  based  on  experimentation  with  and  evaluation  of  alternative   greedy  strategies  for  several  problems.  The  approach  is  supported  by  an  interactive  assistant,  named   GreedEx.  We  also  report  on  the  results  of  its  use  in  real  lab  situations,  where  we  have  evaluated  the   assistant  usability  and  the  students’  results.  

1.    Introduction   Algorithms  are  a  core  subject  matter  of  Computer  Science.  It  has  achieved  a  high  degree  of   maturity,  with  most  of  its  contents  well-­‐established.  A  number  of  algorithm  design  techniques  are   usually  studied,  such  as  divide-­‐and-­‐conquer,  backtracking,  dynamic  programming,  and  greedy   algorithms.   The  organization  of  greedy  algorithms  in  most  textbooks  (e.g.  (Cormen,  T.H.  et  al.,  2001),   (Horowitz,  E.,  and  Sahni,  S.,  1978))  is  not  adequate  for  active  learning.  The  chapter  typically   identifies  the  main  elements  of  greedy  algorithms,  and  states  the  technique  as  a  high-­‐level   template.  Besides,  a  set  of  representative  problems  is  solved  (we  have  cited  above  some  of  the   most  common).  For  each  problem,  an  optimum  greedy  strategy  is  identified  and  stated   recursively.  Then  its  optimality  is  proved.  Finally,  the  algorithm  is  coded  iteratively  and  its  time   complexity  is  analyzed.  This  organization  exhibits  the  following  learning  difficulties:   •

Design  of  an  optimal  greedy  strategy.  It  is  easy  for  some  simple  algorithms  (e.g.  the  coin   changing  problem),  but  it  is  much  more  demanding  for  others.  To  illustrate  it  more  vividly,   it  is  not  realistic  to  expect  from  a  student  to  design  Dijkstra’s  or  Kruskal’s  algorithm.  



Coding  a  greedy  algorithm.  Most  textbooks  provide  a  high-­‐level  template.  Greedy   algorithms  have  the  same  semantics  as  the  template,  but  their  code  is  unique  for  each   algorithm.  Furthermore,  some  algorithms  do  not  even  fit  this  high-­‐level  template.  



Proving  the  optimality  of  a  greedy  strategy.  Most  proofs  are  either  by  contradiction  or  by   reduction,  techniques  that  students  are  not  very  familiar  with.  

In  summary,  despite  the  apparent  simplicity  of  greedy  algorithms,  their  learning  objectives  are   quite  demanding.  As  a  consequence,  the  instructor  commonly  gives  lectures  in  a  passive  way,   hardly  letting  place  for  active  learning.  On  the  student  side,  most  problems  solved  with  greedy   algorithms  are  learnt  by  rote.   In  this  extended  abstract,  we  propose  a  new  approach  to  active  learning  of  greedy  algorithms.  In   the  second  section,  we  introduce  our  approach,  based  on  experimentation  with  and  evaluation  of   alternative  greedy  strategies  for  a  given  problem.  The  third  section  describes  our  experience  in   using  this  approach  in  laboratories.  Finally,  we  summarize  our  findings  and  outline  future  work.   (A  full  version  of  this  extended  abstract  will  contain  more  elaborated  version  of  every  section.  In   1  

particular,  we  will  describe  support  the  assistants  provide  for  active  experimentation,  will  give  a   more  elaborate  analysis  of  the  groups’  outcomes,  a  more  extensive  discussion  and   recommendations  for  future  experiences,  and  related  work.)  

2.    Active  Learning  of  Greedy  Algorithms  by  Experimental  Inquiry   In  order  to  overcome  the  learning  difficulties  described  above,  we  made  an  analysis  of  the   different  elements  of  greedy  algorithms.  We  were  especially  interested  in  identifying  elements   that  provided  opportunities  for  active  learning.  We  finally  concluded  that  the  key  decision  (and   therefore  most  promising  candidate)  was  the  choice  of  an  optimal  strategy.  Surprisingly,  this   decision  taking  is  hardly  addressed  explicitly  in  textbooks.  The  only  problem  where  a  discussion   involving  suboptimal  strategies  can  be  found  is  the  knapsack  problem  (e.g.  (Horowitz,  E.,  and   Sahni,  S.,  1978)).  Here,  three  strategies  are  typically  considered,  namely  increasing  order  of   weight,  decreasing  order  of  benefit  and  decreasing  order  of  rate  benefit/weight.   We  describe  in  the  following  subsection  how  to  experiment  actively  with  greedy  strategies.  A  brief   description  of  interactive  assistant  we  developed  to  aid  in  experimental  inquiry  can  be  found   elsewhere  (Velázquez-­‐Iturbide,  J.Á.,  Pérez-­‐Carrasco,  A.  et  al.,  2008).   2.1.    Experimental  Inquiry  into  Greedy  Strategies   We  use  in  the  article  the  activity  selection  problem  (Cormen,  T.H.  et  al.,  2001),  given  that  it  is   simple  but  not  straightforward  to  solve.  We  may  state  it  informally  as  follows.  Given  a  set  of  n   activities,  each  one  with  a  start  time  si  and  a  finish  time  fi,  we  seek  to  select  a  maximum-­‐size   subset  of  non-­‐overlapping  activities.  For  instance,  given  the  set  of  activities  in  Table  1,  the  subset   composed  of  activities  {3,8,2}  is  a  valid  solution,  while  subset  {9,5,4,2}  is  a  maximum-­‐size  solution.   Table  1.  An  instance  of  the  activity  selection  problem.   i

0

1

2

3

4

5

6

7

8

9

10

si

13

9

29

3

26

13

1

17

10

1

13

fi

15

24

30

7

28

20

6

27

29

13

15

The  interesting  issue  here  is  trying  to  discover  whether  there  is  an  optimal  greedy  strategy  that   solves  the  problem.  Firstly,  we  should  try  to  imagine  as  many  candidate  greedy  strategies  as   possible.  For  instance,  we  may  consider  the  strategies  consisting  in  selecting  activities  based  on   the  following  nine  criteria:   •

Random.  



Activity  index  in  increasing/decreasing  order.  



Start  of  activity  in  increasing/decreasing  order.  



Finish  of  activity  in  increasing/decreasing  order.  



Duration  of  activity  in  increasing/decreasing  order.  

Of  course,  the  first  three  strategies  are  no  serious  candidates  to  optimal  strategies,  but  for  the   other  six  the  choice  is  not  obvious.  If  we  experiment  by  applying  the  nine  strategies  to  data   contained  in  Table  1,  we  obtain  the  results  in  Table  2.     These  results  allow  us  to  discard  the  seventh  and  ninth  strategies.  We  should  now  experiment   again  with  the  seven  remaining  strategies  over  new  input  data.  (Although  the  first  three   candidates  passed  this  first  filter,  they  will  likely  drop  soon.)   2  

  Table  2.  Result  of  applying  different  strategies.   Strategy

Activities selected

# activities

Random

[9, 4, 5, 2]

4

Index, increasing

[0, 2, 3, 4]

4

Index, decreasing

[9, 7, 2, 0]

4

Start time, increasing

[6, 1, 4, 2]

4

Start time, decreasing

[2, 4, 5, 3]

4

Finish time, increasing

[6, 0, 7, 2]

4

Finish time, decreasing

[2, 8, 3]

3

Duration, increasing

[2, 0, 4, 3]

4

Duration, decreasing

[8, 6, 2]

3

  Performing  as  many  times  as  necessary  this  experiment,  we  will  reach  a  state  where  only  those   feasible  strategies  will  survive.  Following  our  example,  we  successively  used  five  data  sets  and   obtained  the  results  summarized  in  Table  3.  We  only  include  the  number  of  activities  selected  in   each  case.   Table  3.  Results  over  different  input  data.   Strategy

1st run

2nd run

3rd run

4th run

5th run

Random

4

3

2

-

-

Index, increasing

4

3

3

2

-

Index, decreasing

4

3

3

1

-

Start time, increasing

4

3

3

1

-

Start time, decreasing

4

3

3

3

3

Finish time, increasing

4

3

3

3

3

Finish time, decreasing

3

-

-

-

-

Duration, increasing

4

3

3

3

3

Duration, decreasing

3

-

-

-

-

  Notice  that  there  are  three  remaining  strategies.  We  could  go  on  experimenting  with  new  input   data,  or  stop  and  try  to  formally  prove  the  optimality  of  the  three  remaining  strategies.  Table  3   shows  three  candidate  strategies  to  optimality;  however,  it  must  be  noticed  that  one  of  them   (namely,  increasing  order  of  duration)  is  not  optimal.  

3.    Experience   Several  years  ago  we  started  the  development  of  three  assistants  for  different  greedy  algorithms:   the  knapsack  problem,  the  activity  selection  problem,  and  the  minimum  cost  spanning  tree   problem  (including  Prim’s  and  Kruskal’s  algorithms).   The  maturity  of  these  assistants  differs.  Assistants  for  the  knapsack  problem  and  the  activity   selection  problem  are  mature  programs,  while  the  assistant  for  the  minimum  cost  spanning  tree   problem  is  a  working  prototype.  The  usability  of  the  two  first  assistants  was  evaluated  by  experts   3  

(i.e.  the  instructor)  and  also  by  students  in  lab  sessions.  They  gave  us  feedback  about  user   acceptance,  evaluation  of  the  main  features,  and  open  suggestions.  The  results  of  usability   evaluations  were  highly  positive,  and  also  allowed  us  to  enhance  their  user  interface  and   functionality.  More  information  about  the  knapsack  assistant  and  usability  results  can  be  found   elsewhere  (Velázquez-­‐Iturbide,  J.Á.,  Lázaro-­‐Carrascosa,  C.A.,  et  al.,  2008).  We  are  currently   integrating  them  into  a  single  interactive  assistant,  called  GreedEx.  We  use  this  name  in  the  rest  of   the  extended  abstract.   In  the  following  subsections,  we  focus  on  the  last  evaluation.  We  describe  the  characteristics  of   the  assignment  and  the  outcomes  of  students  with  respect  to  the  task  assigned.   3.1.    Protocol   The  laboratory  evaluation  was  performed  within  the  lesson  on  greedy  algorithms.  This  chapter  is  a   part  of  the  course  “Design  and  Analysis  of  Algorithms”,  mandatory  course  for  students  of   Computer  Science.  The  evaluation  was  held  in  January  2009  and  consisted  in  two  sessions,  being   each  session  two  hours  long.  A  total  of  24  students  participated.  Student  work  could  be  made   individually  or  in  pairs,  but  the  opinion  questionnaire  that  had  to  be  made  individually.  Students   were  given  the  assignment  statement,  the  assistant,  a  report  model  and  an  opinion  questionnaire.   Before  the  first  session,  the  instructor  had  given  the  basics  of  greedy  algorithms.  He  also  had  used   GreedEx  to  illustrate  the  knapsack  and  the  minimum  cost  spanning  tree  problems.   In  the  first  session,  students  had  to  perform  three  tasks:   1. Use  the  GreedEx  interactive  assistant  to  determine  which  of  the  strategies  offered  are   optimal  for  the  activity  selection  problem.   2. Fill  and  deliver  a  short  report,  following  the  model  provided.   3. Fill  and  deliver  the  opinion  questionnaire  about  GreedEx.   Between  both  sessions,  the  instructor  reviewed  a  number  of  relevant  concepts,  namely,   hypothesis,  experiment  plan,  refutation,  counterexample,  empirical  evidence,  and  inductive  and   formal  reasoning.   At  the  beginning  of  the  second  session,  the  instructors  identified  which  strategies  were  optimal,   namely  increasing  order  of  finish  time  and  decreasing  order  of  start  time.  Students  had  to  work   within  the  same  groups  as  in  the  first  session.  Depending  on  their  findings  in  the  first  session,   students  had  to  make  different  tasks.  For  every  strategy  they  had  wrongly  identified  as  optimal,   they  had  to  find  any  counterexample.  For  every  strategy  they  failed  to  identify  as  optimal,  they   had  to  review  their  past  experiments  and  find  out  why  they  failed  to  identify  it.  Their  task  had  to   be  elaborated  in  a  short  report  and  delivered  during  the  session.   3.2.    Results   The  first  session  was  performed  by  31  students  organized  in  18  groups  (13  pairs  and  5  individuals).   However,  in  the  second  session  only  24  students  participated,  grouped  in  11  teams  (9  pairs  and  2   individuals).  We  are  interested  in  the  strategies  identified  as  optimal  by  the  students.  Table  4   shows  the  number  of  groups  that  proposed  each  strategy.   It  is  not  surprising  that  the  optimal  strategies  are  scored  high.  In  fact,  one  of  them  (increasing   order  of  finish  time)  was  proposed  by  all  the  teams  but  one.  A  high  number  of  groups  (14)   identified  the  strategy  of  increasing  order  of  duration.  This  is  not  surprising,  as  it  is  a  suboptimal   strategy  that  delivers  good  results,  as  we  showed  in  Section  2.1.  Other  suboptimal  strategies   4  

obtained  zero  or  two  votes.     Table  4.  Number  of  proposals  per  strategy.   Strategy

# proposals

Random

0

Index, increasing

6

Index, decreasing

6

Start time, increasing

0

Start time, decreasing

14

Finish time, increasing

17

Finish time, decreasing

2

Duration, increasing

14

Duration, decreasing

0

  There  are  two  most  surprising  results.  First,  one  of  the  optimal  strategies  only  scored  14.  Second,  a   relatively  high  number  of  teams  (6)  proposed  the  two  strategies  based  on  indices.   We  also  are  interested  in  analyzing  how  the  groups  performed  in  each  independent  session.  With   respect  to  the  first  session,  we  have  the  following  results:   •

All  the  groups  but  two  only  document  between  2  and  5  runs  to  justify  their  selection.  The   other  two  groups  run  9  and  13  input  data,  respectively  and  chose  the  correct  strategies.  



Two  expected  outcomes  were:  a  group  providing  a  reasoned  rationale  (either  correct  or   incorrect),  and  a  group  without  rationale.  Other  cases  were:  a  group  giving  a  meaningless   rationale,  a  group  giving  a  rationale  dependent  on  a  case  (e.g.  the  list  of  activities  being   arranged  in  a  specific  ordered)  or  specific  to  each  input  data.  Up  to  5  groups  provided  a   second  optimization  criterion  to  justify  their  selection  of  an  optimal  strategy.  It  seemed   that  they  only  could  accept  the  existence  of  a  single  optimal  strategy.  



Some  groups  made  wrong  proposals  based  on  a  misunderstanding  of  the  task  to  solve  or   due  to  previous  misunderstandings.  However,  other  groups  were  inconsistent  in  the   process  of  analyzing  the  results  of  their  runs.  

There  is  a  variety  of  groups  that  did  not  attend  at  the  second  session.  Two  groups  had  marked  high   in  their  first  session,  and  four  had  performed  poorly.   With  respect  to  their  second  task,  most  of  the  groups  performed  good.  

4.    Conclusions  and  Future  Work   Despite  the  apparent  simplicity  of  greedy  algorithms,  it  is  difficult  to  learn  them  actively.  We  have   presented  in  the  paper  a  novel  approach  to  active  learning,  based  on  experimentation  with  and   evaluation  of  alternative  greedy  strategies.  Consequently,  the  work  here  presented  is  a   contribution  to  experimentation  and  the  scientific  method  in  CS  education.   Our  approach  is  supported  by  the  GreedEx  interactive  assistant.  GreedEx  has  been  evaluated  for   usability  in  real  lab  situations,  having  obtained  high  scores  from  students  as  well  as  useful   information  to  enhance  them.  We  have  also  reported  on  the  successful  performance  of  students   5  

in  their  inquiry  task.   We  plan  to  extend  our  work  in  several  directions.  Firstly,  more  problems  can  be  integrated  in   GreedEx.  Secondly,  we  are  designing  a  fixed  format  for  reports,  which  will  also  be  supported  by   Greedex.  Finally,  we  should  make  more  emphasis  in  the  future  to  proofs  of  optimality  by  students.  

Acknowledgments   This  work  was  supported  by  project  TIN2008-­‐04103/TSI  of  the  Ministerio  de  Ciencia  e  Innovación.  

References   Cormen,  T.H.,  Leiserson,  C.E.,  and  Rivest.  R.L.  (2001).  Introduction  to  Algorithms.  The  MIT  Press,  2ª   ed.   Denning,  P.  et  al.  (1989).  Computing  as  a  discipline.  Comm.  of  the  ACM  32,  1,  9-­‐23.   Horowitz,  E.,  and  Sahni,  S.  (1978).  Fundamentals  of  Computer  Algorithms,  Pitman.   Velázquez-­‐Iturbide,  J.Á.,  Lázaro-­‐Carrascosa,  C.A.,  and  Hernán-­‐Losada,  I.  (2008).  Asistentes   interactivos  basados  en  la  taxonomía  de  Bloom  para  el  aprendizaje  de  algoritmos  voraces.   IEEE  Revista  Iberoamericana  de  Tecnologías  del  Aprendizaje,  accepted.   Velázquez-­‐Iturbide,  J.Á.,  Pérez-­‐Carrasco,  A.,  and  Urquiza-­‐Fuentes,  J.  (2008).  Active  learning  of   greedy  algorithms  by  means  of  interactive  experimentation.  In  Proceedings  of  the  14th   Annual  Conference  on  Innovation  and  Technology  in  Computer  Science  Education,  ITiCSE   2009,  accepted.  

6  

SET,  a  CASE  tool  to  guide  the  creation  of  domain   and  use  case  models  in  an  introductory   Software  Engineering  course   Sergio  Bravo  Martín  (1),  Francisco  J.  García  Peñalvo  (1),  Miguel  A.  Conde  González  (1)   (1)  

Universidad  de  Salamanca,  Facultad  de  Ciencias   Plaza  de  los  Caídos  s/n,  37008  Salamanca  (España)   {ser, fgarcia, mconde}@usal.es

Abstract   The  idea  of  using  CASE  (Computer  Aided  Software  Engineering)  tools  in  education  as  an  interactive   learning  has  been  emerging  for  serveral  topics  in  computer  science.  The  learning  process  proves  to  be   more  effective,  rapid  and  even  persistent.  This  paper  presents  a  CASE  tool  named  Software  Engineering   Tutor  (SET),  which  main  aim  is  to  improve  the  students’  knowledge  in  Software  Engineering  field,   specifically  to  guide  them  in  the  domain  and  use  case  models  construction.  Besides,  this  tool  offers  a   repository  of  case  studies,  trying  to  make  an  effort  to  share  experiences  around  the  university  and   professional  community.  Our  experience  with  this  tool,  specially  at  the  workshops  of  the  Software   Engineering  subject  during  the  last  academic  year,  shows  that  SET  is  an  useful  tool  for  learners  of  such   subjects  and  from  student's  very  instructive.  Moreover,  it  has  become  a  key  element  of  support  for  the   continuous  assessment  introduced  in  the  course.  

1.    Introduction   Software  Engineering,  which  traditionally  has  appeared  like  a  discipline  of  Computer  Science,  is   being  considered  in  recent  years  as  an  entity  separate  curriculum,  but  with  deep  roots  in  the   Computer  Science  and  Mathematics.  It  offers  methods  or  techniques  for  developing  and   maintaining  quality  software  that  solve  all  kind  of  problems.       There  are  many  CASE  tools  that  provide  support  to  Software  Engineering  and  contribute  greatly  to   increase  productivity  in  software  development  reducing  the  cost  in  terms  of  time  and  money.   These  tools  are  applied  in  all  aspects  of  the  lifecycle  of  software  development  such  as  planning,   analysis,  design,  project  documentation  (textual  and  graphical),  automatic  code  generation  and   error  detection,  and  so  on.   This  paper  presents  a  new  CASE  tool  named  Software  Engineering  Tutor  (from  now  on  SET),   designed  to  provide  support  in  the  early  stages  of  the  lifecycle.  It  particularly  focuses  attention  in   requirement  engineering  and  analysis  stage,  with  the  facility  to  create  use  cases  and  domain   models  respectively.  But  the  elements  that  differentiate  SET  from  other  tools  are  the  innovative   teaching  approach  and  the  self-­‐training  for  the  software  engineer,  due  to  a  modeling  wizard  that   guides  the  user  step  by  step  in  the  building  models.  SET  has  been  developed  by  a  Final  Project  at   the  Computer  Science  Department  of  the  University  of  Salamanca,  and  specially  used  in  the   practical  part  of  the  Software  Engineering  subject  at  the  third  course  of  the  Computer  Science   Degrees.   The  article  is  divided  in  the  following  sections:  Section  2  gives  a  review  of  the  context  subject  and   the  continuous  assessment  process  introduced  since  the  academic  year  2005-­‐06,  and  how  SET  fits   in  this  strategy.  Section  3  describes  functional  characteristics  of  SET.  Finally,  we  present  the   conclusions  taken  from  this  case  study.   7  

2.  Software  Engineering  subject:  context  and  assessment  process   Software  Engineering  has  great  important  in  the  curriculum  of  Computer  Sciences  Engineering   because  it  is  essential  to  have  strong  knowledge  about  developing  software  and  all  the  stages  of   its  lifecycle,  beginning  with  the  necessity  of  building  a  system,  passing  throw  the  implementation   and  ending  with  the  software  maintenance.  This  subject  shows  to  the  students  a  set  of  principles   that  are  regularly  and  systematically  applied  in  designing  and  constructing  economically  viable   computer  software  tasks.   In  order  to  understand  the  different  topics  is  necessary  that  the  student  will  be  capable  of   performing  a  job  for  reflection,  assimilation  and  practice  of  different  underlying  topics  of  the   program  subject.  Encouraging  these  disciplines  and  considering  that  in  most  cases  students  apply   every  effort  only  to  pass,  it  becomes  necessary  to  apply  a  methodology  for  continuous   assessment.     2.1  General  concepts  of  the  subject   The  course  comprises  60  hours  (45  theoretical  hours  and  15  lab  hours)  and  tries  to  focus  attention   on  the  following  topics:   

Lifecycle  and  process  requirement  elicitation  and  documentation.    



Analysis  and  design  methods  and  notation.    



Modularity,  software  architecture,  and  software  reuse  principles  (design  patterns  and   reusable  solutions  perfectly  valid).  

The  presentation  of  these  topics  emphasizes  abstraction  as  the  fundamental  technique  for   understanding  and  solving  problems  (Wasserman,  1996).  Somewhat,  this  is  the  main  problem  that   students  suffer  at  this  course,  because  of  the  experience  of  the  analyst  role  is  very  important  and   there  is  not  a  scientific  method  or  technique  to  complete  the  early  stages  of  the  lifecycle  of   software  development.  This  handicap  is  exacerbated  further  in  Engineering  Degrees  in  those   object  modeling  is  taught  in  first  courses.   The  traditional  way  to  perform  the  practical  part  and  assimilate  the  knowledge  required  by  this   subject  is  developing  a  small  engineering  project  (Chamillard,  2002),  at  least  as  far  as  the  analysis   and  design  stages.  However,  it  is  necessary  to  supplement  the  practical  part  with  a  series  of   workshops  (Garcia,  2004)  that  cover  the  following  topics:     

one  workshop  devoted  to  the  entity-­‐relationship  model,  in  order  to  review  conceptual   data  modeling  principles,  



two  workshops  devoted  to  introducing  the  object-­‐oriented  analysis  using  Unified   Modeling  Language  (OMG,  2004)  as  the  modeling  language  (from  now  on  UML),  in  order  to   build  domain  models  (class  diagrams)  and,  



last  workshop  devoted  to  introducing  the  basic  principles  of  use  case  diagrams,  using  again   UML  (Rumbaugh,  2005),  and  like  a  first  approximation  to  requirements  engineering.  

According  to  this  idea,  SET  aims  to  support  young  students  in  the  stages  of  requirement   engineering  and  analysis,  particularly  in  the  construction  of  domain  and  use  case  model  covered  in   the  last  three  of  the  four  workshops  planned  for  the  course.   2.2  Assessment  process   In  addition  to  the  traditional  evaluation  system,  students  can  optionally  choose  a  continuous   8  

assessment,  in  which  attendance  and  active  participation  play  an  important  role.  The   implementation  of  continuous  assessment,  in  the  context  of  this  subject,  is  a  major  challenge,   therefore  should  be  implemented  on  two  large  groups  with  approximately  100  students  each  one   (Garcia,  2008).     This  evaluation  system  provides  continuous  on-­‐line  information  about  subject  that  can  contribute   to  improve  or  even  redirect  the  process  of  student  learning.  However,  teachers  need  the  tools  and   suited  methods  to  know  the  feedback  on  the  degree  of  learning  of  student  during  the  course.  This   is  one  of  the  most  important  benefits  of  using  SET  in  order  to  support  the  process  of  continuous   assessment,  through  the  homogenization  of  the  reports  submitted.   2.3  Introducing  SET  in  the  learning  and  assessment  process   In  order  to  apply  a  methodology  for  continuous  assessment  at  the  subject,  the  teachers  need  agile   and  effective  mechanisms  to  obtain  the  learning  degree  of  students  over  the  course.     During  the  last  academic  year,  the  subject  of  Software  Engineering  has  used  two  support  tools  in   the  learning  and  assessment  process:   1. Studium  (supported  by  Moodle),  an  online  virtual  campus  for  the  subject,  with  the   following  resources:   

Contents  described  at  the  program  subject  and  presented  at  attending  classroom.  



Forums  to  control  the  students’  participation  over  the  course.  



Forms  to  collect  the  reports  required  at  workshops  and  voluntary  exercises.  

2. SET  (Software  Engineering  Tutor),  a  learning  tool  with  the  following  competences:   

Supporting  the  teacher  at  attending  classroom  to  present  theoretical  concepts  about   object  modeling  techniques.  



Guiding  the  software  engineer  (or  student)  in  the  use  case  and  domain  models   creation.  



Normalizing  the  practical  workshop  or  exercises  reports.  

3.  Functional  description  of  SET   The  key  features  of  SET,  currently  in  version  1.0.7,  focus  primarily  on  the  following  topics:   

a  modeling  wizard  as  a  mechanism  to  support  the  construction  of  use  case  and  domain   models,  



a  standard  mechanism  to  make  personalized  and  normalized  reports,  



a  central  repository  of  such  case  studies,    



compatibility  with  other  CASE  tools  using  XML  Metadata  Interchange  (from  now  on  XMI)   and  desktop  programs,  and  



user  interface  based  on  different  views  of  the  model  under  construction.  

3.1.  The  modeling  wizard   The  original  idea  of  Software  Engineering  Tutor  is  mainly  to  introduce  the  student  (or  software   engineer)  at  the  requirement  engineering  and  object-­‐oriented  analysis  stage  by  the  use  case  and   domain  models  construction.  Both  models  are  built  graphically  using  UML  diagrams.  However,  its   9  

contribution  in  the  real  world  of  CASE  tools  lies  in  their  orientation  on  training  and  instruction  in   building  such  models  using  an  integrated  modeling  wizard.  This  intelligent  wizard  makes  SET  a   unique  tool.   The  modeling  wizard  is  a  dialog  box  that  allows  the  user  to  navigate  freely  through  a  set  of  steps   that  guides  the  process  of  building  models.  All  strategies  used  to  design  the  wizard  (i.e.,  the   identification  of  conceptual  classes  based  on  lists  of  categories)  are  taken  from  the  literature   (Larman,  2002).   Regarding  the  domain  model,  the  techniques  used  for  the  design  of  the  wizard  are  the  following:     

Identification  of  conceptual  class  (using  category  list).  



Identification  of  associations.  



Identification  of  attributes.  



Identification  of  superclasses  and  subclasses.  



Identification  of  whole-­‐part  relationships.  

In  addition  to  Larman’s  techniques,  it  is  also  possible  the  identification  of  conceptual  classes  using   the  method  describe  at  (Coad,  1990).  The  steps  of  the  use  case  model  wizard  are  also  based  on   Craig  Larman  indications  too.  Each  step  is  presented  in  a  concise  way  and  with  the  necessary   controls,  so  that  users  can  complete  perfectly.  Moreover,  there  is  the  option  to  extend  the   information  on  the  current  step,  with  detailed  instructions  (and  examples)  on  how  to  complete  it.    

  Fig.  1:  Domain  modeling  wizard   The  wizard  is  fully  associated  with  the  main  frame  of  the  application,  so  that  both  workspace   environments  will  work  on  the  same  data.  In  this  way,  the  effects  produced  by  actions  in  the   wizard  will  be  instantly  visible  at  the  workspace.   3.2.  Normalized  reports   The  tool  allows  to  the  user  printing  reports  of  a  project  (previously  saved)  and  exporting  them  to   Portable  Document  Format  (PDF).  In  addition,  it  is  able  to  create  own  report  types.  This   functionality  offers  to  the  teachers  the  possibility  to  normalize  the  reports  at  the  practical   workshops  and  even  in  the  volunteer  exercises  delivered.  In  this  way,  the  evaluation  of  the  reports   10  

is  more  agile  and  at  the  same  time  is  possible  to  ensure  the  originality  of  the  work  and,  for   example,  the  detection  of  plagiarism.   3.3.  Central  repository   Any  tool  that  provides  a  teaching  approach  requires  a  basic  knowledge  and  useful  learning   support.  In  our  case,  SET  provides  to  the  university  community  a  wide  range  of  well-­‐known  case   studies  that  serve  as  examples  and  support  for  students.  According  to  this  approach,  SET  uses  the   template  concept  as  a  default  case  study  (or  standard  model).  It  provides  to  SET  the  power  to   build  new  models  from  existing  ones.   In  order  to  generalize  the  use  of  the  tool,  and  particularly  the  availability  of  the  templates  catalog,   the  Computer  Science  Department  of  the  University  of  Salamanca  has  created  a  virtual  space  on   Internet  (available  at  http://set.usal.es),  with  a  central  repository  of  a  set  of  standard  templates   with  solutions  to  well-­‐known  case  studies.  These  templates  can  be  viewed  and  downloaded   directly  from  the  repository  without  leaving  the  workspace.  In  addition,  the  repository  is  ready  to   interact  with  it  only  registered  users.    

  Fig.  2:  SET  workspace  with  the  four  views   3.4.  Compatibility   SET  can  be  exported  according  to  the  XMI  standard  (XML  Metadata  Interchange)  for  exchange   diagrams  (OMG,  2007).  In  this  way,  the  tool  does  not  become  a  close  application,  but  it  is   supplemented  with  other  CASE  tools  that  provide  support  in  other  stages  in  the  software   development  lifecycle.  It  could  be  said  that,  although  this  tool  provides  the  user  on  everything   needed  for  the  construction  of  diagrams  related  to  the  domain  model  and  use  cases,  the  main   purpose  of  SET  is  not  to  draw  diagrams,  but  tutoring  and  assisting  in  the  creation  of  these  models.   3.5.  User  interface  based  on  different  views   The  workspace  of  the  case  tool  is  divided  into  four  views  that  provide  different  perspectives  of  the   11  

model  under  construction  (see  Fig.  3):  model  (elements  model  in  a  tree  view),  diagram  (current   model  in  diagrammatic  form),  properties  (properties  of  the  selected  element  of  the  current   model)  and  console  view  (text  read-­‐only  with  a  history  of  all  relevant  actions  from  the  current   model).   4.  Conclusions   SET  aims  to  be  the  germ  of  a  new  type  of  CASE  tools  for  the  training  of  future  software  engineers.   The  learning  process  is  marked  by  a  complete  and  proven  wizard  that  guides  the  construction  of   domain  and  use  cases  models.  One  of  the  benefits  on  the  assessment  process  after  incorporating   the  tool  on  practical  workshops  on  the  subject  of  Software  Engineering  has  been  the  unification  of   all  documents  by  the  automatic  generation  of  reports  functionality.   Also,  the  initiative  of  the  case  studies  central  repository  not  only  expands  the  possibilities  of  using   the  tool  but  also  sharing  other  cases  made  by  other  members  of  the  academic  community  or   professionals.  Moreover,  due  to  the  distributed  nature  of  this  case  tool,  we  find  the  possibility  of   working  with  the  client  application  in  offline  mode.    Finally,  the  compatibility  with  the  UML  and   XMI  standards  allows  that  the  SET  models  can  be  used  in  other  case  tools  or  desktop  applications.  

Acknowledgment   This  work  is  partially  supported  by  the  Regional  Ministry  of  Education  of  Junta  de  Castilla  y  León   through  the  project  GR47.  

References   Chamillard,  A.T.  ,  Braun,  K.A.  (2002).  The  software  engineering  capstone  structure  and  tradeoffs,  In   Proceedings  of  the  33rd  SIGCSE  Technical  Symposium  of  Computer  Science  Education— SIGCSE’02,  pp  227–231.   Coad,  P.,  Yourdon,  E.  (1990).  OOA  Object-­‐Oriented  Analysis,  Prentice-­‐Hall   García,  F.J.  and  Moreno,  M.N.  (2004).  Software  Modeling  Techniques  for  a  First  Course  in  Software   Engineering:  A  Workshop-­‐Based  Approach.  IEEE  Transactions  on  Education,  Vol.  47,  No.  2.   Garcia,  F.J.,  Conde  M.A.,  Bravo,  S.  (2008).  Continuous  Assessment  in  Software  Engineering,  In   Proceedings  of  the  Methods  and  Cases  in  Computing  Education,  MCCE  ‘08,  Salamanca,  Spain,   pp  41-­‐46.   Larman,  C.  (2002).  Applying  UML  and  Patterns:  An  Introduction  to  Object-­‐Oriented  Analysis  and   Design  and  the  Unified  Process,  2nd  Edition,  Prentice  Hall   OMG  (2004).  Unified  Modeling  Language:  Superstructure.  Version  2.0.  Object  Management  Group   Inc.  Document  formal/05-­‐07-­‐04  [on  line].  Available  on:  http://www.omg.org/cgi-­‐ bin/doc?formal/05-­‐07-­‐04  [Last  visit,  sep-­‐2008]   OMG  (2007).  MOF  2.0/XMI  Mapping,  v2.1.1.  Object  Management  Group  Inc.  Document   formal//2007-­‐12-­‐01  [on  line].  Available  on:  http://www.omg.org/docs/formal/07-­‐12-­‐01.pdf   [Last  visit,  sep-­‐2008]   Rumbaugh,  J.,  Jacobson,  I.,  Booch,  G.  (2005).  The  Unified  Modeling  Language.  Reference  Manual.   2nd  Edition,  Addison-­‐Wesley   Shlaer,  S.,  Mellor  S.  J.  (1988).  Object-­‐Oriented  Analysis:  Modeling  the  World  in  Data.  Yourdon  Press   Wasserman,  A.  (1996).  Toward  a  discipline  of  software  engineering.  IEEE  Software,  Vol.  13,  23–31. 12  

Digital  Systems  Laboratory  for  Visually  Impaired   Students   Joaquín  Olivares,  José  M.  Palomares,  Edmundo  Sáez,  José  M.  Soto     Department  of  Computer  Architecture.     University  of  Córdoba.  Campus  Rabanales.  14071.  Spain   {olivares,jmpalomares,edmundo,jmsoto}@uco.es

Abstract   This  paper  describes  how  the  practical  sessions  of  the  Digital  Systems  Laboratory  within  the  Computer   Science  Degree  have  been  adapted  to  allow  a  visually  impaired  student  to  take  part  in  the  practical   sessions.  Regular  students  use  a  computer-­‐-­‐aided  design  tool  (OrCAD)  for  digital  design  in  their  practical   assignments.  This  work  shows  how  the  use  of  special  instrumentation  allows  visually  impaired  students   to  work  with  regular  students  in  the  same  lab,  where  the  CAD  tool  is  installed.  The  teaching   methodology  and  the  obtained  assessments  are  introduced  here.  Some  specific  practical  materials  have   been  designed  and  they  are  described  in  this  work;  the  design  of  a  special  buzzer  is  also  presented.  

1.    Introduction   The  subject  known  as  Computers  Structure  and  Technology  is  scheduled  for  the  second  semester   of  the  first  academic  year  in  the  Computer  Sciences  Degree  in  the  University  of  Córdoba,  Spain.  It   consists  of  45  theoretical  hours,  15  hours  of  exercises,  and  30  hours  for  practicals  in  labs.  Four   theoretical  hours  a  week  are  given,  including  theory  and  exercises,  while  two  practical  hours  a   week  are  given  in  labs.  The  course  lasts  for  15  weeks.  This  information  is  all  summarized  in  Table   1.   Table  1.  Course  description   Lectures (4h./week)

Week Laboratory (2h./week)

1. Introduction. General overview

1

Lab. equipment and safety

2. Information representation

2

CAD tool introduction

3. Boole Algebra. Logic gates

3

Simulating logic gates

4

Minimisation

5

NAND, NOR synthesis

5. Combinational design

6

Combinational I

6. Combinational logic circuits

7

Combinational II

8

Adder/Subtracter

4. Logic functions. Minimisation

7. Digital arithmetics 8. Digital artihmetics circuits

9 10 11

9. Sequential systems

12 13

10. Sequential circuits

14 15

Arithmetic Logic Unit (ALU) Counters RAM memory Laboratory examination

The  main  objective  is  to  introduce  the  basic  concepts  underlying  the  digital  systems,  as  well  as  the   instruments  used  to  design  digital  electronic  circuits.  In  the  laboratory,  the  students  use  the   13  

OrCAD  tool  to  design  simple  combinational,  arithmetic,  and  sequential  circuits.   A  visually  impaired  student  (VIS)  enrolled  in  this  subject.  He  was  not  able  to  perform  the  lab   sessions  with  the  CAD  tool  due  to  his  impairment.  Thus,  an  alternative  method  was  needed.  The   goal  of  this  paper  is  to  describe  this  alternative  method.  This  particular  experience  is  to  be   considered  as  a  starting  point  for  teaching  Digital  Systems  to  visually  impaired  students  (VISs).  

2.    Course  Description  of  the  Practical  Sessions   Below,  the  proposed  practicals  are  described:   























1st  Week  Laboratory  equipment  and  safety.  In  this  session,  the  lecturer  introduces  the   practical  sessions,  shows  the  lab  to  the  students,  explains  the  safety  rules  and  informs  the   students  about  the  emergency  exits.   2nd  Week  CAD  tool  introduction.  The  second  session  is  used  to  teach  the  students  some   concepts  about  the  operating  system  (OS),  their  OS  accounts,  and  to  perform  an   introductory  tour  about  OrCAD,  showing  the  main  characteristics  of  this  tool.   3rd  Week  Simulating  logical  gates.  Students  learn  how  to  design  a  basic  circuit  using  logical   gates,  input  and  output  ports,  and  wires.  The  process  to  compile,  stimulate,  and  simulate  a   circuit  is  also  shown.  How  to  understand  the  graphical  simulation  is  also  explained.   4th  Week  Minimisation.  Simple  combinational  problems  are  simplified  using  Karnaugh   maps.  Afterwards,  students  implement  the  solution  in  OrCAD  and  simulate  it  to  check  its   validity.   5th  Week  NAND  and  NOR  Synthesis.  Students  apply  the  universality  of  the  NAND  and  NOR   logic  gates.     6th  Week  Combinational  I.  To  familiarize  students  with  real  cases,  simple  problems  are   described.  Students  should  first  obtain  the  truth  table,  perform  Karnaugh  simplification,   obtain  the  logical  equation  that  represents  the  solution,  turn  the  equation  into  a  schematic   design,  compile  it,  and  finally,  stimulate  and  check  that  the  simulation  is  correct.   7th  Week  Combinational  II.  More  complex  problems  are  introduced  in  this  session.  These   problems  require  the  use  of  buses.   8th  Week  Adder/Subtracter.  In  order  to  introduce  the  students  to  binary  arithmetic,  a  1-­‐bit   full  adder  (FA)  is  designed.  Then,  students  use  this  component  to  design  a  4-­‐bit  FA.  Next,   using  two's  complement,  students  design  a  4-­‐bit  subtracter  using  the  adder  which  was   previously  designed.  Concepts  of  hierarchical  designs  are  introduced.   9th-­‐10th  Week  Arithmetic  Logic  Unit  (ALU).  A  4-­‐bit  ALU  capable  of  performing  8  different   operations,    is  implemented  within  this  practical  session.     11th-­‐12th  Weeks  Counters.  The  design  of  a  modulo-­‐6  up/down  counter  is  proposed  to   introduce  students  into  the  sequential  systems.  Synchronous  and  asynchronous  signals  are   studied.   13th-­‐14th  Weeks  RAM  Memory.  Students  are  asked  to  design  a  4  x  3  RAM  memory,  with   one  bidirectional  3-­‐bit  data  bus.  It  provides  the  students  with  the  concepts  of  memories,   bidirectional  ports,  and  tri-­‐state  buffers.   15th  Weeks  Laboratory  examination.  Students  are  asked  to  design,  implement,  and   simulate  one  exercise  based  on  the  previous  sessions.   14  

3.    A  visually  impaired  Student   University  of  Córdoba  informed  the  professors  a  few  months  before  the  course  started  that  a   student  called  Rafael  (Rafael  allowed  the  use  of  his  name  and  photographs  within  the  academic   scope.)  enrolled  in  the  subject  described  above.  He  presents  a  visual  impairment  that  consists  in   just  12%  lateral  vision  in  the  right  eye,  while  the  left  eye  is  totally  blind.  He  is  able  to  read  Braille   proficiently.  He  is  able  to  recognize  different  colours  presented  in  large  lines.  However,  he  needs   to  approach  his  face  to  the  drawing  very  closely.  This  impairment  prevents  him  from  performing   the  practical  sessions  with  the  OrCAD  tool.  Thus,  a  different  approach  was  needed.  This  approach   should  give  Rafael  similar  knowledge  to  that  acquired  by  the  other  students.   First  of  all,  a  search  in  the  scientific  literature  for  different  strategies  for  teaching  Electronics,   Digital  Systems,  or  similar  subjects  to  VISs  was  carried  out.  A  small  amount  of  works  in  this  field   were  found.  Some  of  them,  which  are  the  most  representative  ones,  are  stated  below.  In  (Graham   et  al.,  2007),  an  initial  study  on  interface  design  for  VISs  is  presented.  In  this  work  from  the   Computer  Science  at  Ulster  and  Electronics  at  York,  they  obtain  one  main  conclusion:  touch  is  best   for  orientation  in  schematics.  They  also  recommended  suppressing  superfluous  information.   However,  no  experimental  results  are  shown  in  the  article.  (Bel  and  Bradburn,  2008)  present  a   basic  study  about  materials  and  accessibility,  based  on  a  questionnaire  distributed  among   teachers.  Results  suggest  that  professors  show  a  lack  of  technical  knowledge  that  prevents  them   to  use  the  technical  material  properly.  In  (Harrison  et  al.,  2008),  the  authors  present  a  preliminary   work  to  collect  information  for  a  future  Virtual  Learning  Environment  (VLE)  tool.  This  VLE  tool  was   expected  to  be  an  interesting  starting  point  for  adapting  the  practices  for  Rafael;  however,  current   VLE  platform  is  not  available  for  severe  VISs  or  blind  people.  (Rodríguez-­‐Ascaso  et  al.,  2008)  show   a  work  in  progress  about  personalized  support  to  students  with  disabilities  based  on  some   educational  guidelines  for  higher  education.  Conclusions  are  not  yet  obtained,  and  thus,  those   guidelines  have  been  used  just  as  suggestions.  All  these  works  in  progress  about  accessibility  in   education  for  students  with  disabilities  are  theoretical  proposals  without  any  experimental  results.   Currently,  interface  design  for  VISs  predominantly  includes  Tactile  User  Interfaces  (TUIs)  or  Audio   User  Interfaces  (AUIs)  (Benyon  et  al.,  2005).  Several  authors  have  stated  the  importance  of  the   tactile  abilities  for  blind  students  (Tubiana  et  al.,  1984),  (Rogow,  1987),  (Rogow,  1990),  (Mommers,   1975).  Other  authors  (Fricke  and  Baehring,  1994),  (Huang  al.,  2004),  have  made  use  of  different   instruments  to  control  systems  using  audio  interfaces.  Thus,  the  proposed  solution  was  to   substitute  the  practical  sessions  using  the  CAD  tool  with  other  using  real  lab  instrumentation   which  could  be  controlled  by  means  of  the  hearing  and  touch.   On  the  other  hand,  in  order  to  make  the  integration  of  Rafael  with  the  rest  of  the  students  easier   (Stovall  and  Sedlacek,  1983),  the  instrumentation  to  be  used  is  taken  to  the  lab  where  those   students  are  working.  Fig.  1  depicts  this  situation.  

4.    Practical  Material  and  Instrumentation   As  it  has  been  stated  previously,  Rafael  is  able  to  read  Braille.  This  fact  is  quite  common  in  most   visually  impaired  students  (Gray  and  Wilkins,  2005),  and  thus,  most  of  the  subjects  previously   translated  to  Braille  are  available  for  new  students.  However,  in  this  case,  after  a  deep  search   helped  by  ONCE  (Spanish  National  Organisation  for  the  Blind),  there  were  not  found  any  VIS  who   had  attended  a  Digital  Circuit  lab  within  Computer  Sciences  Degree  in  Spain.  Therefore,  the  first   task  was  to  translate  all  the  written  course  material  into  Braille.  All  the  used  diagrams  were  also   embossed  and  coloured.   15  

  Fig.  1:  Rafael  and  other  students  at  laboratory.   In  the  search  for  methods  for  the  adaptation  of  the  assignments  for  Rafael,  different  solutions   were  considered.  Two  of  them  have  been  frequently  used  in  assisting  visually  impaired  people:   Windows  Magnifying  Glass  (Pyy  et  al.,  2007)  and  JAWS  Software  (Freedom  Scientific,  2009).   However,  they  were  not  applicable  within  this  scope.  Windows  Magnifying  Glass  is  useful  when   the  visual  impairment  is  not  severe.  The  method  described  in  this  work  is  designed  for  seriously   impaired  people,  even  for  blind  people.  Therefore,  Windows  Magnifying  Glass  was  discarded.   JAWS  Software  is  useful  when  the  impaired  person  works  with  textual  information.  In  this  case,   the  electronic  designs  are  represented  using  schematics.  Thus,  JAWS  Software  has  not  been  a   great  help  for  this  work.  After  that,  other  solutions  were  investigated.  Several  attempts  using  a   voice  synthesizer  software  capable  to  read  the  screen  (Barry,  et  al.1994)  with  OrCAD  design   software  were  tried.  However,  this  produced  unsatisfactory  results  and  thus,  it  was  rejected.   Finally,  it  was  decided  not  to  use  OrCAD  software  and  to  adapt  the  assignments  to  be  able  to   implement  them  using  physical  circuits.  Moreover,  the  fact  that  the  impaired  student  could  work   with  real  devices,  instead  of  with  CAD  tools,  was  considered  to  be  very  interesting.   4.1.

The  Generic  Protoboard  

VISs  use  their  fingertips  to  read,  to  locate  elements,  etc.  They  are  able  to  locate  chips  and  to  count   every  pin  of  them.  However,  these  pins  are  too  close  to  each  other  and  sometimes  they  find  hard   to  plug  cables  attached  to  those  chips.  In  order  to  help  the  tactile  guidance  of  the  VIS  throughout   the  chips  involved  in  the  implementation  of  the  different  assignments,  a  generic  protoboard  was   used.  This  protoboard  allows  the  use  of  different  74LSxxx  chips.  The  chips  needed  in  the  design  of   the  solution  of  the  laboratory  assignments  are  plugged  in  the  sockets  of  this  protoboard.  Each  chip   socket  has  a  plastic  piece  to  unplug  each  chip  easily  and  without  damaging  its  pins.  By  using  this   protoboard,  pins  are  guided  by  wires  to  separated  sockets,  much  easier  to  manage  by  VISs  than   the  standard  pins  in  the  chips.   4.2.

Embossed  Cardboard  of  the  Chip  

Several  days  before  each  session,  a  cardboard  with  a  design  of  every  chip  is  given  to  Rafael.  This   cardboard  is  designed  using  Braille  for  the  text  and  embossed  and  coloured  lines  for  the  electrical   connections.  Different  chips  are  identified  by  Rafael,  and  he  situates  them  close  to  the  protoboard   16  

in  an  order  that  allows  him  to  remember  each  one  and  lets  him  locate  and  use  the  documentation   translated  into  Braille  of  each  chip.     4.3.

Proposed  Practical  Material  and  Instrumentation  

Standard  lab  instruments  have  been  used,  but  as  other  authors  have  done  (Fricke  and  Baehring,   1994),  one  instrument  was  specifically  designed  to  perform  the  proposed  assignments  (the  buzzer)   and  another  was  adapted  to  be  used  by  VIS  (small  modifications  on  the  protoboard).  The   proposed  instrumentation  comprises:   

A  5V  continuous  current  power  supply  used  for  TTL  logical  devices.  



A  clock  generator  device.  



A  generic  protoboard  which  allows  discerning  between  the  pins  of  a  chip  by  touch.  Small   modifications  have  been  carried  out  on  the  internal  connection  lines  of  this  protoboard,  as   well  as  on  the  ground  and  power  lines,  which  are  embossed  in  order  to  be  easily   identifiable.  To  differentiate  between  them,  power  lines  are  coloured  in  red,  while  ground   lines  are  coloured  in  black.  If  other  students  are  not  able  to  differentiate  between  colours,   the  embossed  lines  could  be  modified  using  different  textures.  



A  specially  designed  buzzer.  It  consists  of  one  terminal  that  can  be  easily  connected  to  any   of  the  protoboard  pins  in  order  to  perform  voltage  measure.  The  buzzer  volume  can  be   easily  adjustable  due  to  the  variable  impedance  that  has  been  incorporated.  A  logical  1   activates  the  buzzer,  while  a  logical  0  produces  no  sound.  The  buzzer  design  is  illustrated  in   Fig.  2a.  The  device  is  shown  in  Fig.  2b.  



Cables  with  connectors  for  the  protoboard.  



Some  chips  from  the  TTL  74LSxx  family.  The  student  is  given  special  instructions  about  the   encapsulation  and  how  to  identify  the  different  pins.    

It  is  to  be  mentioned  that  all  these  practical  material  and  instrumentation  have  been  designed  and   built  in  a  low-­‐cost  basis  because  no  extra  funds  were  given  for  this  project.  The  only  external  body   which  provided  some  help  was  ONCE:  a  printing  device  able  to  print  in  relief,  which  was  used  to   print  Braille  texts  and  schematics.    

  Fig.  2,  a):  The  Buzzer  design.                                                                                              b)  The  Buzzer    

17  

4.4.

Security  Issues  

With  regard  to  the  security  issues,  they  are  described  to  Rafael  in  the  first  week  of  the  practical   sessions.  Rafael's  workplace  is  located  close  to  the  exit  and  out  of  the  way  out.  Thus,  the  other   students  could  easily  evacuate  the  classroom  in  case  of  emergency.  Furthermore,  the  student   situated  closer  to  Rafael  would  help  him  in  his  way  out  of  the  lab.  The  equipment  used  by  Rafael   has  low  voltage  and  amperage.  And  therefore,  no  additional  security  measures  are  needed.  

5.

Description  of  the  Adapted  Assignments  for  Visually  Impaired  Students  

In  this  section,  the  different  assignments  adapted  for  VISs  will  be  described.  hey  have  been   designed  to  be  feasible  for  other  visually  impaired  students.  The  practical  sessions  are  the   following:   •

1st  Week  Laboratory  equipment  and  safety.  In  this  session,  the  lecturer  introduces  the   practical  sessions,  shows  the  lab  to  the  students,  explains  the  safety  rules  and  informs  the   students  about  the  emergency  exits.  The  student  with  the  visual  impairment  sits  in  a  special   table  close  to  the  lecturer  and  to  the  main  exit  of  the  lab.  In  an  emergency  case,  he  should   follow  the  instructions  given  by  the  lecturer.  Moreover,  the  student  that  is  closest  to  the  one   with  the  impairment  is  trained  to  help  him  to  evacuate  the  lab  if  it  is  needed.  



2nd  Week  Lab  instrumentation  introduction.  The  student  is  instructed  about  the  use  of  the   instrumentation  listed  in  Section  4.  



3rd  -­‐  4th  Weeks  Getting  used  to  the  instrumentation  and  logical  gates.  This  session  is  used  to   familiarize  the  student  with  the  instruments.  The  student  verifies  the  truth  table  of  the  several   TTL  logic  gates.  He  learns  how  to  stimulate  logic  gates.  Different  gates  are  given  to  the  student   and  he  is  asked  to  identify  each  of  the  gates,  interpreting  the  truth  table  obtained  using  the   buzzer.  



5th  Week  NAND  and  NOR  Synthesis.  The  student  applies  the  universality  of  the  NAND  and  NOR   logic  gates  simultaneously  with  his  classmates.  At  the  end  of  the  session,  he  is  able  to  easily   identify  the  logic  state  of  inputs  and  outputs  of  the  logic  gates.    



6th  Week  Combinational  I.  This  session  is  similar  to  that  performed  by  the  rest  of  the  students   using  OrCAD.  He  designs  the  solution  before  the  practical  session,  and  once  in  the  lab,  he   implements  it  and  checks  it.  



7th  Week  Combinational  II.  This  session  is  also  similar  to  that  performed  by  the  rest  of  the   students.  More  complex  problems  than  those  proposed  in  the  past  session  are  proposed  in   this  assignment.  At  the  end  of  the  session,  the  student  has  achieved  the  same  level  of   knowledge  in  digital  logic  design  as  the  other  students,  except  for  the  information  about   OrCAD.  



8th  –  9th  Weeks  Adder/Subtracter.  The  student  is  introduced  in  the  field  of  digital  arithmetic  by   the  implementation  of  a  1-­‐bit  full  adder.  This  task  is  also  scheduled  to  regular  students.  After   that,  a  2-­‐bit  full  adder  is  designed,  instead  of  the  4-­‐bit  full  adder  implemented  by  his   classmates.  This  is  due  to  the  higher  complexity  of  the  physical  designs  against  simulated   designs.  However,  the  knowledge  acquired  by  the  student  is  equivalent.  Finally,  an   adder/subtracter  using  two's  complement  is  implemented.  



10th  Week  Combinational  MSI  (Medium  Scale  Integration)  Devices  I.  The  design  of  an  ALU   requires  a  great  number  of  connections  and  components.  Therefore,  it  is  not  possible  for  a  VIS   to  tackle  with  such  a  design.  Instead,  the  student  is  asked  to  design  the  Logic  Unit  only,  using  a   18  

74LS151  multiplexer  and  a  function  generator  to  test  all  the  possibilities.     •

11th  Week  Combinational  MSI  devices  II.  The  student  designs  simple  combinational  circuits   using  a  74LS138  decoder.  The  technique  to  use  a  decoder  as  a  demultiplexer  is  also   introduced.  



12th  Weeks  Counters.  The  student  works  with  a  4-­‐bit  binary  counter  (74LS161)  and  a  decade   counter  (74LS162).  Then,  he  designs  an  8-­‐bit  decade  counter  using  two  74LS161  modules,   applying  carry  propagation.  



13th  Week  Registers.  In  this  session,  the  student  works  with  a  4-­‐bit  register  (74LS194),  which   allows  parallel  and  serial  access,  as  well  as  left  and  right  shift.  During  12th  and  13th  sessions,  the   concepts  of  synchronous  systems,  clock  edge,  and  sequential  systems  are  introduced.  



14th  Week  Flip-­‐flops.  In  order  to  understand  the  functionality  of  memory  elements,  a  JK  flip-­‐ flop  (74LS112)  is  used.  The  four  possible  inputs  of  the  flip-­‐flop  are  tested.  A  2-­‐bit  asynchronous   counter  using  a  JK  flip-­‐flop  is  also  designed.  



15th  Week  Laboratory  examination.  This  session  is  not  necessary,  as  the  student  is   continuously  evaluated.  

A  comparison  between  the  assignments  performed  by  regular  students  and  those  proposed  to   VISs  is  given  in  Table  2.  Apart  from  the  practical  sessions  in  weeks  1,  2,  and  15,  used  to  get  in   touch  with  OrCAD  and  to  examine  the  students,  they  must  complete  eight  assignments.  In  weeks  3   to  8,  a  VIS  solves  the  same  assignments  than  the  other  students.  In  week  9,  a  VIS  implements  part   of  an  ALU.  Regarding  the  counter,  a  VIS  designs  an  8-­‐bit  decade  counter  using  MSI  circuits,  instead   of  using  logical  gates  as  his  classmates.  At  the  end,  a  VIS  studies  the  flip-­‐flop  as  the  basic  memory   element,  and  uses  it  to  design  registers.  On  the  contrary,  the  rest  of  the  students  design  a  full  4  x  3   RAM  memory.  While  regular  students  perform  9  assignments  (weeks  3  to  14),  a  VIS  completes  10.   However,  the  practical  sessions  in  weeks  10th  and  14th  are  reduced  versions  of  the  equivalent   assignments  for  the  other  students  (part  of  an  ALU  in  week  10th  and  flip-­‐flops  instead  of  RAM   memory  in  week  14th).  Thus,  it  is  expected  that  a  VIS  is  able  to  acquire  a  similar  level  of  knowledge   as  the  rest  of  the  students.   Table  2.  Laboratory  course  comparison   Visually impaired student

Week Other students

Lab. equipment and safety

1

Lab. equipment and safety

Instrumentation introduction

2

CAD tool introduction

3

Simulating logic gates

4

Minimization

NAND, NOR synthesis

5

NAND, NOR synthesis

Combinational I

6

Combinational I

Combinational II

7

Combinational II

8

Adder/Subtracter

Basic logic gates

Adder/Subtracter

9

Combinational MSI I

10

Combinational MSI II

11

Counters

12

Registers

13

Flip-flop

14

19  

Arithmetic Logic Unit (ALU) Counters RAM memory

Unused

6.

15

Laboratory examination

Evaluation  

After  presenting  the  adapted  assignments,  the  evaluation  of  Rafael  with  those  assignments  is   shown.  Each  practical  assignment,  previously  translated  into  Braille,  was  proposed  to  Rafael  at   least  two  weeks  in  advance.  Thus,  Rafael  prepared  the  formulas  and  the  resolution  of  each   practical  before  coming  to  the  lab.  The  qualification  of  each  practical  was  obtained  using  several   principles  such  as  attendance  to  the  practical  sessions,  theoretical  development  of  each  practical,   implementation  (in  particular,  good  organization,  cleanness,  and  tidiness  of  the  design  in  OrCAD),   and  finally  and  most  importantly,  the  correctness  of  the  solution  provided.  These  principles  were   applied  to  all  the  students,  both  VIS  and  non-­‐VIS.  Every  student  is  awarded  several  points   depending  on  their  attendance,  on  the  theoretical  development  of  each  practical,  on  the   description  of  the  implementation  (taking  into  account,  the  organization,  cleanness,  and  tidiness   of  the  implementation  of  every  practical),  and  above  all,  on  the  solution  they  provide.  In  order  to   pass  the  subject,  students  have  to  obtain  at  least  50%  in  each  of  the  proposed  assignments.   6.1.

Examination  Results  

According  to  those  principles,  Rafael  obtained  an  overall  qualification  of  9.65  points  (out  of  10),   which  is  highly  remarkable.  Rafael  was  an  outstanding  student  and  obtained  a  qualification  grade   of  “A”.  The  score  for  each  practical  is  shown  in  Tab.  3.  There,  “Partial  Score”  stands  for  the  score   obtained  by  Rafael  in  every  practical;  every  practical  is  weighted  using  “Practical  Weight”  to  sum   up  the  final  value;  “Practical  Score”  is  the  value  obtained  by  Rafael  weighted  in  order  to  compose   the  “Global  Score”.  “Practical  Score”  and  “Global  Score”  are  ranged  from  0  to  10.  In  order  to  make   a  comparison  with  other  students,  several  statistics  about  their  evaluation  are  given.  47%  of  the   students  failed  (obtained  a  result  below  5  in  any  of  the  assignments).  27%  of  the  students  passed   the  assignments  obtaining  a  “C”  grade  (in  the  range  of  5  to  7).  11%  of  the  students  received  a  “B”   grade  (ranging  from  7  to  9),  and  15%  of  them  were  awarded  an  “A”  grade  (above  9).  No  student   obtained  an  “A+”  grade.  As  can  be  deduced  from  the  results  stated  previously,  most  students  pass   the  assignments,  however,  only  few  of  them  could  obtain  such  a  high  grade,  and  Rafael  was  one  of   those  students  who  obtained  an  “A”  grade.   Table  3.  Evaluation  of  the  VIS  Teaching  Results   Adapted assignments for the Visually Impaired Student

Partial Score

Practical Weight

Assignment Score

Lab. equipment and safety







Instrumentation introduction







Basic logic gates

100 %

5%

0.5

NAND, NOR synthesis

100 %

5%

0.5

Combinational I

100 %

5%

0.5

Combinational II

90 %

10 %

0.9

Adder/Subtracter

100 %

15 %

1.5

Combinational MSI I

100 %

10 %

1.0

Combinational MSI II

90 %

10 %

0.9

Counters

90 %

15 %

1.35

Registers

100 %

15 %

1.5

20  

Flip-flop Global score (over 10)

6.2.

100 %

10 %

1.0 9.65

Teaching  Assistance  

A  VIS  requires  much  more  guidance  than  a  non-­‐VIS:  for  instance,  a  VIS  can  plug  incorrectly  a  cable   into  a  socket  (not  properly  plugged,  or  plugging  it  in  a  nearby  socket,  etc.)  It  is  also  very  common   to  guide  the  finger  of  a  VIS  to  the  first  socket  of  each  chip.  The  professors  were  advised  in  advance   by  Rafael  and  his  tutors  about  some  of  these  inconveniences.  Due  to  that,  a  classmate  and  an   assistant  professor  were  assigned  to  help  him.  In  most  of  the  assignments,  Rafael  required  a   constant  assistance  from  the  assistant  professor.  Most  times,  the  help  required  was  that  of  taking   his  finger  to  the  first  socket  of  each  chip  used  in  the  solution.  Sometimes  he  also  asked  for  help   when  debugging.  In  this  task,  most  of  the  mistakes  were  due  to  wrong  insertions  of  the  cable  into   the  sockets:  he  did  not  plug  completely  the  connector  into  the  socket.  Rafael  required  little   assistance  from  the  assistant  professor  only  in  the  first  practical  session,  which  was  the  easier  one.   Thus,  his  behavior  about  asking  for  help  from  the  professor  is  similar  to  the  one  of  his  classmates:   the  only  difference  was  that  his  requests  for  help  was  more  continuous.  

7.

Conclusions  and  Enhancements  

Three  main  aspects  of  this  work  are  to  be  emphasized  in  this  section.  At  first,  the  integration  of  a   VIS  with  his  classmates.  At  second,  the  learning  process  of  the  student.  Finally,  the  lecturer   assistance,  which  is  required.  Finally,  some  enhancements  are  suggested  to  improve  this  work.   VISs  are  able  to  carry  out  their  work  at  the  same  time  and  in  the  same  location  as  the  other   students.  The  fact  that  these  students  are  not  treated  differently  than  their  peer  helps  minimize   any  perception  of  preferential  or  discriminatory  treatment.  The  opposite  was  also  achieved:  most   non-­‐VISs  showed  interests  in  performing  their  assignments  using  the  same  platform  that  Rafael   used.   The  learning  process  of  a  VIS  has  been  designed  to  be  easily  affordable.  In  particular,  the   experience  with  Rafael  has  been  highly  positive  as  the  student  has  notably  assimilated  the   knowledge  required  in  this  course,  mainly  due  to  the  high  motivation  he  used  to  face  the  practical   sessions.   On  the  contrary,  the  main  weakness  of  this  system  is  that  the  assistance  of  an  additional  lecturer  is   required.  During  the  first  five  weeks,  one  sole  lecturer  is  able  to  manage  the  situation.  However,   since  week  6th,  regular  students  require  much  attention  from  the  lecturer,  mainly  due  to  learning   problems  with  OrCAD.  Thus,  a  second  lecturer  to  assist  the  VIS  is  needed.  In  general,  to  count  on   two  lecturers  since  the  beginning  of  the  course  is  advisable.  

Acknowledgements   The  authors  would  like  to  thank  Prof.  Dr.  Manuel  Hernández  Calviño  for  his  inestimable  support   and  interest.  This  work  was  partly  supported  by  the  Xilinx  University  Program  and  the  Vice   Chancellor  of  European  Higher  Education  Area  and  Undergraduate  Degree  Programs.  

References   W.A.  Barry,  J.A.  (1994)  Gardner,  and  T.V.  Raman,  Accessibility  to  Scientific  Information  by  the   Blind:  Dotsplus  and  ASTeR  could  make  it  easy,  in  Proceedings  of  the  1994  CSUN  Conference  on   21  

Technology  and  Persons  with  Disabilities,  USA.   E.  Bel  and  E.  Bradburn  (2008),  Reframing  Teachers'  Conceptions  of  Accessible  E-­‐Learning  Designs,   in  Proceedings  of  the  IEEE  International  Conference  on  Advance  Learning  Technology.  1023-­‐1027.   Santander,  Spain.   Benyon  D.,  Turner  P.,  and  Turner  S.  (2005),  Designing  for  Interactive  Systems,  Addison  Wesley  104;   404-­‐417.   J.  Fricke  and  H.  Baehring  (1994),  Design  of  a  tactile  graphic  I/O  tablet  and  its  integration  into  a   personal  computer  system  for  blind  users,  Electronic  Proceedings  of  the  EASI  High  Resolution   Tactile  Graphics  Conference.     Graham  D.,  Benest  I.,  and  Nicholl  P.  (2007)  Interaction  Design  For  Visually  Impaired  Students:   Initial  Findings,  8th  Annual  Conference  on  the  Teaching  of  Computing.  Southampton,  UK.     G.  Gray  and  S.M.  Wilkins  (2005),  A  snapshot  of  2003-­‐4:  blind  and  partially  sighted  students  in   Higher  Education  in  England  and  Northern  Ireland,  British  Journal  of  Visual  Impairment:  23(1),  pp.   4—10.   M.  Harrison,  C.  Stockton,  and  E.  Pearson,  (2008)  Inclusive,  Adaptative  Design  for  Students  with   Severe  Learning  Disabilities,  in  Proceedings  of  the  IEEE  International  Conference  on  Advance   Learning  Technology.  1023-­‐1027.  Santander,  Spain.   J-­‐Y.  Huang,    M-­‐C  Tung,  M.W.  Kuei,  and  K-­‐J.  Chang,  (2004)  A  user  interface  for  the  visual-­‐ impairment,  Displays:  25(4),  pp.  151-­‐157.   Freedom  Scientific,  Inc.  JAWS  for  Windows  Headquarters  Website   http://www.freedomscientific.com/jaws-­‐hq.asp  .     M.J.C.  Mommers,  (1975)  Some  factors  related  to  Braille  reading  by  blind  children  in  elementary   schools,  The  Louis  Braille  British  conference  on  research  into  reading  and  listening  by  the  visually   handicapped,  Cambridge,  UK,  pp.  26-­‐46,  1975   H.  Pyy,  C.  O'Donnell,  and  F.  Monteiro  de  Carvalho  (2007),  Virtual  Magnifying  Glass  3.3,   http://magnifier.sourceforge.net,  1999-­‐2007.   A.  Rodríguez-­‐Ascaso,  et  al.  (2008)  Personalised  support  for  students  with  disabilities  based  on   psycho-­‐educational  guidelines,  in  Proceedings  of  the  IEEE  International  Conference  on  Advance   Learning  Technology.  1021-­‐1022.  Santander,  Spain.   S.M.  Rogow,  (1987)  The  ways  of  the  hand:  a  study  of  hand  function  among  blind  and  visually   impaired  multihandicapped  children  and  adolescents,  The  British  Journal  of  Visual  Impairment:   5(2),  pp.  59-­‐61.   S.M.  Rogow,  (1990)  The  development  of  hand  function  in  young  visually  impaired  children,   Realities  and  opportunities:  Early  Intervention  with  Visually  Handicapped  Infants  and  Children,   Proceedings  of  the  International  Symposium  of  Visually  Handicapped  Infants  and  Young  Children,   American  Foundations  for  the  Blind.   Royal  National  Institute  for  the  Blind  (RNIB)  National  Centre  for  Tactile  Diagrams  (NCTD)   \url{http://www.nctd.org.uk   C.  Stovall  and  W.E.  Sedlacek,  (1983)  Attitudes  of  male  and  female  university  students  towards   students  with  different  physical  disabilities,  Journal  of  College  Student  Personnel:  24(4),  pp.  325— 330.   R.  Tubiana,  J.M.  Thomine,  and  E.  Mackin,  (1984)  Examination  of  the  hand  upper  limb,  Philadelphia:   22  

W.B.  Saunders.  Philadelphia,  USA.

23  

Design  of  an  autonomous  and  cooperative   robots  laboratory      

Guillermo  González-­‐de-­‐Rivera,  Ricardo  Ribalda,  Angel  de  Castro,  Javier  Garrido  

  Dept.  Ingeniería  Informática.  Escuela  Politécnica  Superior.   Universidad  Autónoma  de  Madrid.   C/  Francisco  Tomás  y  Valiente  11.  28049  Madrid  (Spain).     {guillermo.gdrivera, ricardo.ribalda, angel.decastro, javier.garrido}@uam.es

 

Abstract   This   paper   proposes   a   new   hardware/software   platform   designed   for   laboratory   practices   of   autonomous  robots.  The  course  is  offered  in  both  Computer  and  Telecommunications  Engineering,  but   is  flexible  enough  to  be  offered  in  other  technical  degrees.  The  open  design  of  the  platform  allows  the   students  to  focus  their  work  either  in  software  or  hardware  aspects.  The  offered  hardware  platform  is   enough  for  allowing  practices  in  which  only  the  software  is  changed,  focusing  on  algorithm  design  and   software  tests,  using  almost  any  programming  language  under  multiple  OS.  On  the  other  hand,  students   can  also  focus  on  the  hardware  design,  developing  and  implementing  new  peripherals  with  sensors  or   hardware   controllers,   and   forgetting   about   software   integration   problems.   This   is   possible   thanks   to   a   set  of  easy  rules  for  rapid  software  integration  provided  in  the  platform.  Using  this  new  platform  a  set  of   new  competences  are  available.      

1. Introduction   This   paper   proposes   the   laboratory   practices   of   a   course   in   robotics   offered   in   the   Computer   Engineering  degree  of  the  Universidad  Autonóma  de  Madrid  (Spain).     This  is  an  elective  course  of  the  last  course  of  the  degree.  It  tries  to  complement  the  previously   acquired   knowledge   with   some   additional   formation   in   control   and   electronics,   offering   the   possibility  to  design  and  implement  a  HW-­‐SW  project.   In  order  to  show  the  acceptance  among  students  in  Computer  Science,  Fig.  1  shows  the  number  of   students   registered   in   the   proposed   course   in   robotics   compared   to   the   average   number   of   students  registered  in  the  other  possible  elective  courses.  Although  only  students  in  the  last  two   years   can   register   in   elective   courses,   the   percentage   is   with   respect   to   the   total   number   of   students  in  the  Computer  Science  degree.  The  proposed  course  was  about  2%  below  the  rest  of   courses   in   the   first   academic   years,   but   has   been   in   the   average   or   even   above   the   average   during   the   last   5   years.   We   have   to   take   into   account   that   this   improvement   is   in   spite   of   the   strong   laboratory   content   in   mechatronics   and   electronics,   which   are   usually   not   well   accepted   among   Computer  Science  students.   Although  the  course  includes  both  theoretical  and  practical  contents,  the  practical  part  has  more   weight.  The  main  element  of  these  practices  is  a  new  robotics  design  platform.  This  platform  is  the   result  of  a  series  of  research  projects  developed  since  2005.  The  robotics  course  started  in  1999-­‐ 2000.   In   that   first   year,   students   had   to   develop   their   own   simple   control   board   for   the   robot.   Given   the   profile   of   the   students,   with   not   much   expertise   in   electronics   design,   few   groups   (formed  by  couples)  obtained  a  complete  and  working  (although  simple)  robot.     In   order   to   solve   this   problem,   the   next   year   a   development   control   board   designed   ad-­‐hoc,   24  

GP_Bot   (Glez   de   Rivera   et   al,   2002),   based   on   a   Motorola   8-­‐bits   microcontroller   was   used,   each   group  using  their  own  unit.    

Fig.  1:  Comparative  of  %  of  students  in  elective  courses   For   the   initial   specification,   it   was   established   that   the   new   system   should   be   a   flexible,   general   purpose  and  low  cost  one.  It  should  have  enough  resources  for  managing  the  elements  of  a  basic   robot,  such  as  motors,  infrared  sensors,  switches,  etc.  On  the  other  hand,  it  should  have  enough   processing   capability   and   memory   for   managing   artificial   intelligence   algorithms,   creating   maps   of   its  environment,  etc.  These  last  objectives  should  be  studied  carefully,  because  if  not  the  design   could  be  much  more  complex  and  expensive.   The   solution   was   to   combine   the   flexibility,   size   and   low   cost   of   a   microcontroller   with   the   processing   capabilities   of   a   PC.   The   link   between   both   elements   is   a   radio   module   that   enables   bidirectional   communication   between   both   processors.   In   this   way,   the   PC   is   in   charge   of   the   complex  processing  tasks,  while  the  microcontroller,  which  is  on-­‐board  in  the  robot,  manages  the   motors   and   sensors.   Anyway,   the   system   allows   to   use   the   microcontroller   in   an   autonomous   way   if  no  complex  processing  is  necessary.   Using   this   platform   all   the   groups   obtained   a   working   robot   programming   the   GP_Bot   platform   and  developing  different  algorithms.     During  the  next  years,  the  designed  robots  have  evolved  and  the  GP_Bot  platform  was  not  enough   in   all   cases.   Therefore,   in   2005-­‐06   the   proposed   platform,   GdRBot   (Glez   de   Rivera   et   al,   2005a;   Glez  de  Rivera  et  al,  2005b),  started  to  be  used.  It  is  quite  more  complex  and  ambitious.   The  GdRBot  platform,  shown  in  Fig.  2,  consists  on  a  set  of  generic  robots  that  can  be  controlled   either  remotely  or  locally  by  a  set  of  heterogeneous  devices.  Furthermore,  it  allows  adding  new   sensors  or  actuators  to  the  robots  in  a  very  simple  way.  The  main  contribution  of  the  platform  is   allowing   the   student   to   create   complex   algorithms   which   can   be   run   in   the   robot,   using   any   programming   language   with   almost   no   limitation,   in   the   same   way   that   would   be   used   for   programming  a  simulator.      

25  

Fig.  2:  GdR-­‐Bot  Platform  

2. Platforms  description   2.1    GP_Bot  platform   Basic  description   The   GP_Bot   platform   is   basically   formed   by   two   blocks:   the   control   unit   (CPU)   and   the   external   interfaces,  as  shown  in  Fig.  3.   The  control  unit  is  the  Motorola  MC68HC908GP32  8-­‐bit  microcontroller.  Its  architecture  is  based   on   the   M68HC08   family,   being   optimized   for   C   compilers   and   control   applications.   It   is   completely   static   and   includes   design   options   for   low   power.   It   can   work   in   Monitor   mode,   in   which   the   internal   resources   can   be   accessed   from   a   PC,   including   registers   and   memory   (both   Flash   and   RAM)   content,   and   even   allowing   step-­‐by-­‐step   execution   of   the   stored   program,   which   is   very   useful  for  tests  and  debugging.  

Fig.  3:  GP_Bot  platform   A  QFP  (quad  flat  pack)  package  of  44  pins  was  chosen,  allowing  a  reduced  size  board  (70  x  65  mm)   and   the   maximum   number   of   I/O   for   the   user.   The   microcontroller   is   the   core   of   a   board   with   the   following  characteristics:   26  



MC68HC908GP32  microcontroller  with  a  crystal  at  9.8304  MHz.  



RS-­‐232  driver  (MAX232).  



Radio  communications  module  using  the  433  MHz  band.  



Power  supply  of  5  V.  



Input  for  the  Monitor  cable  connected  from  the  PC.  



External  access  to  all  the  I/O  pins  of  the  microcontroller.  

As   a   complement,   an   auxiliary   board   was   designed   which   is   an   interface   between   the   GP_Bot   board  and  some  transducers,  such  as  motors,  infrared  sensors  and  switches.  It  also  has  some  I/O   general  purpose  pins  for  the  designer.  The  size  of  this  auxiliary  board  is  the  same  as  the  GP_Bot,   and  the  connectors  are  located  in  the  same  position,  creating  a  compact  and  small  set  with  both   boards.  Its  main  characteristics  are:   •

Interface  with  up  to  4  dc  motors  or  2  step-­‐by-­‐step  motors.  



Direct  connection  with  4  infrared  sensors,  including  their  polarization.  



8  analog  inputs,  which  can  also  be  configured  as  digital  I/O.  



The  motors  can  be  powered  with  voltages  different  from  the  digital  voltage.  

The  driver  for  the  motors  is  based  in  two  L293D  chips,  while  the  infrared  driver  is  designed  for  the   connection  of  4  CNY70  or  equivalent  sensors.  Each  infrared  sensor  can  be  read  from  a  digital  or   analog  pin.  This  allows  the  system  to  distinguish  between  more  than  two  colors.   Laboratories  contents   During  the  course,  a  series  of  laboratory  practices  are  held  ranging  from  the  basics  of  the  platform   to   complex   tasks.   As   an   example,   the   laboratories   contents   of   the   2001/02   academic   year   are   shown:   •

Laboratory  1   o First  approximation  to  some  basic  sensors:  polarization,  tests  and  measurements.   o GP_Bot  board  presentation.  Compiler  and  debugging  tools.   o Interface  with  the  PC.   o Design  and  implementation  of  a  mobile  robot.   o Simple  problem  solution.  



Laboratory  2   o Radio  communication  between  the  robot  and  a  PC.  



Laboratory  3   o Control  algorithms  design:  application  to  the  control  of  dc  motors.  



Laboratory  4   o Basics   of   artificial   intelligence:   application   to   the   creation   of   a   map   of   the   environment.  

Acquired  competences   •

Analysis  and  interpretation  of  datasheets.   27  



Asynchronous  serial  communication  protocol  RS-­‐232.  



Implementation  of  algorithms  in  real  systems.  



Low  complexity  control  problems  solution  using  embedded  systems.  

2.2    GdR_Bot  platform   Basic  description   The   GdRBot   platform   consists   in   a   series   of   generic   PC-­‐based   robots   and   their   basic   control.   These   robots  can  be  either  controlled  remotely  or  locally  by  a  heterogeneous  set  of  devices.  They  also   allow  the  easy  integration  of  new  sensors  or  actuators.  The  main  contribution  is  that  the  student   can   develop   high   level   complex   algorithms   to   be   executed   in   the   robot,   while   the   basic   control   software   (direct   control   of   motors   and   sensors)   is   already   part   of   the   offered   platform.   These   algorithms   can   be   developed   in   almost   any   programming   language,   exactly   the   same   as   if   a   simulator  were  used.   Hardware  description:  the  only  requirement  of  the  hardware  platform  is  to  be  able  to  run  Linux.   Multiple  hardware  platforms  could  be  used.  However,  the  students  are  provided  with  a  working   hardware  platform,  which  is  shown  in  Fig.  4a.  Its  main  control  device  is  a  VIA  EPIA  motherboard,   model   TC10000   at   1   GHz   with   512   Mbytes   of   RAM.   This   is   enough   for   almost   any   algorithm   the   students   can   develop   in   a   course.   The   board   includes   connections   via   Ethernet,   Wifi,   Bluetooth,   GSM  modem,  and  any  Linux  supported  device  can  also  be  added.  The  list  of  available  sensors  in   the   platform   includes   a   video   camera,   ultrasonic   and   infrared   detectors,   and   diverse   switches   and   buttons.   Most   of   the   available   sensors   are   controlled   in   a   distributed   architecture   using   GP_Bot   boards   connected   to   the   GdRBot   using   a   serial   protocol   (sensor   server,   Glez   de   Rivera   et   al,   2005c).  In  this  way,  the  central  controller  and  the  sensors  controllers  can  be  separated:  the  central   controller   just   sends   requests   and   receives   measurements.   As   a   result,   any   other   sensor   can   be   included  with  the  only  condition  of  being  compliant  with  the  serial  protocol.  Regarding  actuators,   there  are  two  motored  wheels  and  a  free  wheel.  The  motored  wheels  use  a  step-­‐by-­‐step  motor   controlled  by  a  dedicated  processor.  The  complete  robot  is  mounted  on  an  aluminium  structure   and  powered  by  a  12  V  plumb  battery.  The  robot  is  quite  compact,  with  a  total  size  of  20x30  cm   approximately.  

 

a.  Based  on  EPIA  

b.  Based  on  XScale   Fig.  4:  Two  different  hardware  platforms   28  

In  the  last  academic  year,  2008/09,  a  new  HW  design  has  been  incorporated  (see  Fig.  4b)  with  the   following  characteristics:     • Device  based  on  the  Intel  XScale  PXA255  Microprocessor   • Sensorial  servers:  GP_Bot  platform   • Network  interfaces:  Wireless,  Ethernet,  USB  port,  and  Serial  ports.   • Geared  DC  (Faulhaber  1624E012S  model).  Motor  driver  TLE4207G.   • Two  infrared  sensors  (Sharp  GPD2D12).   • Two  ultrasound  sensors  (SRF04).   • 6  V  battery.   Software   description:   the   VIA   EPIA   motherboard   runs   Linux,   and   a   web   server   is   mounted   on   it,   which   is   in   charge   of   receiving   actuation   or   sensing   requests   via   XML-­‐RPC.   In   order   to   use   the   robot,   any   XML-­‐RPC   compliant   system   can   be   used.   The   platform   provided   to   the   students   includes   a   client   and   server   examples.   The   client   sends   requests   and   supervises   the   servers   through   XML-­‐RPC   calls   (Glez   de   Rivera   et   al,   2009).   The   server   is   always   installed   in   the   robots,   while  the  client  can  either  be  installed  in  a  robot  or  any  other  system.  Clients  installed  on  robots   are  used  for  self-­‐management  tasks,  such  as  avoiding  collisions,  and  for  cooperative  tasks.   Laboratories  contents   The  laboratories  of  the  course  includes  4  practices.  A  basic  schedule  is  proposed,  which  includes   most   elements   but   not   in   much   depth.   Students   can   choose   to   change   their   schedules   to   get   in   further  depth  in  some  aspects.  The  basic  schedule  is  as  follows:     • Practice   0.   Introduction   to   the   GdRBot   platform.   Using   a   basic   robot,   students   start   to   control   it   using   high   level   languages   such   as   Java   or   C#.   The   basics   of   XML-­‐RPC   calls   are   studied.   • Practice   1.   Adding   a   new   sensor   using   the   GP_Bot   board.   Students   add   a   new   sensor   using   the   GP_Bot   board   as   its   direct   controller.   The   basics   of   microcontroller   programming   are   learnt.   • Practice   2.   Integration   of   the   sensor   in   the   platform.   Once   the   student   has   controlled   a   sensor   using   the   GP_Bot,   the   sensor   subsystem   is   integrated   in   the   robot   developing   a   CGI   accessible   via   web.   The   student   learns   how   to   program   XML-­‐RPC   functions   and   how   to   create  CGIs.   • Practice   3.   Cooperative   tasks.   A   task   that   demands   a   cooperative   behavior   is   proposed,  

forcing   the   interaction   between   robots   that   use   the   sensors   previously   integrated.   The   objective  is  to  make  the  student  realize  about  the  complexity  of  cooperative  algorithms.  

Acquired  competences   •

Analysis  and  interpretation  of  datasheets.  



Criteria   for   choosing   the   option   that   better   solves   a   specific   problem.   The   previous   platform  had  all  the  necessary  components  for  the  laboratories.  In  the  new  platform,  the   student  must  choose  the  most  appropriate  components.  



Ability   to   solve   problems   that   appear   in   the   physical   implementation   that   were   not   considered   in   the   theoretical   design.   During   the   physical   implementation   can   appear   problems   not   considered   in   the   theoretical   design,   such   as   signal   interference,   external   29  

noise,  impedance  coupling,  etc.  The  student  must  be  able  to  solve  them.   •

Ability   to   choose   between   different   communication   protocols   and   to   use   them.   In   the   new   platform,   students   have   more   communication   options   (Ethernet,   Wifi,   Bluetooth,   GSM   MODEM,  ZigBee,  etc),  so  they  must  choose  the  best  solution  for  their  problem.  



Implementation  of  mid-­‐complexity  algorithms  in  real  systems.  The  algorithms  are  not  only   simulated,  but  also  implemented  in  physical  embedded  systems.  



Ability   to   solve   mid-­‐complexity   control   problems,   based   on   embedded   systems   and   cooperative  systems.  The  new  platform  has  an  architecture  that  allows  to  solve  problems   using  cooperative  systems.  

3. Results   Since  the  new  platform  is  being  used,  the  complexity  of  the  laboratory  practices  has  increased,  but   also   the   competences   acquired   by   the   students.   Table   1   shows   the   number   of   students   registered   in  the  proposed  course  and  the  percentage  of  students  that  passed  it.  In  spite  of  the  increase  in   the  laboratories  complexity,  the  number  of  students  has  kept  on  growing  and  the  percentage  of   success   remains   in   satisfactory   levels.   As   it   can   be   seen,   the   percentage   of   success   was   always   above  80%.   Table  1:  Academic  success  of  the  course  Robotics.    

Academic   Year   Computer  Science   Eng.  

09/00   00/01   01/02   02/03   03/04   04/05   05/06   06/07   07/08  

#    Students    

29  

33  

39  

34  

62  

93  

64  

62  

72  

%  Passed  

96,6  

88,8  

92,3  

100  

87,1  

86  

100  

80,6  

84,7  

4. Conclusions   Using  the  proposed  GdRBot  platform,  students  can  learn  the  theoretical  and  practical  aspects  of   complex   robot   tasks.   Almost   any   programming   language   and   OS   can   be   used   during   the   course.   Thanks   to   the   new   platform,   which   is   complete   but   open   to   new   additions,   the   course   can   be   focused  either  in  software  or  hardware  development,  or  a  mixture  of  both.   Regarding  the  acquired  competences  for  the  European  Higher  Education  Area  (EHEA),  they  have   been   notably   improved   in   comprehension   and   application   aspects   with   respect   to   the   previous   laboratories  model.   The   academic   results   after   changing   the   platform   have   not   changed   significantly   in   spite   of   the   important  increase  in  the  complexity  level  of  the  laboratories.  

References   G.   Glez   de   Rivera,   G.,   López-­‐Buedo,   S.,   González,   I.,   Venegas,   C.,   Garrido,   J.,   Boemo,   E.   (2002).   GP_BOT:   Plataforma   Hardware   para   la   enseñanza   de   Robótica   en   Ingeniería   Informática.   In   Tecnologías   Aplicadas   a   la   Enseñanza   de   la   Electrónica   (TAEE'02).   Las   Palmas   de   Gran   Canaria,   Spain,  pp.  67-­‐70.   Glez.   de   Rivera,   G.,   Ribalda,R.,   Colas,   J.,   Garrido,   J.   (2005a).   A   Generic   Software   Platform   for   Controlling   Collaborative   Robotic   System   using   XML-­‐RPC,   In   Proceedings   of   IEEE/ASME   International   Conference   on   Advanced   Intelligent   Mechatronics   (AIM   2005).   Monterrey   (USA),   30  

ISBN:  0-­‐7803-­‐9047-­‐4,  pp.  1336-­‐1341.     Glez.   de   Rivera,   G.,   Ribalda,   R.,   Koroutchev,   K.,   Colas,   J.,   Garrido,   J.   (2005b).   Hardware   Independent   Architecture   for   Autonomous   Colaborative   Agents,   In   Proceedings   of   2nd   International   Conference   on   Informatics   in   Control,   Automation   &   Robotics   (ICINCO-­‐2005),   Barcelona,  Spain,  pp.  459-­‐462.   Glez.  de  Rivera,  G.,  Ribalda,  R.,  Colás,  J.,  Garrido,  J.  (2005c).  Plataforma  genérica  para  desarrollos   basados  en  agentes  móviles.  Actas  de  Ubiquitius  Computing  &  Ambient  Intelligence  (UCAmI-­‐05),   Granada,  Spain,  pp.  363-­‐369.   Glez.   de   Rivera,   G.,   Ribalda,   R.,   de   Castro,   A.,   Garrido,   J.(2009).   Performance   of   an   open   multi-­‐ agent  remote  sensing  architecture  based  on  XML-­‐RPC  in  low-­‐profile  Embedded  Systems.  Proc.  of   7th   International   Conference   on   Practical   Applications   of   Agents   and   Multi-­‐Agent   Systems   (PAAMS’09),  Y.  Demazeau,  J.  Pavón,  J.M.Corchado,  J.  Bajo,  Advanced  in  Intelligen&  Soft  Computing   vol  55,Salamanca,  Spain,  ISBN:  978-­‐3-­‐642-­‐004867-­‐2,  pp.  520-­‐528.  

31  

Database  design  using  a  web-­‐based  e-­‐learning   tool   Josep  Soler  (1),  Imma  Boada  (1),  Ferran  Prados  (1),  Jordi  Poch  (1),  Ramon  Fabregat  (2)    (1)  

Department  of  Computer  Science  and  Applied    Mathematics.  University  of  Girona   Campus  Montilivi.  Edificio  P4.  17071  Girona   (josep.soler,imma.boada,ferran.prados,[email protected] (2

)  Institute  of  Informatics  and  Applications.  University  of  Girona   Campus  Montilivi.  Edificio  P4.  17071  Girona   [email protected]

Abstract   ACME-­‐DB  is  a  web-­‐based  e-­‐learning  tool  for  skills  training  and  automatic  assessment  of  main  database   course  topics.  This  tool  is  composed  of  a  set  of  correction  modules  each  one  designed  for  a  specific  type   of  problems.  Among  them,  entity-­‐relationship  diagrams,  relational  database  schemas,  normalization,   relational  algebra  and  SQL.  In  this  paper  we  describe  how  ACME-­‐DB  has  been  used  in  teaching/learning   of  database  design  in  our  university  and  how  it  has  influenced  in  the  academic  results.  

1.    Introduction   All  the  computing  disciplines  specified  by  the  ACM/IEEE/AIS  curricula  provide  the  general   guidelines  of  a  database  course  (http://www.acm.org/education/curricula-­‐recommendations)  .   The  issue  of  how  to  meet  these  guidelines  is  not  addressed  and  different  studies  have  been   carried  out  to  analyze  the  contents  covered  in  the  database  courses.  The  majority  of  educators   (Robert  et  al.,  2000;  Springsteel  et  al.,  2000;  Robert  &  Ricardo,  2003)  agree  that  they  spent  the   most  time  of  the  course  on  main  topics  of  database  development  stages,  i.e.  database  design,   relational  model  and  Structured  Query  Language  (SQL).    These  topics  are  part  of  the  core  of   computing  disciplines  and  are  extensively  covered  in  leading  database  textbooks  (Elmasri  &   Navathe,  2007;  Connoly  &  Begg,  2005;  Date,  2004;  Silberschatz,  2005).  Despite  not  being  a  general   consensus  in  the  database  course  contents  the  majority  of  them  have  as  the  main  objective  to   introduce  students  to  main  database  topics  and  take  them  through  all  stages  of  database   development.  But,  as  important  as  the  course  contents  is  the  teaching  methodology  applied  by   educators.  In  general,  teachers  agree  that  students  have  to  receive  a  solid  background  in  concepts,   introduced  in  teaching  classrooms,  as  well  as  practical  development  of  database  skills.  In  this   context,  web-­‐based  teaching  and  learning  resources  have  become  fundamental  and  a  valuable   tool  to  complement  and  support  teaching  classrooms  (blended  learning).  However,  although   current  e-­‐learning  tools  are  able  to  cover  the  majority  of  database  course  contents,  it  is  difficult  to   find  a  unique  environment  that  supports  all  of  them  and  also  the  automatic  correction  of   exercises.     To  overcome  this  limitation  in  2003  we  started  to  develop  the  ACME-­‐DB  environment  which  is   part  of  the  ACME1  platform  (Soler  et  al,  2002).  ACME-­‐DB  is  a  web-­‐based  e-­‐learning  tool  for  skills   training  and  automatic  assessment  of  main  database  course  topics.  Its  main  feature  is  the   automatic  correction  of  database  exercises.  ACME-­‐DB  is  composed  of  a  set  of  correction  modules   each  one  designed  for  a  specific  type  of  problems.  Among  them,  entity-­‐relationship  diagrams,   relational  database  schemas,  normalization,  relational  algebra  and  SQL.  Moreover,  it  provides   1

 The  acronym  ACME  stands  for  the  catalan  for  “Continuous  Assessment  and  Improvement  of  Skills”  

32  

support  to  different  teaching  requirements  such  as  continuous  assessment,  student  tracking,  etc.   ACME-­‐DB  is  used  in  our  university  as  a  complement  to  traditional  classroom  database  courses  in   Computer  Science  degrees  since  the  2004/2005  course.  Since  then  the  number  of  activities  has   been  increased  leading  to  an  improvement  on  the  academic  results.     The  goal  of  this  paper  is  to  describe  the  experience  of  applying  ACME-­‐DB  in  database  design  of  our   university  and  how  it  has  influenced  in  the  academic  results.  The  paper  is  structured  as  follows.  In   Section  2,  related  work  is  presented.  In  Section  3,  we  present  the  ACME-­‐DB  environment.  In   Section  4,  we  describe  how  ACME-­‐DB  has  been  used  in  teaching/learning  of  database  design  and   we  present  the  obtained  results.  Finally,  in  Section  5,  conclusions  and  future  work  are  presented.  

2.    Related  work   In  this  section  we  give  a  quick  overview  of  the  database  design  contents  and  a  description  of  the   teaching  methodology  applied  in  our  university.  Afterwards,  we  briefly  review  the  different  e-­‐ learning  tools  described  in  the  literature  to  support  teaching  and  learning  contents  in  database   design.     2.1.  Teaching  Database  design     Database  design  is  one  of  the  main  topic  of  any  introductory  database  course.  The  creation  of  a   database  requires  a  design  process  to  define  types,  structures  and  constraints  for  the  data  to  be   stored  in  the  computer.  This  process  can  be  summarized  in  four  main  steps:     

First,  the  analysis  of  the  requirements  of  the  real  world  situation  that  has  to  be   represented.  



Second,  the  definition  of  the  conceptual  schema  that  gives  a  high  level  description  of  the   database  and  the  requirements  that  data  must  satisfy.  The  most  popular  approach  for   conceptual  schema  designing  is  the  Entity-­‐Relationship  (ER)  model  (Chen,  1976).  The  ER   model  considers  the  world  as  a  set  of  entities  and  the  relationships  between  them.  



Third,  the  definition  of  a  logical  design  which  gives  a  high  level  schema  implementable  on  a   database  management  system.  The  relational  model  (Codd,  1970)  is  the  most  common   data  model  used  for  database  management.  It  represents  the  database  as  a  collection  of   relations  where  each  relation  resembles  a  table  of  values.  To  create  relations  with  no   redundant  data,  with  an  efficient  data  organization  and  that  can  be  modified  in  a   consistent  and  correct  manner,  a  normalization  process  is  applied.      



Fourth,  the  definition  of  a  physical  design  which  represents  the  internal  data  storage   details.  

 

When  all  these  concepts  are  acquired,  students  have  the  knowledge  required  to  implement  a   relational  database  schema  using  any  one  of  the  available  Database  Management  System  (DBMS).     2.2.  Database  design  in  our  University   The  methodology  applied  in  the  database  courses  of  our  university  is  the  following.  There  are   lecture  sessions,  where  the  teacher  introduces  main  theory  concepts  and  laboratory  sessions   where  exercises  are  assigned  to  the  students  to  put  in  practice  these  concepts.  These  exercises  are   related  with  real  cases  and  take  student  trough  the  different  stages  of  the  design  process.  To  star,   the  student  creates  conceptual  models  for  small  problems.  Once  these  concepts  are  acquired   33  

more  complex  exercises  are  assigned.  The  next  step  is  devoted  to  logical  design  concepts.  The   student  transforms  a  conceptual  model  into  a  logical  model  targeted  to  a  relational  database   implementation.  Students  learn  to  map  a  conceptual  model  into  a  logical  model  that  can  in  turn   be  readily  transformed  into  a  relational  database  schema.  At  this  point,  the  central  concepts  of  the   relational  model  (domains,  keys,  integrity  constraints,  and  so  on)  are  engaged.  Finally,  the   database  schema  is  created.  The  student  defines  the  tables,  with  the  corresponding  attributes,   primary  and  foreign  keys,  etc.     A  good  strategy  to  acquire  database  design  skills  is  to  solve  exercises  similar  to  real-­‐world   problems.  With  this  purpose  different  exercises  are  assigned  to  the  students.  The  most  critical   issue  is  the  time  required  to  correct  these  exercises.  Moreover,  if  we  consider  that  the  solutions   are  not  unique.  To  establish  a  trade-­‐off  between  the  number  of  exercises  and  the  time  required  to   correct  them,  we  gave  to  the  students  a  list  of  exercises  and  only  some  of  them  were  corrected  in   the  class.  In  addition,  two  of  these  exercises  were  assigned  to  the  students  as  homework  and  then   they  were  corrected  by  the  teacher.  The  main  drawback  of  this  strategy  was  that  students  only   solved  the  assigned  problems.     Due  to  the  importance  of  practice  in  the  context  of  these  courses  and  considering  the   requirements  of  the  new  European  Higher  Education  Area,  we  decided  to  integrate  e-­‐learning   tools  in  the  applied  methodology  in  order  to  overcome  the  detected  limitations.  Fortunately,  the   functionalities  of  our  e-­‐learning  platform,  ACME,  satisfy  these  requirements.  In  addition,  ACME   provides  support  for  the  course  management,  student  tracking,  etc.    For  all  these,  we  developed   the  modules  needed  to  support  the  automatic  correction  of  ER  diagrams,  relational  database   schemas  and  normalization.  In  this  way,  we  will  be  able  to  support  in  a  same  environment  all  the   functionalities  required  to  cover  the  database  design  needs.  This  new  environment,  denoted   ACME-­‐DB,  is  described  in  Section  3.     2.3.  Database  design  Tools   In  last  years  a  large  number  of  e-­‐learning  environments  that  provide  and  support  different   teaching  and  learning  topics  of  database  courses  have  been  proposed.  In  this  section,  we  describe   the  most  representative.  To  present  them  we  consider  three  different  groups  according  to  the   main  topics  of  the  database  design  process:  conceptual  and  logical  design  and  normalization.   ER  diagram  Correction  Tools:  As  it  was  previously  mentioned,  the  ER  model  is  the  most  popular   approach  for  conceptual  schema  designing.  Such  a  model  considers  the  world  as  a  set  of  entities   and  the  relationships  between  them.  Therefore,  an  ER  diagram  tool  has  to  provide  an   environment  able  to  support  the  definition  and  correction  of  ER  diagrams.  The  system  has  to  be   able  to  interpret  the  diagram  giving  the  corresponding  feedback  to  the  student.     Over  the  last  decade  several  attempts  to  develop  ER  problem  solving  web  environments  have   been  made  (Constantino-­‐Gonzalez  &  Suthers,  2000;  Suraweera  &  Mitrovic,  2002;  Thomas  et  al.,   2007;  Batmaz  &  Hinde,  2007).  The  most  representative  is  KERMIT  proposed  by  (Suraweera  &   Mitrovic,  2002).  KERMIT  is  an  intelligent  tutoring  system  that  contains  a  set  of  problems  and  ideal   solutions  to  them.  The  system  compares  the  student  solutions  to  the  ideal  solution  using  domain   knowledge  represented  in  the  form  of  constraints,  which  are  classified  into  syntactic  and  semantic   ones.     Relational  Database  Schemas  Correction  Tools:  The  relational  model  represents  the  database  as  a   collection  of  relations.  To  define  this  model  the  student  has  to  define  a  set  of  tables  for  a  given   situation  of  the  real  world.  Therefore,  the  tool  has  to  provide  an  environment  able  to  support  the   definition  of  tables,  with  the  corresponding  attributes,  keys  and  foreign  keys  and  also,  the   34  

capability  to  correct  and  give  feedback  about  correction.  It  has  to  be  taken  into  account  that  the   solution  of  a  relational  design  problem  is  not  unique.  Few  tools  to  support  and  correct  logical   database  design  have  been  proposed.  The  most  representative  is  ERM-­‐Tutor  (Milik  et  al.,  2006),  a   constraint  based  tutor  that  teaches  logical  database  design  (i.e.  mapping  conceptual  to  logical   database  schemas).  Students  solve  the  problem  step  by  step  and  receive  feedback  on  their   solutions.     Normalization  Tools:  The  normalization  process  is  applied  during  the  relational  model  definition   to  create  relations  with  no  redundant  data,  with  an  efficient  data  organization.  To  teach  the   normalization  process  a  set  of  functional,  multivalued  and  join  dependencies  are  given  to  the   student  and  he  has  to  obtain  the  corresponding  normalized  schema.  Normalization  tools  display  a   relation  with  the  corresponding  dependencies,  the  student  propose  a  normalized  schema  entering   a  set  of  normalized  relations  and  the  system  has  to  correct  them.  Most  of  existing  tools  for   database  normalization  have  not  been  conceived  as  web-­‐based  environments  but  as  software   applications  that  automate  some  step  of  the  normalization  process.  To  best  of  our  knowledge   there  are  few  web  environments  that  support  database  normalization  learning  (Kung  &  Tung,   2006;  Zhang  et  al.,  2005;  Mitrovic,  2002).  The  most  representative  is  NORMIT  proposed  by   Mitrovic.  NORMIT  is  a  web-­‐enabled  tutor  for  database  normalization  where  the  student  selects  a   problem  and  goes  through  a  number  of  steps  to  analyze  the  quality  of  the  database  following  a   fixed  sequence  of  actions:  determine  the  candidate  keys,  the  closure  of  a  set  of  attributes  and   prime  attributes;  simplify  functional  dependencies,  etc.,  with  a  specific  web  page  for  each  task.   Student  solutions  are  analyzed  by  the  system  receiving  feedback.  This  environment  is  a  question-­‐ answer  based  approach  since  student  does  not  propose  a  solution,  he  answers  if  the  displayed   solution  is  correct  or  not.     Despite  the  advantages  provided  by  the  described  tools  with  respect  to  more  classical  teaching   methodologies,  they  still  present  several  limitations.  We  consider  that  one  of  the  main  limitations   of  these  tools  is  that  they  are  specific  applications  not  integrated  in  a  general  e-­‐learning  platform.   Hence,  they  do  not  support  lecturer  tasks,  such  as  continuous  assessment,  tracking  of  students   work  to  detect  weak  points,  features  to  obtain  statistics  of  common  errors,  number  of  attempts   required  to  solve  a  problem,  etc.  For  a  lecturer  all  these  features  are  very  important  since  they   provide  information  of  student  progress  and  also  which  topics  need  further  work.  On  the  other   hand,  another  common  limitation  of  the  majority  of  tools  is  that  they  do  not  support  automatic   correction  and  only  provide  a  way  to  show  the  results  of  a  given  exercise  for  a  predefined   database.  The  student  has  to  compare  the  obtained  result  with  the  correct  solution.  Such  an   approach  is  difficult  to  apply  when  more  than  one  solution  per  exercise  is  possible.   Besides  the  functionalities  of  a  common  e-­‐learning  platform  we  consider  that  an  e-­‐learning   environment  has  to  support  automatic  correction  of  problems.  The  capability  to  automatically   generate  and  correct  different  exercises  allows  giving  personalized  attention  to  each  student.  With   this  idea  we  conceived  the  ACME  platform.  

3.  The  ACME-­‐DB  environment   In  1998,  we  started  to  develop  ACME  an  e-­‐learning  platform  to  improve  both  teaching  and   learning  at  the  technical/engineering  degree  programs  of  our  university  (Soler  et  al.,  2002).  The   platform  was  conceived  to  integrate  new  types  of  problems  with  minimal  modifications.  The   ACME-­‐DB  environment  is  an  extension  of  the  ACME  tool  designed  to  support  in  a  unique   environment  the  main  topics  of  a  database  course.  We  started  to  develop  ACME-­‐DB  in  2003  with   the  development  of  the  relational  database  schemas  module  (Prados  et  al.,  2005).  Since  then,   entity-­‐relationship  diagrams  (Prados  et  al.,  2006),  normalization  (Soler  et  al.,  2006),  SQL  and   35  

relational  algebra  (Soler  et  al.,  2007)  correctors  have  been  developed  and  integrated  in  the   environment.  In  the  following  we  only  consider  entity-­‐relationship  diagrams,  relational  database   schemas  and  normalization  correctors.   All  these  modules  apply  the  same  methodology  which  is  briefly  described  below.     

ACME-­‐DB  has  a  repository  with  the  problems  entered  by  the  teacher.  Each  problem   consists  of  a  descriptor  and  the  procedures  required  for  its  automatic  correction.  In  the   case  of  ER  diagrams,  relational  database  schemas  and  normalization  problems,  due  to  its   complexity,  all  the  possible  solutions  are  entered.    ACME-­‐DB  provides  a  text  editor  to  enter   the  problems.    



The  student  enters  in  the  ACME-­‐DB  environment  and  once  in  the  system  a  list  with  the   exercises  that  compose  their  workbook  appears.  This  information  is  presented  in  a  tabular   form  as  it  is  illustrated  in  the  example  of  Fig.  1(a).  In  this  example  the  workbook  contains   five  topics,  labeled  in  the  first  column  of  the  displayed  table  from  1  to  5.  For  each  topic,  as   it  can  be  seen  in  the  second  column  of  the  table,  there  is  a  different  number  of  exercises.   Each  row  of  the  table  displays  the  topic,  the  number  of  exercise,  if  it  has  been  solved  or  not   and  the  number  of  send  solutions.  The  exercises  of  the  workbook  have  been  assigned   automatically  by  following  the  teacher  specifications  and  by  using  the  problems  stored  in   the  repository  of  the  system.    



The  student  selects  one  of  the  exercises  of  his  workbook  and  proposes  a  solution.  In  Fig.   1(b)  an  example  of  a  problem  descriptor  is  given.  To  enter  the  solution,  there  is  a  specific   interface  which  is  specifically  designed  for  each  type  of  problem.  In  Fig.  2  we  illustrate  the   interfaces  corresponding  to  ER  diagrams  and  relational  database  schemas.    The  ER   interface  (Fig.  2(a))  integrates  different  designing  tools  to  create  an  ER  diagram.  The   different  parts  of  the  interface  are:  (a)  buttons  to  draw  the  elements  of  the  ER-­‐diagram,   when  a  button  is  pressed  its  corresponding  glyph  graphic  is  drawn  in  the  working  area,  a   rectangle  for  entities,  a  diamond  for  relationships,  with  two  lines  connecting  the  two   entities  previously  selected;  (b)  working  area;  (c)  menus  for  input  attributes;  (d)  zoom  and   (e)  correction  button.  The  interface  for  relational  database  schemas  problems  is   represented  in  Fig.  2(b).  To  design  a  relational  database  schema  the  student  defines  the   tables  and  the  different  attributes  that  compose  them.  These  tables  are  represented  in  the   screen.  Each  time  the  student  press  the  Add  button  of  this  interface  the  information  of  the   items  appears  in  the  corresponding  table.  The  normalization  interface  is  similar  to  the  one   of  Fig.  2  (b).  

 

36  

(a)  

 

(b)  

Fig.  1:  (a)  Workbook  interface  and  (b)  Problem  descriptor   

The  solution  entered  by  the  student  is  send  to  the  corresponding  corrector  and  the   correction  process  is  done  automatically.    In  our  case,  the  correction  strategy  is  based  on  a   matching  process  that  compares  the  student  solution  with  each  one  stored  in  the   repository.    If  no  matching  is  found,  the  most  similar  solution  is  selected  and  is  used  to   return  feedback.  These  feedback  messages  are  designed  according  to  the  type  of  problem,   and  in  case  of  errors  return  some  help  to  obtain  the  correct  solution.  For  instance,  “More   entities  are  required”,  “There  are  incorrect  relation-­‐ships”,  etc.      



For  each  student  the  system  records  all  the  entered  solutions.  This  information  is  used  to   grade  the  exercises.    The  grading  process  uses  a  function  specifically  designed  for  each  type   of  problem  where  different  parameters  are  taken  into  account.    For  instance,  in  the  ER   diagrams  we  consider  the  number  of  correct/incorrect  entities/relationships/attributes,   the  number  of  attempts  before  a  correct  solution  is  obtained,  etc.  The  marks  of  all  the   problems  are  used  for  continuous  assessment.    

   

 

 

(a)  

 

 

 

 

 

                         (b)  

 

 

 

Fig.  2:  Interfaces  for  entering  solutions  (a)  ER  diagrams  and  (b)  relational  database  schemas   37  

4.  Results   The  different  modules  were  designed,  implemented  and  then  tested  on  an  experimental  database   course  2004/05.  We  evaluate  the  modules  independently,  obtaining  very  promising  results.  In  this   section,  we  describe  how  the  ACME-­‐DB  environment  has  been  used  in  database  design  and  the   obtained  results.   Due  to  the  bad  results  achieved  with  the  previous  methodology  (see  Section  2.2)  we  decided  to   modify  it  introducing  the  ACME-­‐DB  platform.  The  idea  was  to  introduce  this  tool  to  improve   database  design  skills  acquisition.  We  applied  a  new  teaching/learning  methodology  where  ACME-­‐ DB  has  a  main  role.  The  goal  was  exploit  all  the  capabilities  of  the  platform  to  assign,  solve  and   automatically  correct  the  activities  assigned  to  the  students.  The  system  creates  a  different   workbook  for  each  student  containing  exercises  of  the  main  topics:    ER-­‐diagrams,  relational   database  schemas  and  normalization.  For  each  topic  we  define  exercises  of  different  complexity   according  to  the  number  of  entities  or  relations.  The  easier  exercises  range  from  5  to  10   entities/relations  while  the  more  difficult  from  15  to  20.  These  exercises  are  used  for  continuous   assessment  contributing  in  a  50%  on  the  final  mark  and  the  resting  50%  is  obtained  from  an  exam   done  at  the  end  of  each  topic.  The  continuous  assessment  mark  is  obtained  automatically  taking   into  account  student  work:  the  number  and  type  of  errors,  the  number  of  solutions  before  the   correct  one  is  obtained,  etc.    The  capability  to  automatically  obtain  this  mark  reduces  the  time   required  to  correct  exercises  allowing  teacher  to  spent  time  in  other  tasks.  To  control  students   work  the  teacher  tracks  their  solution  and  according  to  detected  errors  he  can  propose  additional   tasks  in  order  to  improve  the  learning  process.     In  Table  1,  we  collect  the  results  obtained  using  the  platform  in  the  last  four  years.  For  each  one  of   the  three  topics  (ER-­‐diagrams,  relational  database  schemas  and  normalization),  we  give  the   number  of  students,  the  number  of  assigned  problems,  the  %  of  students  that  have  read  the   problems,  have  sent  solutions,  have  sent  correct  solutions  and  also  the  %  of  students  that  have   solved  the  problems  at  the  first,  the  second,  the  third  and  with  more  than  three  attempts.  Note   that  more  than  80%  of  students  read  the  exercises  and  more  than  70%  solve  them  correctly.  The   number  of  students  that  obtain  the  correct  solution  at  the  first  or  second  attempt  is  between  63%   and  80%,  and  the  rest  requires  three  or  more  attempts.   Table  1.  Information  obtained  from  the  ACME-­‐DB  tool  with  respect  to  its  use.  

  To  evaluate  the  impact  on  the  academic  results  we  compare  the  results  obtained  before  the   application  of  ACME-­‐DB  with  the  results  obtained  in  these  last  four  years.  This  data  is  collected  in   Table  2.  For  each  course  we  give  the  number  of  students  and  also  their  final  marks  graded  from  A   to  D,  where  A  corresponds  to  the  best  mark  and  D  the  worst.  The  NP  column  represents  the   students  that  have  not  assisted  to  the  course.  Finally,  in  the  two  last  columns  we  give  the  %   students  that  have  passed  and  not  the  course,  respectively.  Note  that  the  results  obtained  when   38  

using  ACME-­‐DB  (2005/06  to  2008/09)  are  better  than  when  no  using  the  platform.  Moreover,  if   we  analyze  the  number  of  students  that  have  passed  the  course  there  is  a  considerable  increment   compared  with  the  results  obtained  when  no  using  the  platform.  We  consider  that  these  better   results  are  due  to  the  fact  that  the  student  feels  supported  all  the  time.  He  knows  that  when  he   has  a  solution  he  can  obtain  the  automatic  correction  at  any  moment.     Table  2.  Academic  results  no  using  and  using  (grey  background  rows)  the  ACME-­‐DB  environment  

  Finally,  in  Table  3  we  evaluate  the  relationship  between  the  number  of  students  that  have  solved   the  ACME-­‐DB  exercises  and  the  number  of  student  that  have  passed  the  course.  We  group   students  in  three  different  rows  according  to  the  exercises  that  have  solved  correctly.  In  the  first   row  students  that  have  solved  less  than  50%,  in  the  second  between  50%  and  75%  and  in  the  last   row  more  than  75%.  For  each  group  of  students  and  for  each  course,  we  give  the  %  of  students   and  the  %  of  students  from  this  group  that  has  passed  the  course.  Note  that  when  students  solve   correctly  less  than  50%  of  exercises  the  possibility  of  passing  the  course  is  minimal.  On  the   contrary  when  they  solve  more  than  75%  of  exercises  the  number  of  students  that  pass  is  greater   than  80%.       Table  3.    Relationship  between  the  number  of  students  that  have  solved  the  ACME-­‐DB  exercises   and  the  number  of  students  that  have  passed  the  course  

  Despite  the  advantages  provided  by  the  ACME-­‐DB  environment,  it  has  to  be  taken  into  account   that  this  new  methodology  requires  an  extra  work  in  order  to  prepare  exercises  for  the  students.   The  main  advantage  is  that  these  exercises  are  stored  in  the  repository  of  the  system  and  can  be   used  in  different  courses.  In  general,  teachers  consider  that  the  application  of  the  ACME-­‐DB  has   improved  their  teaching  methodology  and  this  is  reflected  in  the  final  marks.  

5.  Conclusions   We  have  presented  ACME-­‐DB  a  web  based  environment  to  support  teaching  and  learning  of   database  design.  We  have  described  the  main  modules  that  integrate  this  environment  and  how  it   has  been  applied  in  a  database  course  of  our  university.  Data  collected  during  four  years  of   application  showed  how  academic  results  have  been  improved.     Our  future  work  will  be  centered  on  a  more  exhaustive  analysis  of  collected  data.  We  also  plan  to   develop  the  module  that  supports  the  automatic  correction  of  conceptual  object  modeling  using   UML  class  diagrams.   39  

References   Batmaz,  F.  and  Hinde,  C.J.  (2007).  A  web-­‐based  Semi-­‐automatic  Assessment  of  Conceptual   Database  Diagrams,  In  Proceedings  of  the  6th  Web-­‐Based  Education  WBE  07,  Chamonix,   France,  427-­‐432.   Chen,  P.  (1976).  The  entity-­‐Relationship  model.  Towards  a  Unified  View  of  Data,  ACM  Transactions   on  Database  Systems,  1,  9-­‐36.   Codd,  E.F.  (1970).  A  relational  Model  of  Data  for  Large  Shared  Data  Banks,  Communications  of  the   ACM,  13,  377-­‐387.   Connoly,  T.  and  Begg,  C.  (2005).  Database  Systems:  A  Practical  Approach  to  Design,   Implementation  and  Management,  4th  Edition  Addisson  Wesley.   Constantino-­‐Gonzalez,  M.  and  Suthers,  D.D.  (2000).  A  coached  collaborative  learning  environment   for  entity  relationship  modelling.  In  Proceedings  of  5th  International  Conference  Intelligent   Tutoring  System  ITS  2000.  Montreal,  Canada,  324-­‐333.   Date  C.J.  (2004).  An  Introduction  to  Database  Systems,  8th  Edition  Addisson  Wesley.   Elmasri,  R.  and  Navathe,  B.  (2007).  Fundamentals  of  Database  Systems,  5th  Edition  Addison   Wesley.   Kung,  H.  and  Tung,  H.  (2006).  A  Web-­‐based  Tool  to  enhance  Teaching/Learning  Database   Normalization,  In  Proceedings  of  2006  Southern  Association  for  Information  System   Conference,  Jacksonville,  USA.  251-­‐258.     Milik,  N.,    Marshall,  M.  and  Mitrovic,  A.  (2006).  Teaching  Logical  Database  Design  in  ERM-­‐Tutor.  In   Proceedings  of  8th  International  Conference  Intelligent  Tutoring  System  ITS  2006,  Jhongli,   Taiwan.  LNCS  4053,  707-­‐709.   Mitrovic,  A.  (2002).  Normit:  a  web-­‐enabled  tutor  for  database  normalization,  In  Proceedings  of   International  Conference  on  Computers  in  Education  ICCE,  Auckland,  New  Zeland,  1276-­‐1280.   Prados,  F.,  Boada,  I.,  Soler,  J.  and  Poch,  J.  (2005).  An  Automatic  Correction  Tool  for  relational   Database  Schemas,    In  Proceedings  of  International  Conference  on  Information  Technology   based  higher  Education  and  Training  ITHET05,  Santo  Domingo,  Dominican  Republic,  S3C  9-­‐ 14.   Prados,  F.,  Boada,  I.,  Soler,  J.  and  Poch,  J.  (2006).    A  web  based-­‐tool  for  Entity-­‐Relationship   Modeling,  In  Proceedings  of  International  Conference  on  Computational  Science  and  its   Applications  ICCSA  2006,  Glasgow,  UK,  LNCS  3980,  364-­‐372.   Robbert,  M.A.,  Wang,  M.,  Guimaraes,  M.  and  Myers,  M.E.  (2000).    The  Database  Course:  What   must  be  taught,  ACM  SIGCSE  Bulletin,  32,  403-­‐404.   Robbert,  M.A.  and  Ricardo,  C.M.  (2003).  Trends  in  the  evolution  of  the  Database  Curriculum,  ACM   SIGCSE  Bulletin,  35,  139-­‐143.   Silberschatz,  A.,  Korth,  H.  and  Sudarshan,  S.  (2005).  Database  System  Concepts,  5th  Edition   McGraw  Hill.   Springsteel,  F.,  Robbert,  M.A.  and  Ricardo,  C.M.  (2000).  The  next  Decade  of  the  Database  Course:   Three  Decades  speak  to  the  next,  ACM  SIGCSE  Bulleti,  32,  41-­‐45.   Soler,  J.,  Poch,  J.,  Barrabes,  E.,  Juher,  D.  and  Ripoll,  J.  (2002).    A  tool  for  the  continuous  assessment   and  improvement  of  the  student’s  skills  in  a  mathematics  course,  In  Proceedings  of   International  Symposium  of  Technology  of  Information  and  Communication  in  Education  for   40  

engineering  and  industry  TICE  2002,  Lyon,  France,  105-­‐110.     Soler,  J.,  Boada,  I.,  Prados,  F.  and  Poch,  J.  (2006).  A  web-­‐based  Problem-­‐Solving  Environment  for   database  Normalization,  In  Proceedings  of  8th  International  Symposium  on  Computers  in   Education  SIIE  2006,  León,  Spain.     Soler,  J.,  Boada,  I.,  Prados,  F.  and  Poch,  J.  (2007).  An  automatic  correction  tool  for  relational   Algebra  Queries.  In  Proceedings  of    International  Conference  on  Computational  Science  and   its  Applications  ICCSA  2007,  Kuala  Lumpur,  Malaysia,  LNCS  4706,  861-­‐872.   Suraweera,  P.  and  Mitrovic,  A.  (2002).  KERMIT:  A  Constraint-­‐Based  Tutor  for  Database  Modeling,   In  Proceedings  of    International  Conference  Intelligent  Tutoring  System  ITS  2002,  Biarritz,   France,  LNCS  2363,  377-­‐387.   Thomas,  P.,  Waugh,  K.  and  Smith,  N.  (2007).  Tools  for  supporting  the  teaching  and  learning  of  data   modeling,  In  Proceedings  of  World  Conference  on  Educational  Multimedia,  Hypermedia  and   Telecommunications  EDMEDIA    2007.  Vancouver,  Canada,  4014-­‐4023.   Zhang,  L.,  Kaschek,  R.  and  Kinshuk  (2005).  Developing  a  Knowledge  Management  Support  Systems   for  Teaching  Database  Normalization.    In  Proceedings  of  5th  International  Conference  on   Advanced  Learning  Technologies  ICALT  2005,  Kaohsiung,  Taiwan,  344-­‐348.

41  

The  cost  of  learning  and  teaching  Java  in  the   Bologna  process   Camino  Fernández  (1),  David  Díez  (2),  Jorge  Torres  (3),  Telmo  Zarraonandia  (2)   (1)  

Universidad  de  León.  Escuela  de  Ingenierías  Industrial  e  Informática.   Campus  de  Vegazana,  28071-­‐León   [email protected] (2)  

Universidad  Carlos  III  de  Madrid.  Departamento  de  Informática.  Escuela  Politécnica  Superior.   Avda.  de  la  Universidad,  30  –  28911  Leganés  (Madrid)   {david.diez,telmoagustin.zarraonandia}@uc3m.es  (3)  

Tecnológico  de  Monterrey.  Campus  Querétaro.   Epigmenio  González  No  500,  Fracc.  San  Pablo,  Querétaro,  Qro  CP  76130  (México)   [email protected]

Abstract   The  European  Higher  Education  Area  (EHEA)  involved  in  the  Bologna  process  tries  to  change  both  the   academic  organization  and  the  way  teaching  is  implemented  at  University.  Regarding  the  way  of   teaching,  an  instructional  strategy  focused  on  teaching  will  be  replaced  by  methodologies  focused  on   students  learning.  This  paper  shows  the  pilot  case  study  of  an  introductory  programming  course  in  Java   of  the  degree  in  Computer  Engineering  performed  to  estimate  the  resources  needed  to  start  up  with   these  new  methodoligies.  During  a  complete  semester,  students  followed  a  continuous  assessment   process  that  involved  an  extra  effort  for  both  students  and  teachers.  The  results  show  that  students   were  benefitted  by  the  experience,  but  university  is  not  really  prepared  to  support  the  whole  process   with  its  actual  parameters.   Keywords:  EHEA,  Bologna  Process,  introductory  programming  course,  Java  lenguage,  case  study.  

1.    Introduction   The  overarching  aim  of  the  Bologna  Process  is  to  create  the  European  Higher  Educational  Area   (EHEA)  by  making  academic  degree  and  quality  assurance  standards  more  comparable  and   compatible  throughout  Europe  (Bologna,  1999).  The  EHEA  claims  not  only  a  homogenous  academy   system  that  facilitates  mobility  of  students,  graduates  and  higher  education  staff  around  Europe,   but  also  education  plans  and  methodologies  focused  on  students  learning.  In  this  context,  new   instructional  strategies  and  redesigned  courses  are  needed.  With  the  purpose  of  making   straightforward  this  process  of  change,  different  innovation  projects  have  been  performed.   In  particular,  Universidad  Carlos  III  de  Madrid  performed  a  pilot  case  study  in  the  first  year  of  the   degree  in  Computer  Engineering.  This  pilot  case  study  aimed  at  simulating  the  EHEA  context  in   order  to  identify  further  needs  and  to  assess  their  cost.  Our  experience  in  an  introductory   programming  course  of  such  a  pilot  has  disclosed  both  positive  and  negative  issues.  On  one  hand,   the  results  of  the  course  have  been  improved  if  compared  to  the  previous  ones,  and  students  have   considered  the  course  structure  very  positive.  On  the  other  hand,  dedication  of  teacher,   coordination  activities,  as  well  as  instructional  resources  should  be  actually  increased  to  achieve   the  goals  established.   The  rest  of  the  paper  is  organized  as  follows.  The  description  of  the  pilot  case  study,  its  goals  and   context,  are  described  in  section  2.  Section  3  briefly  explains  the  most  relevant  outcomes  of  our   pilot  case  study.  Finally,  conclusions  and  a  set  of  recommendations  and  ideas  for  further   discussion  are  compiled  in  the  last  section.   42  

2.    Description  of  the  pilot  case   The  pilot  project  was  conceived  by  the  university  three  years  before  the  first  new  grade  was   introduced.  The  objective  of  these  pilot  courses  was  both  estimating  the  resources  needed  to  start   up  with  the  new  grades,  and  also  knowing  the  students  response  to  the  new  learning  and  teaching   methodologies.  Having  presented  the  problem  that  motivated  our  work,  the  following  subsections   explain  the  learning  context  in  which  our  introductory  programming  course  was  deployed.   2.1.  Instructional  Strategy   Teachers  involved  in  the  pilot  case  were  trained  on  how  Bologna  should  be  implemented.   According  to  experts  consulted  for  this  project,  three  main  concerns  should  be  considered:   

The  main  point  was  that  everything  that  implies  an  effort  for  students  should  be  measured.   Thus,   active   learning   activities   as   asking   questions,   proposing   new   themes   or   answering   teacher’s  proposals  would  be  considered  as  a  small  part  of  the  final  mark.  



Students’   feedback   should   be   continuous.   Futhermore,   the   result   of   that   assessment   should   be   returned   to   the   students   as   soon   as   possible.   Feedback   helps   to   correct   the   errors  and  to  have  a  better  appreciation  of  the  deficiencies  that  should  be  overcome.  



Monitoring   activities   might   observe   the   evolution   of   the   subject.   The   final   objective   is   that   teachers   identify   knowledge   gaps   among   students   in   order   to   have   a   better   understanding   of  potential  corrective  activities.  

2.2.  Course  Methodology   The  course  is  taught  in  the  first  semester  of  the  year  of  the  degree  in  Computer  Engineering.  The   course  lasts  for  fifteen  (15)  weeks  with  a  total  of  five  (5)  teaching  hours  per  weeks  –  including   theory  and  laboratory  work  -­‐.  The  course  is  coordinated  by  one  teacher  and  it  is  taught  by  eight   teachers,  with  an  extra  help  of  another  two  teachers  for  the  first  year.  The  first  year  141  students,   and  the  second  year  122,  split  into  three  groups,  took  the  course.   A  common  approach  in  programming  education  is  first  to  teach  the  basics  of  a  programming   language  and  then  guide  students  towards  effective  strategies  for  the  whole  programming  process   (Robins  et.  al,  2003).  Usually,  introductory  programming  courses  are  focused  on  teaching  about  a   particular  programming  language  (Lahtinen  et.  al,  2005).  In  our  case,  the  course  focuses  on  the   object  oriented  programming  paradigm  and  includes  a  set  of  basic  programming  concepts,  such  as   data  types,  control  sequences  and  character  chains,  as  well  as  basic  knowledge  on  algorithms.  Java   is  used  as  the  reference  programming  language.   The  course  includes  lectures  and  laboratory  work.  Laboratory  work  is  made  up  of  several   programming  exercises.  Such  exercises  should  be  resolved  in  groups  of  two  students.   Programming  exercises  are  handed  in  at  regular  intervals  throughout  the  course.  The  final  grade  is   obtained  by  combining  the  results  obtained  in  theoretical  examinations  (sixty  percent  of  the  final   grade)  with  those  from  practical  laboratory  sessions  (forty  percent  of  the  final  grade).   2.3.  Assessment  Process   The  course  included  seven  (7)  multiple-­‐choice  exams  and  eleven  (11)  practical  exercises   distributed  in  the  fifteen  (15)  weeks  of  the  course.  Both  types  of  assessments  were  included  in  the   continuous  evaluation.  At  the  end  of  the  semester,  students  took  their  final  written  exam  and  also   implemented  a  small  application  in  java  (1000-­‐2000  code  lines).  As  we  said  before,  activ  class   participation  contributed  to  the  final  mark  also,  but  this  contribution  is  considered  only  for  those   43  

students  that  pass  the  tests  and  the  laboratory  work.

3.    Results   According  to  the  pilot  project’s  objetives,  two  main  issues  should  be  analyzed:  (i)  academic  results;   and  (ii)  human  resources  needs.  With  the  purpose  of  identifying  pros  and  cons,  we  have   considered  data  to  the  same  introductory  programming  course  for  seven  years.  The  last  two  ones   correspond  to  the  pilot  project.     Regarding  the  academic  results,  as  shown  in  Fig.  1,  a  different  situation  can  be  observed  before   and  after  the  pilot  project.  Before  the  pilot  project  a  high  rate  of  students  usually  took  the  first   exam  but  only  a  low  rate  passed  that  first  exam.  The  explanation  for  those  results  is  that  students   were  facing  their  first  exams  at  university  and  they  were  used  to  taking  all  the  exams,  like  they  had   done  in  previous  studies,  although  they  were  not  properly  prepared  for  them.  The  situation  in  the   second  chance,  September  exam,  was  quite  different:  The  rate  of  students  taking  the  exam  is   quite  lower,  but  the  rate  of  students  that  pass  it  is  much  higher.  Our  experience  shows  that  in  this   second  chance,  only  the  students  that  are  really  prepared  take  the  exam.   After  the  pilot  project  everything  changes.  In  the  first  exam  we  have  slightly  more  students,  but   from  those  students  a  much  higher  rate  pass  the  exam,  in  fact,  in  graph  a)  the  trend  has  swapped.   In  the  second  exam  there  is  also  a  higher  rate  of  students  taking  the  exam,  but  the  number  of   students  that  pass  it  has  decreased  significantly.  This  change  in  the  trends  shows  that  continuous   evaluation  can  be  an  important  tool  to  adapt  the  course  to  the  students  needs  and  obtain  better   results.  

  Fig.  1:  Academic  results   Regarding  human  resources  needs,  Fig.  2  shows  the  total  amount  of  hours  dedicated  to  this  pilot   project  by  every  one  of  the  ten  teachers  involved  in  it.  The  total  amount  of  time  traditionally   assigned  to  teachers  was  doubled  by  the  estimated  time  assigned  for  the  pilot  project.  However,   44  

real  data  collected  shows  that  the  final  amount  of  time  was  even  increased  in  more  than  a  thirty   per  cent.  The  most  important  increase  was  related  to  coordinating  (teacher  3)  and  monitoring   activities  (teachers  7  and  8).  Mandatory  tutorships  were  included  in  order  to  know  students´   needs  and  opinions;  thus,  two  more  teachers  were  joined  to  help  with  these  activities.                

 

  Fig.  2:  Human  resources  

4.    Conclusions   The  main  lesson  to  be  learned  from  this  pilot  case  is  that  pilot  cases  are  themselves  crucial  in   situations  like  this  one,  where  a  whole  process  changes,  and  this  change  involves  a  variety  of   stakeholders.  The  main  features  of  that  change  as,  for  instance,  moving  the  attention  to  student’s   effort  or  emphasizing  the  assessment  process,  were  clear  from  the  beginning.  Nevertheless,  the   big  amount  of  small  but  essential  practical  details  which  can  make  a  new  initiative  fail  or  success   are  not  shown  until  a  real  case  starts  up.   Although  reduced  groups  were  one  of  the  main  issues  in  the  Bologna  process,  one  of  the  direct   applications  of  the  pilot  cases  is  reducing  the  groups  to  a  maximum  of  20  students.  This  apparent   advantage  implies  extra  work  for  the  course  coordinator.  These  kind  of  introductory  courses   usually  have  between  150  and  200  students  and  many  teachers  have  to  be  coordinated  for   offering  a  homogeneous  course.   The  key  to  face  the  Bologna  process  implementation  successfully  is  to  provide  teachers  with  the   tools  needed  to  simplify  the  process.  Not  only  tools  to  facilitate  coordination  among  teachers  are   needed.  Effective  tools  to  improve  the  whole  assessment  process  are  even  more  important,  for   instance,  communication  tools  that  automate  the  informative  feedback  of  every  assignenment   (Diez  et.  al,  2008)  because  this  task  has  proved  to  be  the  most  time  consuming  one.  

References   Bologna  Declaration  (1999).    Joint  declaration  of  the  European  Ministers  of  Education.  Retrieved   Febrery  20,  2009  from   http://www.ond.vlaanderen.be/hogeronderwijs/bologna/documents/MDC/BOLOGNA_DECLARATION1.pdf  

Diez,   D.,   Diaz,   P.,   Aedo,   I.   and   Fernandez,   C.   (2008).   DEI-­‐CHECK.   Automating   the   assessment   process  to  improve  the  informative  feedback.  In  Proceedings  of  the  38th  Annual  Frontiers  in   Education  Conference,  Saratoga  Spring,  USA.  

45  

Lahtinen,  E.,   Mutka,   K.A.   and   Järvine,   K.M.   (2005).   A   Study   of   the   Difficulties   of   Novice   Programmers.   In   Proceedings   of   the   10th   Annual  Conference  on   Innovation  and  Technology   in  Computer  Science  Education,  Monte  de  Caparica,  Portugal.   Robins,  A.,  Rountree,  J.  and  Rountree,  N.  (2003).  Learning  and  Teaching  Programming:  A  Review   and  Discussion.  Journal  of  Computer  Science  Education,  volume  13(2),  pp.  137-­‐172.

46  

A  High  School  Educational  Platform  based  on   Virtual  Worlds   Mariano  Rico  (1),  David  Camacho  (1),  Xavier  Alaman(1),  Estrella  Pulido  (1)   (1)  

Escuela  Politécnica  de  la  Universidad  Autónoma  de  Madrid   Ciudad  Universitaria  de  Cantoblanco   Calle  Francisco  Tomás  y  Valiente,  11   28049  –  Madrid,  Spain   {Mariano.Rico, David.Camacho, Xavier.Alaman, Estrella.Pulido}@uam.es  

Abstract   Virtual   Worlds,   through   their   three-­‐dimensional   or   two-­‐dimensional   graphical   environments,   have   become   a   very  popular  kind  of  software  application  that  has  been  used  in  different  fields,  from  games  to  simulation  or   education.   They   allow   individuals   to   interact   with   others   through   their   avatars   and   with   objects   in   the   environment.   Virtual   Worlds   provide   new   education   opportunities   where   collaboration   and   cooperation   among   users   can   be   easily   achieved.   This   paper   presents   an   innovative   educational   approach   that   can   be   applied  to  different  educational  areas,  and  levels,  from  basic  to  higher.  Initially  it  has  been  oriented  to  teach   computer  science  to  high-­‐school  students.  The  paper  analyses  how  the  current  virtual  world  platforms  should   be  modified  so  that  they  can  be  used  in  education.  It  also  describes  the  main  issues  and  problems  that  need  to   be  solved  in  order  to  develop  an  operative  educational  platform  for  undergraduate  students.  Finally,  a  usability   evaluation   study   of   several   existing   technologies   (3D   virtual   world   platforms,   development   programming   environments,  etc.)  performed  by  several  (high  school)  students  is  presented.  

1. Introduction   Although   Virtual   Worlds   (VW)   have   been   used   in   different   domains   such   as   Economy     (Sinrod,   2007),   Social     or   E-­‐Commerce   (Talbot,   2008),   the   most   popular   are   related   to   massively-­‐ multiplayer   online   games2.   However,   VWs   can   be   used   as   a   new   powerful   instrument   for   instruction   and   education   allowing   social   interactions,   which   can   be   a   basis   for   collaborative   education.     The   attractive   3D   graphical   environments   provided   by   these   VW   can   be   used   to   improve  interaction  and  a  sense  of  realism.     Different   initiatives   aimed   at   applying   VW   to   learning,   or   educational,   processes   exist.   For   example,  the  work  of  (Baker,  Wentz,  &  Woods,  2009)  shows  how  psychology  instructors  can  use   Second  Life  as  a  meeting  space  with  students,  and  to  create  labs,  buildings,  and  objects  that  can   be   used   to   learn   psychology   contents   and   skills.   (Cunha,   Raposo,   &   Fuks,   2008)   use   Second   Life   as   an   environment   for   collaborative   learning   and   generating   of   new   educational   contents.   The   creation  of  an  environment  and  a  location  for  collaborative  learning  in  Second  Life  was  the  focus   of  the  work  of  (De  Lucia,  Francese,  Passero,  &  Tortora,  2008),  in  which  objects  have  been  modeled   and   programmed   to   support   the   synchronous   role-­‐based   collaborative   activities   required   by   the   jigsaw   learning   technique   in   a   3D   virtual   meeting   setting.   In   the   specific   context   of   teaching   technical   subjects,   Second   Life   has   been   used   with   medical   and   health   librarians   and   educators   (Boulos,  Hetherington,  &  Wheeler,  2007),  in  order  to  explore  the  pedagogical  potentials  of  Second   Life  as  well  as  some  issues  and  challenges  related  to  the  use  of  virtual  worlds.  The  recent  work  of   (Bourke,   2009)   analyzes   how   multiple   remote   participants   can   engage   in   3D   geometry   within   a   virtual  environment.   2

 http://en.wikipedia.org/wiki/List_of_MMOGs  

47  

This  paper  presents  an  innovative  educational  platform,  named  VLEAF  (Virtual  LEArning  platForm),   which  has  been  designed  to  stimulate  interest  and  learning  ability  of  students  through  the  use  of   technologies   that   are   familiar   and   particularly   attractive   to   them.   It   also   facilitates   the   implementation   of   collaborative   (students   sharing   knowledge   on   a   particular   topic)   and   cooperative   (students   perform   a   task   or   solve   all   together   a   common   problem)   teaching   techniques.   By   using   the     VLEAF   platform,   the   learning   model   goes   from   one   in   which   students   have   an   almost   passive   role   (apart   from   a   minimal   interaction)   and   learns   on   their   own,   to   one   where   students   play   the   leading   role   in   the   learning   environment   and   work   with   other   students   and  teachers  in  the  creation  of  knowledge  that  can  be  shared  with  others.  Our  approach  uses  a   particular   Virtual   World,   named   OpenSim   that   has   been   recently   developed   by   IBM   and   is   compatible   with   Second   Life,   as   the   base   element   to   implement   the   new   educational   platform.   The  initial  goal  of  this  work  is  to  develop  a  teaching  community  where  students  can  acquire  basic   skills   related   to   computer   programming.   For   this   reason,   an   introductory   programming   course   oriented  to  high  school  students  is  designed  to  analyze  how  VWs  could  be  adapted  and  what  other   elements,  such  as  web  portals,  documentation  or  multimedia  support  are  needed  to  provide  the   necessary  access  to  both  educators  and  students.      

  Fig  1.  VLEAF  platform  

2. An  educational  platform  based  on  VW   When   teenagers   want   to   use   this   kind   of   domains   there   are   some   resources   that   need   to   be   provided.  The  VLEAF  platform  is  composed  of  the  following  elements:   -­‐

Web   portal   that   allows:   fast   access   to   any   documentation;   student   management   (two   48  

different  roles:  administrator  and  educators);  access  to  multimedia  information   -­‐

Data  Bases  that  are  used  to  store:  technical  and  user  guides;  educational  documentation   (courses   guides,   multimedia,   etc..);   teacher   and   student   profiles;   student   educational     material;  Data  mining  information  (logs,  conversations,  student  and  educator  interaction  in   the  VW,  …)  

-­‐

Other  software  programs:  data  mining  and  statistical  software  

-­‐

VW   grid,   that   provides:   physical   spaces   where   the   lecture   or   laboratory   can   take   place;   physical  spaces  to  store  the  educational  objects  created  by  teachers  and  students.  

Fig.   1   shows   a   graphical   representation   of   the   platform.   The   Web   portal3   provides   educators   or   students  access  to  technical  and  educational  material.     The  VLEAF  platform  has  been  built  on  a  grid  over  OpenSim,  based  on  our  previous  experience  in   Second   Life   (SL),   this   new   grid   has   been   designed   to   allow   restricted   access   educational   spaces   for   high  school  institutions.  Our  first  campus4,  still  available  at  SL  and  deployed  past  2008,  is  located   at  the  European  University,  an  SL  island  where  there  are  currently  about  20  universities.     OpenSim   provides   an   open   fully   compatible   with   SL   simulation   3D   environment   that   solves   the   previously  mentioned  problems.  We  can  define  as  much  space  as  we  need  for  educators  (it  is  free,   so   there   is   no   cost   associated   to   the   educational   task),   the   information   can   be   stored   in   locally   owned   servers,   so   that   it   can   be   analyzed   later   by   educators,   and   the   control   over   all   this   world   is   in  the  educator  hands.    

3. A  basic  programming  course  in  VLEAF   Although  some  important  elements  of  our  platform  are  still  under  construction  (especially  those   related   to   the   automatic   restricted   access   for   high   school   students),   both   virtual   worlds   (at   SL   and   OpenSim)   are   enough   deployed   to   allow   controlled   experiments.   This   section   provides   a   simple   case  study  to  test  some  of  the  functionalities  of  our  platform.  We  have  designed  a  programming   course  to  show  how  a  scripting  language  (the  Linden  Scripting  Language)  works.    This  course  has   been   tested   with   several   high   school   students,   to   find   out   what   kind   of   facilities   need   to   be   provided  for  future  experiences  with  other  educational  institutions,  and  students.  Initially  a  basic   programming  course  has  been  designed  to  evaluate  the  potential  interest  of  students  in  learning   these  basics  by  using  the  VW  technologies  (Heaton,  2008).  This  course  provides  the  basics  about   working   in   the   OpenSim   VW   and   about   algorithm   programming,   and   it   has   been   designed   as   follows:     1. (1  h)  Introduction  to  VW:  installation,    avatar  creation,  and  brief  introduction  to  VW   2. (1  h)  Basics  of  building:  basic  introduction  to  building  and  creating  prims  and  linking  them  to   form  objects.  Rotation,  position,  and  other  more  advanced  attributes  of  prims  are  studied   3. (1h)   Introduction   to   LSL:   syntax   and   basics   of   the   Linden   Scripting   Language.   Compiling   and   debugging   a   script   in   the   VW;   how   to   create   scripts   and   perform   basic   operations;   script   structure     4. (1h)   Data   and   variables   in   LSL:   basic   data   types   and   variables   in   LSL;   programming   script   examples   5. (1h)  Control  structures:  how  to  control  scripts  through  variable  values,  conditional  sentences,   3 4

http://www.ii.uam.es/~dcamacho/vleaf http://www.ii.uam.es/esp/sl/ index.html

49  

and  the  three  different  loop  types  available  in  Second  Life   6. (1h)  Strings  in  LSL:  comparing  and  parsing  strings  in  LSL;  programming  script  examples   7. (1h)  Objects  and  Events:  sending  instant  messages;  introduction  to  event-­‐based  programming   8. (1h)  Advanced  Data  types  &  Algorithms;  lists  in  LSL  to  hold  a  collection  of  items;  searching  and   sorting  algorithms   For  each  session  several  usability  parameters  have  been  measured,  to  analyze  how  attractive  and   useful  this  environment  is  for  learning  basic  programming  concepts.  The  questionnaire  details  and   the  experimental  setup  and  results  can  be  found  in  section  4.   3.1. High-­‐School  educational  processes  in  VLEaF   When   the   potential   users   of   an   educational   environment   similar   to   the   one   described   in   the   previous   section   are   teenagers,   special   care   must   be   taken   in   order   to   avoid   harassment   or   any   other   kind   of   possible   attacks   to   this   kind   of   users.   For   this   reason,   although   VLEAF   can   use   our   current   campus   at   SecondLife,   access   to   the   VLEAF   educational   platform   will   only   be   allowed   through  our  grid  at  OpenSim.  In  this  grid  we  can  control  at  any  moment  the  avatars  connected  and   the   actions   that   they   could   be   doing   (these   actions   are   saved   through   the   vamp   server   as   data   logs).  The  platform  needs  to  provide  the  following  roles  to  different  users:   -­‐

Administrator.   S/he   can   control   any   avatar   within   the   platform   (it   can   only   be   applied   over   the  grid  deployed  under  OpenSim  VW)  

-­‐

Educators.  They  will  have  the  control  over  their  student  team  .  They  will  control  (through   the   logs   stored   related   to   their   students)   and   can   prevent   a   connection   for   a   particular   student  or  students.  They  will  manage  the  educational  materials  (in  traditional  formats  and   in   the   format   of   educational   virtual   objects)   available   through   the   web   portal   and   the   Virtual  World.  

-­‐

Students.   They   can   access   different   educational   documents   through   the   web   portal,   and   solve  exercises  proposed  by  educators  through  the  Virtual  World.  

Currently   the   control   over   high   school   students   are   made   by   a   peer-­‐to-­‐peer   process   where   the   administrator  of  the  system  provides  a  set  of  predefined  avatars  (including  names  and  passwords)   to   the   responsible   educators.   Student   and   Educator   interactions   in   the   VW   are   saved   by   using   the   Vamp  Server  which  allows  its  analysis.  

4. Usability  evaluation  of  VLEaF  platform   This  section  describes  the  usability  and  user  satisfaction  parameters  measured  with  their  related   tests,  and  the  practical  conclusions  achieved.  In  this  evaluation  two  selected  sets  of  four  educators   and   (high   school)   students   were   used   to   test   the   platform   and   to   obtain   the   usability   (based   on   user’s   skills),   the   user   satisfaction,   and   the   potential   of   this   platform   applied   over   educational   processes.   To  obtain  the  user’s  skills,  we  calculate  the  sum  of  the  numerical  values  freely  auto-­‐assigned  by   each   user   depending   on   his/her   level   of   competence   on   the   client   side   issues   described   in   the   questionnaire.   The   usability   of   VLEAF   was   measured   by   means   of   a   popular   standard   test   called   “Practical   Heuristics   for   Usability   Evaluation”   (Perlman,   1997).   This   test   includes   13   questions   ranging   from   1   (bad)   to   5   (good),   which   provides   a   useful   measure   of   the   user’s   perceived   usability.   The   results   of   this   test   are   shown   in   left   part   of   Fig.   2.   This   figure   shows   that   three   types   of   users   can   be   identified:   those   with   basic   skills   (range   0-­‐20),   medium   (20-­‐40),   and   advanced   50  

(greater  than  40).  The  first  two  groups  are  associated  to  students,  divided  in  basic  and  advanced.   The   third   group   is   associated   to   teachers,   with   higher   experience   and   skills.   The   figure   shows   high   usability  values  for  the  whole  range  of  participants,  although  as  one  might  expect,  the  most  skilled   users   assign   slightly   lower   usability   values.   A   possible   explanation   is   that   skilled   users   are   more   demanding,  and  these  results  in  slightly  lower  evaluations,  but  even  these  advanced  users  provide   high   usability   values.   The   standard   deviation   in   each   range   is   low   for   basic   students   (0.2)   and   teachers   (0.3),   denoting   a   uniform   knowledge,   but   increases   for   advanced   students   (0.5).   This   denotes  slightly  variations  in  usability  for  this  range  of  users,  but  within  reasonable  values.    

  Fig.  2.  Left:  Usability  of  VLeaF    for  different  user  skills.  Right:  User’s  satisfaction  on  the  user   interface  as  a  function  of  the  user  skills.   The  user’s  satisfaction  concerning  the  VLEAF  user  interface,  was  measured  by  means  of  a  slightly   modified  version  of  the  standard  test  “User  Interface  Satisfaction”  (Chin,  Diehl,  &  Norman,  1988).   The   standard   version   includes   27   questions,   but   it   was   reduced   to   25   due   to   overlaps   with   the   usability   test   described   previously.   Valid   responses   to   these   questions   were   positive   integers   ranging  from  0  (not  satisfied  at  all)  to  7  (completely  satisfied).  It  must  be  noted  the  different  scale   value   compared   to   usability   range.   The   results,   showing   the   dependency   between   the   user’s   satisfaction   and   his/her   skills   are   shown   in   the   right   part   of   Fig.   2.   The   average   value   for   user   satisfaction  was  5.5,  and  It  is  worth  noting  that  the  user  satisfaction  depends  on  the  user  skills  in   the  same  way  that  usability,  that  is,  higher-­‐skilled  users  assign  a  slightly  lower  value  to  satisfaction.   Three  ranges  can  be  identified  as  it  was  for  usability  (the  first  two  for  basic  and  advanced  students,   and   the   third   one   for   teachers),   and   the   behavior   of   the   standard   deviation   for   each   range   follows   the   same   that   usability,   that   is,   small   deviations   for   basic   students   (0.4)   and   teachers   (0.3),   and   bigger  (0.7)  deviations  for  advanced  students.   From   experimental   results   we   can   conclude   that   VLEAF   provides   good   average   values   for   usability     and  user  satisfaction  concerning  the  user  interface  for  a  wide  range  of  user  competencies,  what   confirms   that   VLEAF   is   a   highly   usable   platform   for   users   in   a   wide   range   of   skills,   from   non   initiated  ones  (students)  to  advanced  ones  (teachers).  

5. Conclusions   According   to   the   report   on   the   implementation   and   use   of   ICT   in   schools   for   primary   and   secondary  education  (year  2005-­‐2006)  under  the  Plan  Avanza5,  the  71%  of  Spanish  teachers  never   5

 http://www.oei.es/tic/TICCD.pdf    

51  

use   a   computer   to   support   explanations   at   their   lectures,   and   82.2%   do   not   use   ICT   for   presentations   or   simulations,   although   the   94.6%   stated   to   have   access   to   computers   at   their   school,   and   many   of   them   admit   that   ICTs   have   a   great   educational   potential.   These   data   demonstrate  that  new  resources  are  not  generally  used  in  primary  and  secondary  education.  The   reason  could  be  related  to  the  need  of  an  operative  infrastructure  and  tools,  services  and  contents   to  facilitate  their  lectures.     The   use   of   the   proposed   platform   would   solve   this   problem   as   it   allows   educational   resources   developed   by   individual   students   or   teachers   to   be   used   by   others.   From   our   initial   empirical   evaluation,   we   have   observed   that   the   Virtual   World   provides   a   very   attractive   domain   where   students   discover   that   learning   can   be   an   interesting   experience.   Although   there   exist   a   huge   amount  of  information  in  Internet  related  to  Virtual  Worlds  (such  as  Second  Life  or  OpenSim)  or  to   programming,   there   is   no   specific   documentation   oriented   to   high-­‐school   students.   Finally,   the   proposed  programming  course  (based  on  a  simple  introduction  to  C-­‐style  scripting  languages  such   as  LSL)  is  definitively  more  interesting  than  the  traditional  ones.      

Acknowledgments   This  work  has  been  funded  by  the  Spanish  Ministry  of  Science  and  Innovation  under  the  projects   VLEAF   (TIN2008-­‐02729-­‐E/TIN)   and   HADA   (TIN2007-­‐64718).   We   would   like   to   thank   the   VLEAF   developer  team,  and  students  from  I.E.S.  Antonio  de  Nebrija  for  their  cooperation  in  this  work.  

References   Baker,  S.  C.,  Wentz,  R.  K.,  &  Woods,  M.  M.  (2009).  Using  Virtual  Worlds  in  Education:  Second  Life   as  an  Educational  Tool.  Teaching  of  Psychology,  36(1),  59-­‐-­‐64.   Boulos,  M.  N.  K.,  Hetherington,  L.,  &  Wheeler,  S.  (2007).  Second  Life:  an  overview  of  the  potential   of  3-­‐D  virtual  worlds  in  medical  and  health  education.  Health  Information  and  Libraries   Journal,  24(4),  233-­‐245.   Bourke,  P.  (2009).  Evaluating  Second  Life  for  the  collaborative  exploration  of  3D  fractals.  Computer   &  Graphics  -­‐UK,  33(1),  113-­‐117.   Cunha,  M.,  Raposo,  A.,  &  Fuks,  H.  (2008).  Educational  technology  for  collaborative  virtual   environments.  Proceedings  of  the  12nd  International  Conference  on  Computer  Supported   Cooperative  Work  in  Design.   Chin,  J.  P.,  Diehl,  V.  A.,  &  Norman,  K.  L.  (1988).  Development  of  an  Instrument  Measuring  User   Satisfaction  of  the  Human-­‐Computer  Interface.  Proceedings  of  ACM  CHI'88  Conference  on   Human  Factors  in  Computing  Systems.   De  Lucia,  A.,  Francese,  R.,  Passero,  I.,  &  Tortora,  G.  (2008).  Supporting  jigsaw-­‐based  collaborative   learning  in  Second  Life.  Proceedings  of  the  8th  IEEE  International  Conference  on  Advanced   Learning  Technologies.   Perlman,  G.  (1997).  Practical  usability  evaluation.  Proceedings  of  the  CHI  '97:  CHI  '97  extended   abstracts  on  Human  factors  in  computing  systems.   Sinrod,  E.  J.  (2007).  Virtual  world  litigation  for  real.  Available  on  line  at   http://news.cnet.com/Virtual-­‐world-­‐litigation-­‐for-­‐real/2010-­‐1047_3-­‐6190583.html.   Talbot,  D.  (2008).  The  fleecing  of  the  avatars.  Technology  Review  -­‐Manchester  NH-­‐,  111(1),  58.

52  

Comparing  a  fully  online  course  to  a  blended   one:  the  case  of  compilers   Salvador  Sánchez  Alonso  (1),  Daniel  Rodriguez  García  (1),  Robert  Clarisó  Viladrosa  (2)   (1)  

Information  Engineering  research  unit,  Universidad  de  Alcala   Ctra.  de  Barcelona,  Km.  33.6,  28817  Alcalá  de  Henares,  Spain   {salvador.sanchez,daniel.rodriguezg}@uah.es (2)  

IT,  Multimedia  and  Telecommunications  Department,  Universitat  Oberta  de  Catalunya   Rambla  del  Poblenou  156,  08018  Barcelona,  Spain   [email protected]

Abstract    The  compilers  course  is  part  of  the  degree  in  Computer  Science  that  the  Open  University  of  Catalonia   (UOC)   –an   online   university   located   in   Barcelona–   currently   offers   in   fully   online   mode.   In   the   University   of  Alcala  (UAH),  located  in  Madrid,  the  same  course  is  given  in  a  traditional,  face-­‐to-­‐face  format.  Based   on  the  experience  of  the  teachers  of  these  courses    during  the  2008  academic  year,  this  paper  reports   on   a   study   carried   out   to   determine   whether   students   at   UOC,   who   take   only   online   courses   perform   (and   consequently   learn)  as   much   as   students   taking   identical   course   in   a   traditional   university   (UAH).   Preliminary  results  comparing  their  marks  in  the  first  assessment  of  the  course  indicate  that  the  amount   of  learning  is  similar  in  both  settings.  

1.  Introduction   The  Open  University  of  Catalonia  (UOC)  is  a  virtual  university  aimed  at  complementing  the  Catalan   university  system  “by  making  university  studies  available  to  citizens  who  cannot  enroll  for  a  face-­‐ to-­‐face  university  degree”  (Borges,  1998).  As  teachers  in  a  traditional  (so  to  speak)  university,  the   University  of  Alcala,  we  were  curious  about  how  different  our  UOC  students  would  perform   compared  to  our  UAH  students.  After  reading  on  a  similar  experience  by  Anstine  &  Skidmore   (2005),  we  were  interested  in  establishing  whether  our  UOC  students,  taking  a  fully  online  course,   were  learning  as  much  as  our  regular  students  at  UAH,  even  if  the  latter  had  unlimited  access  to   teachers,  as  they  could  arrange  an  appointment  anytime  to  meet  with  a  teacher.  Our  personal   perception  was  that  UOC  students,  more  used  to  work  autonomously,  would  perform  better  as   the  assessment  task  implied  an  important  process  of  previous  documentation  that  traditional   students  are  not  completely  familiar  with.  So,  we  hypothesized  that,  contrary  to  what  most  people   could  expect,  our  UOC  students  would  perform  better  and  consequently  would  learn  more,  or  at   least  as  much  as,  those  students  attending  to  regular  face-­‐to-­‐face  classes.   This  paper  is  structured  as  follows.  Section  2  explains  the  irrespective  settings  of  each  of  the   universities  participating  in  the  study,  namely  UOC  and  UAH,  as  well  as  the  motivation  for  this   research.  Section  3  details  the  design  of  the  research  and  how  the  study  was  conducted,  showing   the  most  interesting  results.  Finally,  some  conclusions  and  outlook  for  more  comprehensive   studies  are  provided  in  section  4.  

2.  Background   2.1.  The  Open  University  of  Catalonia     The  Open  University  of  Catalonia  (UOC)  is  a  virtual  university  with  more  than  54.000  students  all   around  the  world  (UOC,  2008).  Currently,  UOC  offers  undergraduate  degrees  in  Catalan  and   Spanish  and  graduate  degrees  in  English,  Catalan  and  Spanish.  UOC  has  offered  university  degrees   53  

in  Computer  Science  since  1997  and  currently  more  than  6.000  students  are  enrolled  in  Computer   Science  courses.     Teaching  at  the  UOC  is  performed  through  a  virtual  campus  (Borges,  1998),  an  online  platform   which  aggregates  many  services  oriented  towards  students  and  academics,  such  as:  virtual   classrooms  where  they  can  access  course  self-­‐study  materials,  submit  assignments  and   communicate  with  their  peers  and  the  course  instructors;  virtual  laboratories  for  exercising   practical  skills  (Prieto,  2008);  and  a  virtual  library  that  provides  access  to  recommended   bibliography,  databases  and  journals.  Academics  and  students  communicate  asynchronously  using   public  forums  or  personal  mailboxes.           Three  academic  profiles  participate  in  the  UOC  learning  methodology:  the  counselor,  the  subject   tutor  and  the  lecturer.  Counselors  provide  orientation  throughout  the  degree,  guiding  the   selection  of  courses  and  providing  information  regarding  professional  openings,  etc.  Subject  tutors   answer  questions  about  a  specific  course,  design  the  assignments  used  for  the  assessment  of  the   course  and  grade  the  students.  Courses  with  many  students  are  split  into  several  virtual   classrooms,  each  with  a  different  tutor.  Finally,  lecturers  act  as  coordinators  of  the  team  of  tutors   for  a  given  course  and  participate  in  the  course  design.  While  lecturers  are  full-­‐time  academics  at   UOC,  subject  tutors  are  professional  or  academics  with  full  time  commitment  at  another   institution  or  company,  and  which  are  selected  according  to  their  expertise  in  a  given  area.     As  part  of  its  degree  in  Computer  Science,  the  UOC  offers  two  6-­‐month  courses  in  compiler  design   and  construction,  which  are  compulsory  to  achieve  the  Spanish  5-­‐year  degree  in  Computer  Science   (Ingeniería  en  Informática).  These  subjects  have  many  prerequisite  courses  (programming,  data   structure,  automata  theory  and  computer  architecture)  and  therefore  they  are  among  the  last   courses  taken  by  computer  science  students,  typically  in  the  last  year  of  their  degree.  Table  1   describes  the  contents  of  these  courses.  The  course  design  has  not  yet  been  adapted  to  the   European  Credit  Transfer  System  (ECTS),  but  the  workload  of  each  course  is  estimated  at  6  ECTS   credits.     Table  1.  Compiler  courses  in  the  UOC  Computer  Science  curriculum.   Compilers  1     •



• •

Introduction  to  compilers:  history,   construction  process,  compiler   architecture.  .  .   Front-­‐end:  lexical,  syntactical  and   semantic  analysis,  symbol  tables,  error   recovery   Back-­‐end:  code  generation  and   optimization   Construction  of  a  compiler  front-­‐end   using  JLex  and  CUP  

  Compilers  2       • • •



Construction  of  interpreters   Mark-­‐up  languages  (XML)   Advanced  code  generation:  procedure   calls  (pass-­‐by-­‐value  vs  pass-­‐by-­‐reference),   object-­‐oriented  programming  languages,   .  .  .   Construction  of  abstract  stack  machine   interpreters  and  use  of  XML  technologies   (DTDs,  XSLT,  Java  APIs  for  XML)  

From  the  point  of  view  of  the  students,  the  workload  and  difficulty  of  compiler  courses  is   considered  “above  average”  within  the  Computer  Science  curriculum.  Some  points  typically  raised   to  argue  for  this  difficulty  are:  the  use  of  many  concepts  and  techniques  from  several  prerequisite   subjects,  highly  theoretical  contents  (e.g.  parsing  theory),  long  programming  assignments  and  the   introduction  of  new  software  tools  and  languages  (constructors  of  lexical  and  syntactical   analyzers),  among  others.   2.2.  The  University  of  Alcala  

54  

On  the  other  hand,  the  University  of  Alcala  (UAH)  is  a  public  university  located  in  Alcala  de   Henares,  a  Unesco  world  heritage  town  located  35  km  from  Madrid,  the  capital  of  Spain.  The  city,   founded  in  the  early  16th  century,  was  awarded  the  World  Heritage  status  in  1988  because  it  was   the  world's  first  planned  university  city.     The  UAH  offers  3  different  degrees  in  computer  science,  the  most  advanced  of  which  has  a   duration  of  4  years  –equivalent  to  240  ECTS–  and  allows  the  student  to  obtain  the  Spanish  degree   in  Computer  Science  (Ingeniería  en  Informática).  As  part  of  its  syllabus,  this  degree  includes  a   compiler  course  as  a  mandatory  subject  whose  main  topics  are  detailed  in  table  2.     Table  2.  Compiler  course  in  the  UAH  Computer  Science  curriculum.   Compilers     • • • •

Introduction  to  compilers:  history,  construction  process,   compiler  architecture.  .  .   Front-­‐end:  lexical,  syntactical  and  semantic  analysis,   symbol  tables,  error  recovery   Back-­‐end:  code  generation  and  optimization   Construction  of  a  compiler  front-­‐end  using  JLex  and  CUP  

The  course  follows  a  blended  learning  methodology,  where  face-­‐to-­‐face  lectures  are  combined  to   virtual  learning  and  interaction  through  a  Moodle  parallel  course.  Lectures,  which  are   approximately  50%  of  the  total  time  of  the  course,  address  the  theoretical  foundations  of  the   course,  and  are  taught  in  a  traditional  classroom.  The  rest  of  the  time  is  dedicated  to  problem   solving  cases  and  assignments.  During  the  practical  part  of  the  course,  lecturers  provide  some   initial  guidance  on  the  tools  that  students  must  use  as  well  as  a  few  practical  examples  on  simple   applications  during  3  to  4  face-­‐to-­‐face  sessions.  During  these  sessions,  students  raise  questions   about  tools  use,  installation,  technical  problems  in  general  and  the  like.  Once  they  master  this   part,  students  face  three  individual  assignments  during  the  rest  of  the  course.  During  their   assignment  elaboration,  students  have  access  to  a  virtual  learning  environment  ––  specifically  set   up  to  enhance  both  student  to  student  and  student  to  lecturer  communication.  Students  use  the   virtual  learning  environment  to  raise  questions  on  the  application  of  theory  to  their  assignments,   technical  problems,  documentation  and  other  communication  activities  both  with  their  peers  and   with  lecturers.   2.3.  Motivation   Two  professors  from  UAH’s  Compilers  course  also  work  as  subject  tutors  in  UOC’s  Compilers  1   course.  This  fact  provided  the  opportunity  to  compare  two  learning  methodologies,  fully  online   learning  versus  blended  learning,  in  the  context  of  a  Compilers  course.  To  this  end,  we  studied  the   success  rate  of  students  in  the  assessment  activities  of  both  courses.     An  issue  which  lends  credibility  to  the  results  is  the  fact  that  students  in  both  universities  were   evaluated  using  exactly  the  same  assessment  activities,  and  that  the  grading  criteria  were  also   equal  (given  that  all  assignments  where  graded  by  the  same  set  of  professors).    

3.  Design  of  the  research   The  comparison  was  performed  during  the  first  semester  of  the  academic  year  2008-­‐2009.  In  the   UOC  course  “Compilers  1”,  there  were  three  virtual  classrooms,  two  in  the  Catalan  language  with   53  and  57  students  respectively,  and  another  in  Spanish  with  27  students,  but  only  the  class  in   Spanish  was  used  for  this  preliminary  study.  In  the  UAH  course,  there  was  only  a  virtual  classroom   55  

for  the  53  students,  even  though  the  students  were  split  into  two  different  groups  for  the  lectures   part  only  for  their  convenience  in  terms  of  space  and  teaching  shifts.   There  are  important  differences  among  the  profiles  of  students  at  the  UOC  and  the  UAH.  The  UOC   is  oriented  towards  life-­‐long  learning  and  students  which  cannot  attend  a  face-­‐to-­‐face  university   due  to  personal  or  work  commitments.  Therefore,  the  students  from  UOC  tend  to  be  older  on   average  (UOC,  2008),  have  work  experience  and  study  part-­‐time  while  working  full-­‐time  and/or   caring  for  their  families.  It  is  also  common  that  many  students  from  UOC  either  have  a  degree  on   another  area,  or  started  a  degree  which  they  interrupted  for  some  reason.    On  the  other  hand,   students  at  the  UAH  tend  to  be  younger  and  studying  their  first  degree  on  a  full-­‐time  basis,   possibly  (but  not  very  often)  simultaneously  with  a  part-­‐time  job.  This  student  profile  also  has  a   greater  urgency  to  complete  their  degree  quickly  in  order  to  enter  the  full-­‐time  job  market.    These   differences  in  student  profiles  are  significant  in  the  study  of  the  success  rate.  For  example,  as  time   is  a  very  important  resource  for  UOC’s  students,  students  only  invest  time  in  solving  an  assignment   if  consider  they  have  a  reasonable  chance  of  success  (rather  than  failing,  they  simply  will  not   submit  the  assignment).  Meanwhile,  UAH’s  students  have  incentives  to  work  on  assignments  even   if  they  know  their  solution  will  not  be  optimal  (getting  feedback  from  course  instructors  and  avoid   “wasting  a  semester”).   3.1.  Teaching  and  assessment  mechanisms   In  both  universities,  UOC  and  UAH,  the  assessment  of  the  compilers  course  is  carried  out  in  a   similar  manner.     UOC  offers  theirs  students  two  alternative  paths  to  pass  the  compilers  course:   1. Three  continuous  assessment  activities,  followed  by  a  validation  test.   2. A  final  exam  at  the  end  of  the  course.   Both  paths  assess  the  theoretical  concepts  of  the  course  and  the  practical  issues  as  it  is  shown  in   table  3  –see  how  practical  aspects  play  a  very  important  role  in  these  activities  and  therefore  have   an  important  weight  in  the  final  mark–.  According  to  experience,  continuous  assessment  improves   the  assimilation  and  understanding  of  concepts,  especially  in  a  distance  learning  environment.   Therefore,  continuous  assessment  path  is  the  one  recommended  by  OUC  course  instructors  and   the  one  selected  by  almost  all  students.     Table  3.  Organization  of  the  assessment  activities  at  UOC  

• • •

Structure  of  a  compiler  (front-­‐end/back-­‐end,  phases,  symbol   table,  .  .  .  )   Compilation  vs  interpretation   Compiler  construction  (bootstrapping,  cross-­‐compilers,  .  .  .  )   Lexical  analysis  phase  

Practice  (70%)  

• •

Definition  of  regular  expressions   Construction  of  lexical  analyzers  using  JLex  and  Java  

Theory  (30%)  

• • •

Syntactic  analysis  phase   Bottom-­‐up  (LR,  LALR)  and  top-­‐down  (LL)  parsing   Syntax  error  recovery  

Practice  (70%)  

• •

Integration  of  JLex  and  CUP   Construction  of  a  syntactic  analyzer  (parser)  using  CUP  and  

• Theory  (30%)   Activity  1  

Activity  2  

56  

 

Java  

• •

Semantic  analysis  phase  (attributed  grammars,  type   checking,  .  .  .  )   Code  generation  phase  (intermediate  code,  .  .  .  )   Code  optimization  phase  (goals,  algorithms,  .  .  .  )  



Construction  of  semantic  analyzers  using  CUP  and  Java  

• Activity  3  

Theory  (30%)  

Practice  (70%)  

The  validation  test  consists  of  a  set  of  questions  that  focus  on  specific  aspects  of  covered  by  the   continuous  assessment  activities  performed  throughout  the  course.  This  test  has  two  goals:  to   certify  the  identity  of  the  student  (i.e.  the  student  has  solved  the  assessment  activities  herself)  and   to  validate  the  learning  process  (i.e.  the  student  has  understood  the  concepts  and  techniques   used  in  the  assessment  activities).   The  final  grade  is  computed  as  the  average  grade  of  all  continuous  assessment  assignments,  taking   into  account  that  in  order  to  pass  the  student  has  to  pass  all  continuous  assessment  assignments   and  the  validation  test.   Regarding  UAH,  the  assessment  is  divided  into  2  separate  parts:   1. A  final  exam  at  the  end  of  the  course  for  assessing  theoretical  concepts  and  knowledge.   2. Three  assessment  activities,  followed  by  a  personal  interview  for  validation  purposes.   These  assessments  address  the  practical  part  of  the  course  only.   The  final  grade  is  computed  here  as  the  average  grade  of  the  final  exam  (60%  weight  in  the  final   mark)  and  all  continuous  assessment  assignments  (40%  weight  in  the  final  mark).  As  in  the  UOC   course,  the  student  must  pass  all  continuous  assignments  to  pass  this  part  of  the  course,  but  no   student  assignment  is  considered  valid  if  the  face-­‐to-­‐face  validation  is  failed,  because  this  test  has   the  same  goals  previously  described  for  the  UOC:  to  certify  that  the  student  has  solved  the   assessment  activities  herself  and  to  validate  the  learning  process.  Table  4  shows  the  organization   of  the  three  assessment  activities  at  UAH.   Table  4.  Organization  of  the  assessment  activities  at  UAH   Activity  1  

• •

Definition  of  regular  expressions   Construction  of  lexical  analyzers  using  JLex  and  Java  

Activity  2  

• •

Integration  of  JLex  and  CUP   Construction  of  a  syntactic  analyzer  (parser)  using  CUP  and  Java  

Activity  3  



Construction  of  semantic  analyzers  using  CUP  and  Java  

3.2.  How  the  assignments  were  set  up  and  assessed   In  this  paper,  we  will  analyze  the  results  achieved  in  the  first  continuous  assessment  activity  in  the   semester  (from  the  UOC  perspective)  and  the  first  assignment  (from  the  UAH  perspective)  as  they   have  exactly  the  same  tutors/lecturers,  the  same  problem  statements  and  a  similar  period  of  time   to  submit  their  solutions.     Assignments  consisted  on  a  set  of  exercises  –both  theoretical  and  practical  in  the  case  of  the  UOC   and  only  practical  in  the  case  of  UAH–  that  students  must  solve  on  their  own.  Once  the  problem   statements  were  published,  students  had  a  fixed  time  (which  is  usually  two  to  three  weeks)  to   57  

submit  their  solutions.  Each  assignment  typically  requires  4-­‐5  hours  to  be  completed,  in  addition   to  the  time  devoted  to  revising  the  materials  (course  materials,  recommended  bibliography  and   collections  of  solved  problems).     To  have  two  comparable  groups  of  students’  results,  only  the  practical  part  of  the  UOC  assessment   activity  was  used  for  the  study,  so  the  theory  part  (30%,  see  table  3)  was  removed  from  it.  Thus,   the  UAH  and  the  UOC  assignment  activities  were  exactly  the  same,  which  allowed  using  the  same   criteria  to  correct  both  the  students’  results  of  the  UOC  and  the  UAH  groups.   In  particular,  the  assessments  were  corrected  according  to  a  set  of  criteria  classified  into  3  groups:   essential  (E),  positive  (+)  and  negative  (-­‐).  We  considered  essential  those  requirements  that  all  the   student  programs  must  accomplish  as  a  precondition  to  pass  the  assessment,  while  positive  and   negative  criteria  were  lists  of  issues  that  could  have  an  influence  on  the  final  mark.  More  detail  on   the  criteria  followed  by  the  courses’  tutors  is  given  in  table  5.   Table  5.  Correction  criteria   Type  of   criteria  

Description  

Comments  

E  

The  archive.lex  must  be  processed  by   JLex  without  errors  

 

E  

The  resulting  Java  file  must  compile   without  errors  

Some  minor  errors  were  not  considered,  e.g.   using  a  class  name  for  the  scanner  other   than  the  one  requested  

E  

The  scanner  created  by  JLex  cannot  end     unexpectedly  (e.g.  due  to  a  not  handled   exception  or  the  like)  

+  

The  specification  file  is  legible  and   include  comments  

+  

Lexical  patterns  are  simplified  through   Usually  linked  to  the  previous  criteria   the  use  of  macros  

+  

Java  code  is  well  structured    

The  specification  file  has  a  method  for  each   functionality  instead  of  having  the  java  code   repeated  several  times  

-­‐  

The  specification  file  does  not  include   the  directive  %class  to  change  the   default  scanner  class  name  

One  mark  was  cut  out  of  10  

-­‐  

The  specification  file  includes  too  many   One  mark  was  cut  out  of  10   states,  most  of  them  unnecessary  

-­‐  

Bad  Java  code  in  the  specification  file    

-­‐  

The  student  makes  use  of  inefficient  or   0.5 mark  was  cut  out  of  10   inadequate  data  structures    

 

0.5  mark  was  cut  out  of  10  

  During  all  the  period  of  assessment,  and  up  to  the  deadline  for  submission,  the  course  instructors   were  available  to  answer  questions  regarding  the  materials  or  the  comprehension  of  the   58  

assessment  wording.  In  the  case  of  UOC,  this  help  was  of  course  available  through  the  virtual   environment,  whereas  in  the  UAH  the  lecturers  allocated  2  hours  per  week  to  face-­‐to-­‐face  help   sessions  in  the  lab,  in  parallel  to  the  help  they  provided  through  the  virtual  environment.     3.3.  Analysis  of  the  results   Our  initial  thought  was  that  students  in  blended  learning  would  achieve  better  results  than   students  in  an  exclusively  on-­‐line  environment,  as  they  have  more  direct  access  to  lecturers  both   through  the  online  environment  and  in  the  face-­‐to-­‐face  sessions.  However  this  was  discarded  by   just  comparing  basic  descriptive  statistics  as  shown  in  table  6.  Also,  and  even  though  the  marks  do   generally  follow  a  normal  distribution,  this  is  also  confirmed  as  both  standardized  skewness  and   kurtosis  are  inside  the  range  of  ±2.     Table  6.  Descriptive  Statistics     Count   Average   Variance     Standard  deviation   Minimum     Maximum   Range   Standard  skewness     Standard  kurtosis      

UAH   53   6.24717   3.57831   1.89164   3.0   9.5   6.5   -­‐0.48213   1.29985  

UOC   27     6.95185   6.03413     2.45645     1.4     10.0   8.6     1.48045   0.837939  

This  is  also  corroborated  by  the  box-­‐and-­‐whisker  plot  of  Figure  1.  As  it  can  be  observed,  although   there  is  more  variance  for  the  on-­‐line  learning  groups,  the  mean  of  the  marks  is  higher.  

  Figure  1.  Box-­‐and-­‐whisker  plots  for  marks   To  check  whether  the  difference  between  the  means  was  statistically  significant,  we  run  a  t-­‐test   with  the  following  null  hypothesis:     H0:  There  is  no  difference  between  the  means  (i.e.  the  means  are  the  same)     Therefore,  the  alternative  hypothesis,  Ha,  is  that  there  is  a  difference  between  the  means.   Selecting  a=0.05,  the  f-­‐test  for  the  equality  of  variances  shows  that  there  is  no  statistical   difference  between  the  variances  of  both  groups  and  a  t-­‐test  assuming  equal  variances  could  be   applied  (see  table  7).     59  

Table  7.  F-­‐Test  Two-­‐sample  for  variances       Mean   Variance   Observations   df   F  

UAH   6.24717   3.578309   53   52   0.593012  

UOC   6.951852   6.034131   27   26    

P(F<=f)  one-­‐tail   F  Critical  one-­‐ tail  

0.054473     0.584925      

  As  it  can  be  seen  in  table  8,  the  t  statistic  is  lower  than  the  t  critical  (.23727<  2.30601),  and  also   the  p  value  is  greater  than  a  (.0.079  >  0.05).  According  to  this,  we  can  accept  the  null  hypothesis   that  there  is  no  statistical  difference  between  the  means.   Table  8.  t-­‐Test:  Two-­‐sample  assuming  equal  variances       Mean   Variance   Observations   Pooled  Variance   Hypothesized  Mean   Difference   df   t  Stat   P(T<=t)  one-­‐tail   t  Critical  one-­‐tail   P(T<=t)  two-­‐tail   t  Critical  two-­‐tail  

UAH   6.24717   3.578309   53   4.396916  

UOC   6.951852   6.034131   27    

0   78   -­‐1.42133   0.079604   1.664625   0.159208   1.990847  

               

Based  on  the  marks  obtained  in  our  experiment,  we  can  conclude  that  knowledge  acquired  in   blended  or  exclusively  online  learning  is  similar.     3.4.  Threats  to  validity   We  faced  3  different  kinds  of  threats  to  validity:  those  concerning  the  construct  validity,  those   concerning  the  internal  validity  and  those  concerning  the  external  validity  of  our  experiment:     •

Construct  validity  is  the  degree  to  which  the  variables  used  in  the  study  accurately  measure   the  concepts  they  purport  to  measure.  In  our  case,  marks  were  the  only  way  to  measure  the   student´s  acquired  knowledge.  



Internal  validity  is  the  degree  to  which  conclusions  can  be  drawn  about  the  causal  effect  of  the   independent  variable  on  the  dependent  variables.  Potential  threats  include  selection  effects,   non-­‐random  subject  loss,  instrumentation  effect,  and  maturation  effect.  Although  the  students   are  different,  it  is  noting  that  we  only  considered  students  handing  in  their  assignments.   Another  possible  threat  is  that  both  groups  did  not  have  the  same  time  to  work  on  the   assignment  (2  weeks  for  the  UOC  students  vs.  3  weeks  in  the  case  of  the  UAH  students).   60  



External  validity  is  the  degree  to  which  the  results  of  the  research  can  be  generalised  to  the   population  under  study  and  other  research  settings.  Although  students  in  the  online  course  are   more  mature  than  in  the  blended  group,  their  initial  knowledge  was  similar.  The  only  possible   difference  is  that  the  teaching  materials  were  not  identical  in  both  cases.  

4.  Conclusions  and  future  work   The  research  reported  on  the  comparison  of  two  courses  on  compiler  basics,  one  fully  online  given   at  the  Open  University  of  Catalonia  (UOC)  and  another  blended  one  given  at  the  University  of   Alcala  (UAH).  The  study  reported  herein  was  restricted  to  the  first  assignment  activity  of  the   course  as  the  other  2  were  not  finished  by  the  UAH  course  by  the  deadline.  Even  though  some   factors  change  and  the  conditions  and  context  cannot  be  demonstrated  to  be  identical,  most   conditions  were:  the  assessment  to  carry  out,  the  teachers  who  acted  as  tutors  and  the  evaluation   criteria.     We  first  carefully  studied  possible  threats  to  the  study  validity,  considering  all  different  aspects   and  concluding  that  those  threats  did  not  have  a  central  influence  on  the  results  of  our   experiment.    The  tests  run  on  the  marks  of  both  groups  of  students  allowed  us  to  conclude  that   the  amount  of  knowledge  acquired  in  blended  learning  (UAH)  and  in  exclusively  online  learning   (UOC)  is  similar.   Further  work  should  progress  on  a  more  comprehensive  study,  covering  all  the  stages  of  the   compilers  course,  namely  activities  1  to  3  and  not  only  the  activity  1.  Also,  studying  new  factors   such  as  the  lecturers  influence  (e.g.  do  students  in  other  groups  perform  differently?),  time  given   for  assignment  resolution,  students’  age,  etc.  would  be  helpful  for  getting  more  comprehensive   conclusions.  Replications  over  several  years  are  also  a  target  to  address  external  validity.  

Acknowledgements   The  authors  would  like  to  thank  Francesc  Bagés  and  Alex  Pajuelo  for  their  collaboration  in   Compilers  1  at  the  UOC  and  discussions  about  the  design  of  Compiler  courses.  

References   Anstine,  J.,  &  Skidmore,  M.  (2005).  A  small  sample  study  of  traditional  and  online  courses  with   sample  selection  adjustment.  Journal  of  Economic  Education,  36(2),  107-­‐127.       Borges,  F.  (1998).  UOC  and  its  'Campus  Virtual':  A  Model  for  Online  University  Education,  In   Proceedings  of  the  2nd  North  American  Web  Developers  Conference  (NAWEB  98),  New   Brunswick,  NJ,  USA.   Open  University  of  Catalonia  (2008).  Annual  report  2007-­‐2008.  URL:   http://www.uoc.edu/portal/_resources/EN/documents/memories/0708/memo_eng.pdf   Prieto,  J.  (2008).  Ontology-­‐based  characterization  and  specification  of  virtual  laboratories  in   Computer  Science  degrees.    PhD  thesis,  Universitat  Oberta  de  Catalunya.

61  

Learning  Engineering  by  Modeling  a  Guitar   Effects  Pedal  with  FPGAs   Joaquín  Olivares,  José  M.  Palomares,  José  M.  Soto,  Juan  C.  Gámez   Department  of  Computer  Architecture.     University  of  Córdoba.  Campus  Rabanales.  14071.  Spain   {olivares,jmpalomares,jmsoto,el1gagrj}@uco.es

Abstract   Several  Supervised  Academic  Activities  have  been  proposed  in  the  subject  “Digital  Electronic  Systems”   th carried  out  in  the  4  year  of  Engineering  Degree  in  Automatics  and  Electronics.  The  purpose  of  these   works  is  to  implement  digital  systems  in  FPGA  technology.  With  these  supervised  works,  the  students   will  be  able  to  prove  their  knowledgement  of  the  subject.  Furthermore,  the  realization  of  these  works   will  permit  to  develop  cross-­‐activities  with  others  subjects.    A  project-­‐based  learning  methodology  is   applied,  focusing  in  this  paper  in  a  particular  work  from  one  student  that  consisted  in  implementing  a   guitar  effects  pedal.  This  activity  has  been  awarded  as  the  Most  Innovative  Activity  of  2007  for  this   degree  by  the  University  of  Córdoba.    

1.    Background   Different  learning  patterns  are  developed  by  the  students  even  if  they  use  the  same  methodology,   learning,  tools  and  contextual  factors.  These  differences  are  owing  to  personal  and  contextual   factors  (Vermunt  2005).  Several  works  present  the  benefits  obtained  when  individual  learning  was   applied  (Liu  et  al.    2008).  These  benefits  increased  when  student’  emotions  were  considered   (Lekkas  et  al.  2008).  Because  of  its  particular  feature,  these  differences  in  learning  process  are  very   important  in  our  degree.   The  subject  has  around  twenty  students  enrolled  from  several  universities  B.S.  in  Engineering   Degrees  of  three  years  as  Electronic,  Electrical,  Mechanical  or  Computer  Science.  This  is  the  reason   whereby  students  are  not  completely  informed  in  initial  concepts.  Therefore,  it  is  necessary  to   establish  a  special  work  timing  for  everyone   The  Digital  Electronic  Systems  subject  is  structured  in  three  thematic  blocks  (Olivares  2007).  The   first  block  is  a  review  of  programmable  logic  devices,  DS,  and  design  of  DS,  and  takes  about  20%  of   the  total.  The  second  block  is  dedicated  to  train  the  students  in  advanced  hardware  programming,   using  FPGA  devices  and  VHDL  language,  takes  about  60%  and  is  the  most  important  thematic  block   of  the  subject.  Finally,  the  last  one  is  dedicated  to  show  the  microcomputer  as  a  complex  digital   system,  taking  the  remaining  20%  (Olivares  et  al.  2008).     The  students  have  two  different  ways  of  passing  the  subject:  a  final  and  common  exam  or  an   individual  project.  Such  project  must  have  an  adequate  complexity  in  order  to  guarantee  that   students  have  learnt  all  the  contents  proposed  in  the  subject.  Furthermore,  the  students  must   carry  out  the  project  spending  the  determined  hours  assigned  in  the  subject  guide.     The  old  methodology  consisted  on  a  more  rigid  approach.  The  40%  of  the  assessment  depended   on  a  series  of  obligatory  practical  works.  The  remaining  60%  depended  on  the  final  examination.   Moreover,  several  optional  works  could  be  considered  in  the  final  assessment  whenever  students   pass  the  subject.  Practical  works  and  exams  are  needed  to  succeed  in  passing  the  subject.   However,  whenever  students  pass  the  subject;  it  is  possible  to  consider  several  optional  works  to   improve  the  final  assessment.  Due  to  this  methodology  all  students  developed  the  same  practical   works.  In  this  way,  one  can  find  some  negative  aspects,  which  infringe  the  above  mentioned   62  

guiding  principles  (Mathematical,  1993).  Equity  is  not  ensured,  because  all  students  have  unlike   knowledge  and  this  might  produce  different  reactions  given  the  situation:  practical  works  too   complex  for  some  students  or  too  easy  for  others.   Although  the  main  aim  of  the  proposed  activity  is  to  know  the  concepts  of  the  subject,  it  is  also   interesting  that  the  projects  contribute  to  learn  or  to  introduce  other  subjects,  promoting   horizontal  cross  activities  (in  the  same  academic  course)  and  vertical  cross  activities  (between   current  and  next  academic  years).  Finally,  the  students  must  acquire  the  ability  to  design  and  solve   industrial  problems.   In  the  last  two  years,  a  new  methodology  based  on  individual  projects  was  proposed  to  the   students.    Project-­‐based-­‐learning  was  suggested  as  a  promising  pedagogical  approach  for  teaching   technological  problem-­‐solving  (Mioduser  and  Betzer,  2007).     The  professor  suggests  each  student  to  develop  a  particular  project  in  which  personal  interests   were  included.  Furthermore,  the  students  would  be  able  to  suggest  themselves  their  own  project   provided  that  it  is  relatively  complex  and  understable  and  that  it  is  approved    by  their  professor.   This  methodology  presents  a  notable  improvement  in  assessment  such  as  it  is  shown  in  Section   Results   In  our  suggestion,  each  student  has  a  project  that  matches  his  personal  interests.  Furthermore,   the  students  themselves  can  suggest  their  own  project,  provided  that  it  is  complex  and   comprehensive  enough,  and  that  it  is  approved  by  their  professor.  This  methodology  presents  a   notable  improvement  in  assessment  as  is  shown  in  Section  Results.   The  Tuning  competences  (Tuning  2007)  that  have  been  considered  as  the  most  important  ones  for   the  professional  development  in  this  degree  are  listed  below.  The  aim  is  to  develop  these  skills   among  all  subjects  of  the  degree:   

Capacity  for  analysis  and  synthesis.  



Basic  knowledge  of  the  field  of  study.  



Capacity  for  applying  knowledge  in  practice.  



Capacity  for  generating  new  ideas  (creativity).  



Capacity  to  learn.  



Critical  and  self-­‐critical  abilities.  



Knowledge  of  a  second  language.  

With  this  experimental  methodology,  different  projects  will  be  assigned  to  different  students   according  to  their  features.  These  projects  should  agree  some  requirements,  in  order  to  ensure   the  guiding  principles:  1)  the  project  is  individual,  2)  it  involves  the  majority  of  methods  and  tools   considered  within  the  subject,  and  3)  it  is  complete  and  relatively  complicated.  These   requirements  are  indispensable  for  a  good  assessment,  as  other  experiences  reveal  (Sklyarov  and   Skliarova,  2005).   In  addition  we  also  give  our  students  the  opportunity  to  choose  to  be  examined  by  means  of  the   old  methodology  or  by  the  new  proposal.  All  of  them  voted  for  the  new  methodology.   All  skills  are  developed  with  the  proposed  methodology,  with  the  exception  of  the  “capacity  for   generating  new  ideas”,  that  can  be  suppressed  in  basic  projects  proposed  by  the  professor.   A  typical  assessment  criterion  in  Spain  is  the  range  of  values  between  0  to  10  points;  the  students   need  to  reach  a  degree  of  5  or  higher  in  order  to  pass  the  subject.   63  

When  the  professor  suggests  the  list  of  projects,  he  informs  the  students  of  the  highest  evaluation   possible  attainable  with  each  one.  Simple  projects  with  a  highest  value  of  5  are  possible,  though  in   this  case,  a  project  previously  limited  to  5  is  a  project  that  covers  minimum  concepts  and  skills   required  to  pass  the  subject.  In  this  way,  a  project  limited  to  10  must  cover  advanced  topics  and  to   guarantee  that  the  students  learn  completely  the  subject.   When  a  determined  student  proposes  a  project,  the  professor  studies  the  proposition  and  sets  the   maximum  value  that  the  student  can  obtain  with  it.     The  final  evaluation  obtained  for  a  student  is  based  on  the  percentage  shown  in  Fig.  1.  This   percentage  is  applied  to  the  maximum  limited  value  for  the  project.  

  Fig.  1:  How  to  evaluate  a  project   In  this  contribution,  a  distinguished  project  is  described  in  order  to  present  the  motivation  to   select  the  projects’  contents,  how  the  bases  are  related  with  other  subjects,  and,  which   competences  are  developed.  

2.    Discussion.  A  project-­‐based  learning  example   The  design  of  a  guitar  multi  effects  pedal  and  its  implementation  in  an  FPGA  device  was  proposed   in  the  first  semester  of  2007.  This  specific  project  was  proposed  for  one  student  who  enjoys   playing  the  guitar,  and  he  was  very  interested  in  it.  The  project  was  accepted  because  it  was   complex  enough  and  covered  the  main  concepts  of  the  subject.  Furthermore,  advanced  concepts   were  also  introduced.  The  highest  value  possible  which  a  student  could  obtain  was  10  points  over   10.  All  competences  listed  in  the  previous  section  were  considered.   The  proposal  included  the  implementation  of  the  following  guitar  effects:  Echo,  Flanger,  Phasing,   Chorus,  Clipping,  Wah,  Phaser,  and  Distortion  (Hunter,  2004).  Once  the  FPGA  was  programmed   with  the  audio  processor  designed  by  the  student,  speakers  and  a  music  source,  as  an  iPod  or  an   electric  guitar,  were  connected  to  the  system  to  prove  that  the  system  worked  correctly.  The   interface  with  the  development  board  was  the  buttons  and  switches  to  select  the  effect  and  its   strength,  and  the  7-­‐segments  led  to  see  basic  information  about  the  processing.  To  solve  this   problem  a  previous  mathematical  model  of  each  effect  was  solved  on  Matlab  simulator.  In  this   project  an  analog  to  digital  converter  (ADC),  and  digital  to  analog  converter  (DAC)  were  used  on  a   controller  board.  Also  memory  "first  input,  first  output"  (FIFO)  buffers  were  used.  Real  time   processing  concepts  were  introduced  with  this  project.  The  proposed  system  is  shown  in  Fig.  2.  

64  

                AK4551

       

Audio Codec Interface

         

Read/Write

Signal adder

Distortion

         

SDRAM Controller

SDRAM

 

FPGA

           

Input Buttons

Switches 7-Segments

 

Fig.  2:  Design  of  the  proposed  system   To  develop  the  design,  the  student  used  previous  knowledge  acquired  in  other  subjects  during  the   same  semester.  The  subjects  of  the  following  semester  or  year  were  also  introduced.  Related   subjects  are  shown  in  bold  in  Fig.  3.       65  

4th Year

First Semester

Last Semester

Electric Machines

Industrial Electronics

Optimization

Control Engineering I

Digital Electronic Systems

Modeling Dynamic Systems

Mechanics Systems

Human-Machine Interface

English

Computer Architecture

Scientific Programming

Applied Electrics

Intelligent Buildings

5th Year

Electropneumatic

Control Engineering II

Programming Robots

Perception Systems

Projects

Industrial Power Electronics

Integrated Production Systems

Safety at Automatic

Real Time Systems

Process Control

Engineering Materials

Advanced Power Electronics

Microelectronics

Computer Networks

Digital Signal Processing

  Fig.  3:  Organization  of  the  cross  knowledge   Then,  a  description  of  the  introduced  subjects  and  the  knowledge  related  for  each  one  is   summarized:   This  academic  year:   

English:  Documentation  reading.  We  remind  our  students  that  final  project  presentation   hd  to  be  presented  into  English  Language.  In  that  case,  the  English  professor  was  the   responsible  person  for  evaluating  this  part.  



Scientific  Programming:  Simulation  was  carried  out  by  using  MatLab  and  Simulink.  



Control  Engineering  I:  Concepts  about  filter  and  sampling  signals  are  introduced.  



Computer  Architecture:  The  use  of  memory  and  FIFO  buffers  is  introduced.  

Next  academic  year:   

Control  Engineering  II:  Advanced  filters.  



Projects:  How  to  write  a  dossier.  



Real  Time  Systems:  The  proposed  effects  are  processed  and  shown  while  playing  music.   Initial  concepts  on  real  time  processing  are  required.  



Digital  Signal  Processing:  Using  ADC  and  DAC.  Digital  signals.  

The  instrumental  used  to  develop  this  project,  shown  in  Fig.  4,  was:   

A  XESS  XST-­‐3  board,  provided  with  audio  codec,  ADC,  DAC,  SDRAM  memory,  I/O  ports  and   a  Spartan-­‐3  "XST-­‐3S1000"  FPGA  from  Xess  (Xess  2005).     66  



An  electric  guitar;  that  could  be  substituted  by  another  music  source  such  as  an  iPod,   microphone,  etc.  



Speaker.  

Fig.  4:  The  guitar  effects  pedal  implemented  in  an  FPGA  

3.    Other  projects  developed   All  projects  were  implemented  on  FPGA  devices  and  had  a  common  component  based  on  the  use   of  input/output  peripherals,  memory  and  computer  architecture  concepts.  To  implement  these   projects,  the  students  used  FPGA  devices  such  as  "Spartan  3  Board"  from  Digilent  Inc.   The  most  common  work  about  peripherals  used  the  VGA,  because  of  the  complexity  to  configure   the  synchronization  signals.  Moreover,  other  devices  such  as  the  PS/2  mouse  and  keyboard  were   used.   In  most  cases,  the  matter  was  about  games,  because  of  the  attractiveness  for  the  students   (Carmona  et  al.  2008),  (Tam  et  al.  2008).  Moreover,  this  kind  of  projects  provides  authentic  tasks,   i.e.,  tasks  which  are  similar  to  that  performed  in  "real  life".  This  is  a  key  principle  of  a  good   assessment  (Waters  and  McCracken,  1997),  (Baker  et  al.  2005).   A  good  example  of  this  was  the  implementation  of  the  typical  game  called  ``Simon'',  with  a  visual   version.  A  random  color  sequence  is  showed  on  VGA,  the  player  tries  to  reproduce  this  sequence   to  pass  the  game  level.  To  accomplish  this  game,  it  is  required  the  hardware  VGA  control,  random   generator  based  on  internal  oscillator,  and,  external  interaction  with  keyboard  or  switches.   In  other  project,  a  lap  counter  visualized  on  VGA  was  implemented  and  adapted  for  a  slot  cars   racing  game  called  “Scalextric”.  In  this  case,  electronics  and  electrical  concepts  were  used  in  order   67  

to  adapt  a  basic  Scalextric  track  introducing  two  photocell  sensors.  Besides,  a  small  electronic   board  is  designed  to  connect  the  sensors  to  the  programmable  digital  system  on  FPGA.  Learning   about  asynchronous  signals  was  reached  with  this  kind  of  projects.   In  the  same  way  a  typical  9-­‐puzzle  was  designed.  Keyboard  data  input,  random  generator  and  VGA   controller  was  used  in  this  project.     The  typical  game  called  Ricochet  was  designed  by  using  a  previous  open  source  version  (Goga  and   Andrei,  2005).  In  this  case,  to  review  and  understand  a  previous  design  was  the  first  part  of   learning;  later,  the  student  added  a  new  module  which  consisted  on  a  shooting  button.  In  the   design  of  this  new  option,  interaction  with  other  modules  must  be  updated  by  the  student.  Finally,   the  game  was  controlled  with  keyboard  and  board'  buttons,  besides  a  clock  divisor  was  used  to   control  the  speed  of  different  game  components.  A  game  picture  is  presented  in  Fig.  5.                           Fig.  5:  The  Ricochet  

4.    Results   A  notable  improvement  in  assessment  compared  to  previous  years  can  be  observed.  In  Fig.  6,  the   students'  assessment  is  shown  with  the  results  of  the  last  three  years  compared  to  the  previous   four  academic  ones.  The  Old  Methodology  corresponds  to  2002-­‐2005  academic  period,  whereas   the  New  Methodology  based  on  projects  corresponds  to  2006,  2007  and  2008  academic  years.   In  Spain,  the  range  of    values  in  which  a  student  is  evaluated  goes  from  0  to  10  points,  and  the   student  passes  the  subject  when  obtaining  5  points  or  above.  An  equivalence  with  the  english   assessment  system  could  be  stated  as:  (A+)  Pass  with  honors,  (A)  Pass  9-­‐10,  (B)  Pass  7-­‐8,  (C)  Pass   5-­‐6.          

68  

                          Fig.  6:  Assessment  evolution     The  2002-­‐05  values  represent  the  arithmetic  mean  of  the  assessments  of  these  four  academic   years.  The  2006  was  the  experimental  year,  that  is,  the  year  in  which  we  started  the  new   methodology.  In  that  year  we  could  observe  an  improvement  compared  to  the  average  of  the   previous  four  years.  Similarly,  we  obtained  better  results  in  2007  and  2008,  due  to  a  more  precise   selection  of  the  amount  of  time  assigned  to  fullfil  the  projects.  This  meant  an  improvement  in  the   results,  as  stated  in  Fig.  5,  where  'Fail'  percentage  fell  from  almost  a  40%  of  students  who  failed   the  subject  to  a  figure  below  25%  (23%,  8%,  and  25%,  respectively,  in  2006,  2007,  and  2008).     Moreover,  this  behavior  is  also  shown  for  students  with  C  grade,  for  which  a  reduction  from  42%   to  30%  was  obtained  in  2007  and  even  more  for  2008  with  no  student  obtaining  a  C  grade.  It  is   worth  mentioning  that  2006  has  to  be  taken  as  an  exception,  because,  for  C  grade,  there  was  a   rising  leap  to  54%  of  the  students.  This  happened  because  the  students  were  able  to  finish  their   projects,  but  just  to  the  minimum  required  level  due  to  lack  of  time  for  further  enhancements.  For   A  and  B  grades,  new  methodology  courses  show  a  significant  growing.  Finally,  no  A+  grade  was   granted  (from  2002  to  2006)  and  in  2007  and  2008  (with  the  new  methodology)  aroung  10%  of  the   students  obtained  such  a  honored  grade.   4.1.    Advantages  and  drawbacks   The  first  advantage  is  the  motivation  that  these  practical  works  raise  a  great  interest  in  the   students,  because  they  have  to  work  in  FPGA  and  their  projects  are  games.  Because  of  the  projects   are  personal  practical  works,  it  is  possible  to  evaluate  features  such  as  difficulty,  ability,   dedication,  etc.  Due  to  this,  the  subject  can  be  adapted  in  a  high  grade  to  students'  particular   features.  Furthermore,  this  methodology  reports  continuously  on  student  progress.  From  the   students'  point  of  view,  they  have  the  opportunity  to  evaluate  and  reflect  on  their  own   understanding  (Waters  and  McCracken,  1997).   To  expose  the  projects  in  a  foreign  language  improves  the  student  capacity  of  expression,   contributing  to  develop  the  team  in  an  international  work  competence.   69  

The  main  drawback  comes  up  because  it  is  necessary  an  important  teacher  support  for  each   student.  In  this  current  academic  year,  this  disadvantage  has  been  mitigated  with  a  scholarship  to   assist  to  the  students.  At  the  beginning  of    projects,  some  students  can  feel  an  uncertainty  about   their  own    ability  to  solve  the  project,  but  this  uncertainty  disappears  with  the  course  evolution.  

5.    Conclusions   The  experience  was  successfully  for  students.  The  assessment  presents  an  important   improvement  since  the  failed  in  previous  years  was  around  40%  and  by  applying  the  new   methodology  the  failure  decreases  to  a  mean  of  25%.  Moreover,  the  number  of  students  with   graded  7  or  more  rose  to  a  mean  of  53%.   Competences  listed  on  discussion  section  are  all  developed  and  evaluated.  Moreover  the  student's   capacity  to  design  and  to  develop  industrial  electronic  systems,  based  on  reconfigurable   programmable  devices,  is  guaranteed.   This  experience  corroborates  how  a  methodology  based  on  projects  is  more  appropriate  for   determined  subjects  with  a  high  practical  component  than  traditional  methodologies  based   exclusively  on  examinations.  Although  reduced  groups  of  students  are  really  necessary  due  to  the   high  teaching  support  which  is  required  by  each  project.   With  this  methodology,  two  goals  are  achieved;  to  guarantee  that  students  are  able  to  perform   industrial  FPGA  designs,  and  to  begin  cross  activities  with  other  subjects.  Obviously,  the  learning  of   the  essential  concepts  of  the  subject  is  granted.   Tuning  competences  were  developed  using  the  proposed  educational  methodology.  An   improvement  in  the  assessment  and  in  the  learning  is  achieved,  students  are  more  motivated  and   are  more  active  in  the  learning  process.   With  the  “guitar  effects  pedal”  project,  the  students  passed  the  subject  with  honors  and  a  final   evaluation  of  10.  This  project  was  awarded  in  December  2007  with  the  Most  Innovative  Activity  of   the  Year  for  this  degree  at  the  University  of  Córdoba.  

Acknowledgements   This  work  was  partly  supported  by  the  Xilinx  University  Program  and  the  Vice  Chancellor  of   European  Higher  Education  Area  and  Undergraduate  Degree  Programs.  

References   A.  Baker,  E.  Navarro,  A.  van  der  Hoek.  (2005).  An  Experimental  Card  Game  for  Teaching  Software   Engineering.  Journal  of  Systems  of  Software,  75.   C.  Carmona,  D.  Bueno,  M.A.  Jiménez  (2008).  Adapting  an  Educational  Game  for  Spanish   Ortography  to  Make  it  Adaptative  and  Accessible.  Eighth  IEEE  International  Conference  on   Advanced  Learning  Technologies.   D.  Hunter.  (2004).  Guitar  Effects  Pedals  –  The  Practical  Handbook.  Backbeat  Books.  London.   Tuning  Project.    (2007).  Tuning  General  Brochure.     Z.  Lekkas,  N.  Tsianos,  P.  Germanakos,  C.  Mourlas,  G.  Samaras.  (2008).  The  Role  of  Emotions  in  the   Design  of  Personalized  Educational  Systems.  Eighth  IEEE  International  Conference  on   Advanced  Learning  Technologies.   70  

T.-­‐C.  Liu,  Y.-­‐C.  Lin,  Kinshuk,  M.  Chang.  (2008).  Individual  Differences  in  Learning  with  Simulation   Tool:  A  Pilot  Study.  Eighth  IEEE  International  Conference  on  Advanced  Learning  Technologies,   doi:  10.1109/ICALT.2008.302.   D.  Mioduser,  N.  Betzer.  (2007).  The  contribution  of  Project-­‐based-­‐learning  to  high-­‐achievers’   acquisition  of  technological  knowledge  and  skills.  International  Journal  of  Technology  and   Design  Education.      vol.  18.  n.  1.    pp.  59  –  77.     J.  Olivares.  (2007).  Guía  Docente  de  Sistemas  Electrónicos  Digitales.  Córdoba.  Escuela  Politécnica   Superior.  http://www.uco.es/organiza/centros/eps/doc/programas/570006.pdf.  Accessed  10   May  2008.   J.  Olivares,  J.  Gómez,  J.M.  Palomares,  M.A.  Montijano.  (2008).  Biprocessor  SoC  in  an  FPGA  for   Teaching  Purposes.  Eighth  IEEE  International  Conference  on  Advanced  Learning   Technologies.   V.  Sklyarov,  I.  Skliarova.  (2005).  Teaching  Reconfigurable  Systems:  Methoods,  Tools,  Tutorials,  and   Projects.  IEEE  Transactions  on  Education,  48(2).   M.  Spector,  R.  Hartley,  R.  Koper,  Kinshuk,  A.  Elsayed.  (2008).  A  Competency  Approach:   Implications  for  E-­‐Learning  and  E-­‐Assessment.  Eighth  IEEE  International  Conference  on   Advanced  Learning  Technologies.   V.  Tam,  Z.X.  Liao,  A.C.M.  Kwan,  C.H.  Leung,  I.K.  Yeung.  (2008).  Developing  an  Interactive  Game   Platform  to  Promote  Learning  and  Teamwork  on  Mobile  Devices:  An  Experience  Report.   Eighth  IEEE  International  Conference  on  Advanced  Learning  Technologies.   J.D.  Vermunt.  (2005).  Relations  Between  Student  Learning  Patterns  and  Personal  and  Contextual   Factors  and  Academic  Performance.  Higher  Education.  49.  pp  205  –  234.   R.  Waters,  M.  McCracken.  (1997).  Assessment  and  Evaluation  in  Problem-­‐Based  Learning.  The  27th   Frontiers  in  Education  Conference.   Xess.  (2005).  Xstend  Board  V3.0  Manual.      http://www.xess.com/manuals/xst-­‐manual-­‐v3_0.pdf.     Accessed  25  July  2008.

71  

Using  IMS-­‐LD  Standard  to  Support  Learning  in   Teaching  ICTs  in  Industrial  Design  Engineering     Rocio  Garcia-­‐Robles(1),  Fernando  Díaz-­‐Del-­‐Río  (2)   (1)  

Escuela  Técnica  Superior  de  Ingenieria  Informática,  Universidad  de  Sevilla   Avda.  Reina  Mercedes  s/n,  Sevilla  41012   [email protected] (2)  

Escuela  Técnica  Superior  de  Ingenieria  Informática,  Universidad  de  Sevilla   Avda.  Reina  Mercedes  s/n,  Sevilla  41012   [email protected]

Abstract   IMS-­‐Learning  Design  specification  was  designed  to  support  the  authoring  of  reusable  and  pedagogically   neutral  learning  scenarios  and  contents.  Although  it  is  especially  suitable  for  eLearning,  its  use  in   traditional  face-­‐to-­‐face  Higher  Education  scenarios  may  be  interesting,  mainly  because  it  supports   formal  description  of  teaching  practices,  and  that  type  of  information  oftenly  remains  as  tacit   knowledge  in  HE  learning  scenarios.   This  paper  presents  the  outcomes  of  using  such  standard  to  innovate  teaching  practices  in  “Introduction   to  Informatics”,  a  subject  taught  in  the  Industrial  Design  Engineering  School  at  University  of  Seville.  Its   pedagogical  design  is  based  on  the  IMS-­‐LD  standard,  and  is  implemented  using  Blackboard,    which  is  the   University  of  Seville  institutional  web  based  Learning  Management  System  (LMS).  Design  and   implementation  results  are  presented  and  analyzed,  and  some  benefits  of  using  IMS-­‐LD  are  remarked.  

1.    Introduction   Learning  Design  (LD)  specification  aims  at  representing  the  'learning  design'  of  'units  of  learning'   (UoL),  in  a  semantic,  formal  and  machine  interpretable  way  (Koper  &  Olivier,  2004).     A  UoL  may  be  any  instructional  or  learning  event  of  any  granularity,  e.g.  a  course,  a  workshop,  a   lesson  or  an  informal  learning  event.  A  'learning  design'  is  defined  as  the  description  of  a  teaching-­‐ learning  process  that  takes  place  in  the  UoL  (Griffiths  et  al.,  2005).  The  key  principle  in  LD  is  that  it   represents  learning  activities  and  support  activities  that  are  performed  by  different  persons   (learners,  teachers)  in  the  context  of  a  UoL.  These  activities  may  refer  to  different  learning  objects   that  are  used  in  the  performance  of  the  activities  (e.g.  books,  articles,  software  applications,   pictures),  or  they  can  refer  to  services  (e.g.  forums,  chats,  wiki's)  that  are  used  to  contribute  to  the   teaching-­‐learning  process  (Griffiths  et  al.,  2005).     The  Learning  Design  specification  can  be  seen  from  (at  least)  four  different  perspectives:  (1)  An   educational  modelling  language;  (2)  an  eLearning  methodology;  (3)  a  set  of  applications;  (4)  and   an  interoperability  specification  (Burgos  &  Griffiths,  2005).    This  specification  has  been  developed   to  meet  some  specific  requirements:  Completeness,  Pedagogical  expressiveness,  Personalization   and  Compatibility  (Koper,  2006).   In  the  Computer  Architecture  Department  of  the  University  of  Seville  (US)  in  which  the  that   subject  is  taught,  completeness  and  pedagogical  expressiveness  are  considered  key  issues.   Additionally  the  new  European  Higher  Education  Area  (EHEA)  promoted  by  the  Bologna  process   demands  innovative  pedagogic  approaches,  and  IMS-­‐LD  may  support  them.    

  72  

2.  Design  of  the  learning  scenario   The  LD  specification  consists  of  several  components,  one  of  them  being  the  IMS  Best  Practice  and   Implementation  Guidelines  (IMS-­‐BPIG,  2009).  According  to  those  guidelines,  the  design  and   development  of  education  is  an  incremental  process  that  systematically  follows  the  stages  of   analysis,  design,  development,  implementation,  and  evaluation.  The  following  steps  are  to  be   taken  in  order  to  proceed  from  a  description  of  an  educational  problem  to  a  learning  scenario:   1. The  analysis  phase  should  result  in  a  didactical  scenario  that  is  captured  in  the  form  of  a   narrative.   2. The  narrative  of  the  analysis  stage  is  taken  and  cast  in  the  form  of  a  series  of  (nested)  UML   activity  diagrams.  The  UML  diagrams  capture  the  workflow  aspects  of  the  narrative.   3. An  XML  document  instance  for  the  UoL  will  be  put  together  on  the  basis  of  the  UML   activity  diagrams.  Any  XML  document  instance  should  be  valid  against  the  LD  Specification.   Using  IMS-­‐LD  solely  as  a  methodology  involves  steps  1  (analysis)  and  2  (design).  The  corresponding   roles  description  and  an  example  of  UML  activity  diagrams  are  presented  below.   Contents:     There  are  three  UoLs:  Introduction  to  Computer  Systems,  User  Interface  Design,  Algorithmic  &   Programming.   Those  three  parts  allow  the  students  to  develop  basic  competences  and  skills  in  the  first  semester   of  the  first  level  of  the  Industrial  Design  Engineering  degree.  The  number  of  students  is  up  to  220   split  in  two  groups  for  theoretical  classes,  and  in  four  groups  for  practical  classes.  That  means   there  are  more  than  50  students  per  teacher  in  the  practical  classes.  That  huge  amount  of   students  makes  difficult  to  innovate  teaching  practices  for  the  whole  subject.  Therefore:  the  first   UoL  was  taught  according  to  an  instructional  single-­‐learner  pedagogic  model;  the  second  UoL  was   based  on  a  problem  based  learning  scenario  in  which  students  were  working  in  groups;  and  the   third  UoL  was  approached  in  a  mixed  way:  working  in  pairs  in  face-­‐to-­‐face  sessions,  but  with  a   single-­‐learner  evaluation.   For  the  purposes  of  the  current  paper  the  second  UoL  is  analyzed  in  detail,  because  using  the  IMS-­‐ LD  specification  as  methodology  is  specially  interesting  for  collaborative  learning  scenarios.  Roles   and  activities  are  described  for  User  Interface  Design  Case  Study  (CS).   Roles:   Teachers’  roles:   •

Facilitator  (FA):  In  principle,  all  the  teachers  (three  in  that  subject)  play  the  role  of  FA,   stimulating  students  in  their  social-­‐constructivist  experience.  So,  the  terms  teacher  and   facilitator  can  be  considered  equivalent.  



Coordinator  (CO):  One  of  the  facilitators  will  play  the  CO  role.  The  coordinator  has  to   design  the  CS  description.  



Evaluator  (EV):  At  least,  one  of  the  facilitators  will  play  the  EV  role.  The  evaluator  is   responsible  for  assessing  and  evaluating  groups  and  individual  proficiency.  Nevertheless,   FA  is  also  partially  involved  in  the  evaluation.  

The  afore-­‐mentioned  teachers’  roles  can  be  played  by  the  same  or  by  several  persons.  For  that   subject  taught  at  Industrial  Design  Engineering,  one  teacher  was  the  CO,  and  the  three  of  them   were  FA  and  EV  in  their  respective  classes.   73  

Students’  roles:   •

Student  (ST):  In  principle,  all  the  students  play  such  a  role.  But,  in  order  to  promote   organizational  skills,  other  roles  are  taken  into  account.    



Chairperson  (CP):  On  behalf  of  the  entire  group,  he/she  is  in  charge  of  the  communication   with  external  partners  (other  groups’  CPs  and  the  FA).  The  chairperson,  the  spokesperson   for  the  group,  is  responsible  for  recording  key  group  decisions,  and  the  chosen   representative  must  be  appointed  as  such  by  the  facilitator.  This  role  implementation  also   benefits  the  FAs,  because  it  scales  the  communication  workload  between  students  and   FAs.  



Speaker  (SK):  He/she  is  the  person  who  must  present  the  outcomes  of  the  final  CS  solution   in  the  corresponding  final  face-­‐to-­‐face  session.  He/she  must  also  discuss  with  the  rest  of   the  CPs  and  SKs  at  this  session.  

Activities:   The  activity  dynamic  is  described  by  using  UML  diagrams.  A  few  of  them  are  shown  in  current   paper:  Global  learning  scenario  (fig.1),  and  the  rest  of  them  (fig.2,  3  and  4)  corresponding  to  UoL2:   User  Interface  Design  Case  Study.  

Fig.  1:  Global  Learning  scenario.   The  Global  Learning  Scenario  is  composed  of  several  activities.  The  first  two  are  preparatory  work   (designing  learning  and  content  by  all  the  teachers  coordinated  by  the  CO  role),  and  logistic  tasks   (corresponding  to  the  starting  of  the  teaching  activity  at  the  beginning  of  the  semester;  they   include  creating  group  of  students  and  assessment  activities).  

74  

  Fig.  2:  UoL2:  User  Interface  Design  Case  Study.   In  relation  to  the  UoL2  (see  fig.  2),  there  were  two  milestones.  The  first  one  was  scheduled  to   promote  learners  to  work  hard  in  the  CS  since  the  very  beginning.  Once  the  initial  milestone   delivery  took  place,  there  were  no  other  marked  milestones  until  the  end,  which  happened  at  the   end  of  the  fifth  week,  just  before  the  final  face-­‐to-­‐face  session.   In  the  final  milestone  evaluation  &  feedback  all  the  teachers  were  involved.  In  some  groups,  the   EV  role  was  played  by  a  different  person  than  the  usual  FA  role.  In  other  groups  both  roles  were   played  by  the  same  teacher.   Students’  work  in  groups  (see  fig.  3):  Every  student  in  the  group  reads  the  problem  (by   downloading  the  corresponding  PDF  documents  from  the  LMS).  The  group  then  meets  up  (they   may  use  synchronous  or  asynchronous  facilities  of  the  LMS)  and  discuss  how  to  clarify  the  problem   and  plan  work  scheduling.  They  eventually  arrive  at  their  own  succinct  statement  of  the  problem   at  hand.  Once  this  is  done,  the  CP  states  the  problem,  and  interacts  with  the  FA  to  clarify  open   issues  and  agree  on  a  work  schedule.  Students  can  use  any  communication  tool  available  in  the   LMS,  (e.g.  chat,  email,…)  It  is  important  to  note  that,  in  order  to  scale  teacher-­‐student  interaction,   on  one  hand  students  only  communicate  with  the  FA  via  the  CPs  and,  on  the  other,  the  FA  creates   a  FAQ  (frequently  asked  questions)  list  published  in  the  LMS  containing  the  most  popular  and   interesting  issues  arising  from  the  interaction  with  CPs.  Then  the  CP  states  the  discussed  solution   and  uploads  it  to  the  LMS  before  the  deadline.  All  the  CPs  discuss  the  different  submitted   solutions  (via  the  LMS).  In  the  meantime,  the  FA  reads  the  solutions  and  monitors  CPs’  discussion.   (by  using  synchronous  tools  –e.g.  public  forum,  and  asynchronous  tools  –  such  as  email)   75  

Fig.  3:  Students’  work  in  group.   Face-­‐to-­‐face  session  (see  fig.  4):  The  CPs  discuss  other  groups’  solutions.  Helped  by  the  rest  of  the   students  from  his/her  group,  the  CP  can  defend  or  even  rectify  their  solution.  CPs  can  also  ask  the   FA  about  issues  that  have  arisen.  At  the  end  of  the  discussion,  the  FA  provides  assistance,  clarifies,   gives  some  support  for  further  work  and  finally  gives  some  feedback  on  group  and  individual   progress.  

Fig.  4:  Face-­‐to-­‐face  session.  

3.  Results  after  implementation  of  the  learning  scenario   Three  types  of  evaluation  are  being  taken  into  consideration  to  detect  the  pros  and  contras  of  the   proposed  method:   1.  Students’  opinion     2.  Teachers’  opinion   3.  Students’  marks   During  the  first  semester,  the  three  teachers  involved  in  the  subject  did  several  interviews  to   76  

collect  students’  opinions.  Interviews  were  done  to  random  selected  students  (during  some   minutes  in  the  face-­‐to-­‐face  sessions).  All  the  interviews  were  very  positive  because  students   pointed  out  the  advantages,  but  also  the  main  difficulties  to  carry  out  with  this  subject.  The  most   interesting  were  the  opinions  of  students  who  abandoned  the  subject  the  previous  year.  Some  of   them  stated:  “weekly  milestones  suppose  more  workload  during  the  semester  but  encourage  us   to  follow  the  subject”;  “doing  a  task  to  deliver  a  document  makes  us  to  understand  the  objective   of  the  UoL”;  “evaluating  not  only  knowledge,  but  also  the  competencies  is  a  more  fair  evaluation   procedure”.  Of  course  students  give  their  bad/good  impressions  about  working  in  group;  in  fact   most  students  were  not  skilled  in  this  capacity,  so  usual  problems  were  detected  in  some  groups.   Furthermore  an  opinion  test  composed  of  ten  questions  has  been  prepared  to  collect  a  more   statistical  result.  This  test  is  going  to  be  asked  during  the  last  part  of  the  second  semester  by  the   University  of  Seville  services.  It  was  not  undertaken  before  because  the  aim  is  that  student   compare  that  subject  pedagogic  method  with  the  rest  of  the  subjects  they  are  studying  in  the   current  academic  year  .  For  this  reason  this  result  is  not  available  yet.     With  respect  to  teachers’  opinions,  all  of  them  think  that  workload  has  to  be  measured  for  the   next  course.  During  current  course  the  high  amount  of  changes  introduced  in  the  methodology   made  difficult  to  calibrate  the  different  workloads.  Due  to  the  fact  that  all  the  teachers  were   involved  deeply  in  those  changes,  the  particular  opinions  were  very  subjective  and  not  relevant  for   the  moment.  For  the  next  course,  we  are  considering  that  teachers’  opinions  should  be  collected   by  an  external  agent.     Finally  marks  for  students  are  considerably  better  than  those  of  previous  year  counterparts  as  it  is   shown  in  fig.  5.  It  is  obvious  that  the  methodological  change  has  had  a  positive  impact  in  the   marks.  We  think  that  a  key  issue  had  a  main  influence  in  marks:  students  motivation  due  to  the   weekly  guidance  and  feedback.  In  fact  much  fewer  students  have  abandoned  the  subject  during   this  year  (36%  while  the  abandon  rate  was  huge  during  previous  year,  76%).  Another  question  that   might  have  a  positive  impact  is  the  renovation  taken  in  terms  of  content.  While  statistical  tests  are   not  yet  available,  students’  interviews  told  us  that  this  last  factor  was  not  crucial.    

    Fig.  5:  Students’  marks:  semester  2007-­‐2008  (left),  semester  2008-­‐2009  (right).  

   

77  

4.  Benefits  of  using  IMS-­‐LD     Some  benefits  of  adopting  IMS-­‐LD  in  a  traditional  Higher  Education  (HE)  institution  are:     1. It  promotes  the  use  of  role  models  to  support  a  distinction  between  possible  roles  and  real   actors.  Explicit  distinction  between  roles  addresses  the  division  of  responsibilities   improving  coordination  and  supporting  tasks,  and  making  solution  easily  scalable   regardless  of  number  of  involved  teachers.     2. It  promotes  the  structuring  of  activities  such  as  preparatory  work,  logistic  tasks,  sequential   activities,  etc.  Therefore  the  process  dynamics  –which  is  a  key  issue  in  the   teaching/learning  experience–,  is  made  explicit.  Moreover  it  helps  to  distinguish  between   learning  and  support  activities.  Although  it  is  usual  to  take  into  account  such  a  distinction,   it  should  be  made  explicit  in  the  pedagogical  design  from  the  very  outset  to  prevent  the   coordinator  from  becoming  overloaded.     3. Allocation  of  resources  and  environments  is  also  made  explicit  when  designing  a   pedagogical  scenario  using  IMS-­‐LD.  In  this  way,  it  is  easier  to  think  in  terms  of  scalability   and  feasibility  when  allocation  is  clearly  defined  from  the  outset.     4. Reusability  of  learning  design  is  promoted.  Of  course,  teachers  must  review  designed  and   implemented  scenarios  to  adapt  them  to  the  new  performance  or  subject.  But  design  and   adaptation  costs  are  estimated  to  be  very  low  once  the  course  or  UoL  has  been  designed   and  implemented.   5. To  schedule  teaching  and  learning  activities  in  design  time  promotes  quality  improvement,   although  it  is  usually  necessary  to  do  further  adjustments  in  implementation  time  (i.e.   when  the  students  are  already  involved  in  the  course).     6. If  the  long  run,  once  we  have  used  the  LD  methodology  for  a  substantial  period  of  time,  it   should  be  possible  to  extract  pedagogical  patterns  that  help  teachers  identify  the  best   teaching  and  learning  practices,  assisting  academic  community  with  reporting  and   performance  analysis.  This  outcome  should  have  a  clear  potential  benefit  that  must  be   considered  when  adopting  a  corporative  strategy  for  innovation  purposes  in  educational   practices.  

5.  Conclusion     On  one  hand,  the  teachers  involved  in  this  trial  have  concluded  that  the  IMS-­‐LD  specification  is  a   very  useful  methodological  tool  for  formalizing  the  design  of  pedagogical  scenarios.  In  fact,  they   have  used  the  methodology  included  in  the  IMS  Learning  Design  Best  Practice  and  Implementation   Guide  (IMS-­‐LD  BPIG,  2009),  as  it  is  explained  above.   On  the  other  hand,  some  important  drawbacks  regarding  with  using  IMS-­‐LD  were  identified,  and   some  decisions  were  taken,  as  follows:       •

Teachers  working  in  the  department  are  willing  to  innovate  their  teaching  practices,  as   long  as  the  increase  in  their  workload  is  kept  to  a  minimum.  As  they  have  to  combine   teaching  and  research  activities,  additional  workload  of  using  learning  standards  must  be   minimized.  Additionally  a  very  high  level  of  detail  (related  to  a  granularity  of  specification)   is  required  to  make  a  machine-­‐readable  version  of  a  UoL.  Bearing  in  mind  these  issues,  a   good  solution  is  to  use  IMS-­‐LD  just  as  an  e-­‐learning  methodology.  That  means  that  using   that  specification  makes  sense  although  development  and  implementation  stages  are   78  

missing.   •

The  initial  effort  needed  to  create  a  pedagogical  scenario  using  that  specification  is  likely  to   be  greater  than  a  situation  when  teachers  think  in  terms  of  content  and  split   responsibilities  among  them.  But  the  return  of  the  time  investment  is  achieved  soon,  in  the   next  semester.  Moreover  it  is  also  possible  to  compensate  individual  efforts  by   distinguishing  the  “learning  designer”  role  to  compensate  additional  workload  between   teachers.    

References   Burgos,  D.,  Griffiths,  D.  (2005).  The  UNFOLD  Project:  Understanding  and  Using  Learning  Design,   Open  University  of  The  Netherlands,  25-­‐30.   Griffiths,  D.,  García-­‐Robles,  R.  et  al  (2005).  Learning  Design,  Springer-­‐Verlag,  109-­‐135.   IMS  LD  Information  Model,  pp  71,  www.imsproject.org     IMS  LD  Best  Practice  and  Implementation  Guide   www.imsglobal.org/learningdesign/ldv1p0/imsld_bestv1p0.html     Koper.  R.,  Olivier,  B.  (2004).  Representing  the  Learning  Design  of  Units  of  Learning,  Educational   Technology  &  Society,  7  (3),  97-­‐111.   Koper,  R.,  (2006).  Current  Research  in  Learning  Design,  IEEE  Journal  Educational  Technology  &   Society  9  (1),  Special  Issue  on  Learning  Design,  13-­‐22.

79  

Devising  instruction  from  errors  in  students’   assignments:  a  case  in  usability  engineering   education Elena  García-­‐Barriocanal,  Miguel-­‐Angel  Sicilia,  Salvador  Sánchez-­‐Alonso,  Daniel  Rodríguez   Information  Engineering  Research  Unit   Computer  Science  Dept.,  University  of  Alcalá   Ctra.  Barcelona  km.  33.6  –  28871  Alcalá  de  Henares  (Madrid),  Spain   {elena.garciab, msicilia, salvador.sanchez, daniel.rodriguezg}@uah.es

Abstract   Problem-­‐based  learning  emphasizes  the  role  of  problem  solving  as  the  main  driver  of  instruction,  thus   critically  relying  on  the  quality  of  problem  collections,  which  should  exercise  especially  those  aspects   students  find  difficult  to  master.  In  areas  in  which  extensive  and  tested  problem  collections  are  not   available,  it  is  useful  to  analyze  the  mistakes  of  students  in  previous  year’s  assignments  as  a  source  of   evidence  for  the  design  of  new  problems  or  tutorial  resources.  This  paper  reports  preliminary  results  of   that  approach  as  applied  to  heuristic  usability  evaluation  in  the  context  of  an  introductory  Human   Computer  Interaction  course.  The  process  is  described,  and  some  examples  are  reported  as  concrete   cases  in  which  assignment  analysis  lead  to  insights  for  devising  instruction.            

1.  Introduction   Problem-­‐based  instruction  has  been  subject  to  significant  research  interest  in  recent  years  (Merril,   2007).  Problem-­‐based  strategies  share  as  a  central  concern  the  design  of  problems  that  cover  the   complete  spectrum  of  knowledge  and  abilities  to  be  mastered,  even  though  they  vary  in  the   amount  of  learner  support  that  is  provided  and  the  degree  of  collaborative  activity  required.   Problems  can  be  defined  as  “questions  rose  for  inquiry,  consideration,  or  solution”.  Instructors   facing  problem  design  for  their  courses  attempt  to  craft  problems  to  support  competency   development,  thus  trying  to  anticipate  the  “problems  in  solving  the  problems”,  i.e.  facing  students   with  exercising  most  of  the  potential  difficulties  they  would  find  in  performing  realistic  work   activities.  This  can  be  approached  from  the  experience  and  sound  knowledge  of  the  instructions   about  the  topics  to  be  taught,  self-­‐reflecting  on  potential  difficulties  and  pitfalls.  In  some   disciplines,  it  is  easy  to  find  problem  collections  in  textbooks  or  on-­‐line  learning  resources  that  can   be  used  as  a  form  of  sedimentation  of  practical  experience  in  proposing  and  evaluating  problems.   However,  there  are  topics  or  disciplines  for  which  few  or  fragmented  problems  collections  are   available,  and  in  general  problem  collections  do  not  provide  hints  on  the  kind  of  learning   difficulties  and  detailed  topic  coverage  of  each  of  the  problems  they  contain.  In  those  cases,  an   empirical  approach  would  be  helpful  to  continuously  improve  and  evolve  problem  collections.   Empirical  data  on  problems  faced  by  students  can  be  gathered  from  the  assignments  in  previous   courses.  The  careful  examination  of  assignment  solutions  given  by  students  is  the  best  source  of   evidence  for  devising  new  problems  or  updating  existing  ones,  if  we  assume  that  student  cohorts   are  reasonably  homogeneous  from  one  year  to  the  next.         Human  computer  interaction  (HCI)  is  a  multi-­‐disciplinary  area  of  study  that  is  essential  in  the   education  of  engineers  dealing  with  the  construction  of  man-­‐machine  interfaces  (Rozanski  and   Haake,  2003).  One  of  the  key  competencies  to  be  acquired  in  HCI  is  usability  evaluation.  Usability   evaluation  requires  in  general  analysis  skills  and  critical  thinking,  as  usability  problems  are  often  a   matter  of  degree,  and  knowledge  on  usability  is  described  in  terms  of  generic  rules  (usability   80  

guidelines),  principles  or  heuristics  that  require  judgment  and  practice  to  be  mastered.  There  exist   various  techniques  for  evaluating  usability  depending  on  available  resources  (time  facilities  and   resources),  evaluator  experience,  ability  and  the  stage  of  development  of  the  software  under   review  (Hartson,  Andre  and  Williges,  2001).  It  seems  apparent  that  problem-­‐based  approaches  to   instructional  design  may  be  adequate  for  teaching  usability  evaluation.  However,  such  approaches   require  a  carefully  devised  set  of  problems  that  provide  the  required  progressive  scaffolding   (Simons  &  Klein,  2007).    Skov  and  Stage  (2005)  reported  a  study  comparing  problems  found  by   students  using  a  conceptual  tool  with  students  not  using  it  and  with  the  evaluation  outcome  of  the   teachers.  The  use  of  the  tool  resulted  in  more  problems  found  by  students,  which  supports  the   idea  that  additional  scaffolding  elements  are  required  for  usability  evaluation.  The  elaboration  of   case  collections  for  usability  engineering  has  been  approached  by  Carrol  and  Rosson  (2005).  These   are  comprehensive  cases  that  fit  project-­‐based  education,  but  there  is  a  need  to  understand  and   learn  to  apply  the  concrete  guidelines  and  heuristics  related  to  expert-­‐based  usability  evaluation,   as  these  can  provide  detailed  insights  on  how  students  face  usability  problems.   This  paper  reports  preliminary  results  of  an  ongoing  comprehensive  study  on  problems  found  by   students  when  approaching  inspection  methods  for  usability  evaluation,  concretely,  heuristic   evaluation.  Heuristic  evaluation  is  a  problem-­‐oriented  usability  evaluation  method  (Nielsen,  1992).   In  its  initial  proposal  by  Nielsen  and  Molich  (1990),  it  was  found  that  it  served  to  identify  55  to  90   percent  of  the  known  usability  problems  user  interfaces,  concluding  that  heuristic  evaluation  was   a  cheap  and  intuitive  method  for  evaluating  the  user  interface.  Heuristic  evaluation  has  an   additional  interesting  property  in  the  educational  context:  it  forces  students  to  classify  usability   problems,  assess  their  importance  and  argument  why  they  qualify  as  such.  Consequently,  the   analysis  of  records  of  student  heuristic  evaluation  has  the  potential  to  uncover  underlying  false   assumptions,  misunderstandings  or  in  general  difficulties  in  acquiring  user  interface  evaluation   abilities.   The  rest  of  this  paper  is  structured  as  follows.  Section  2  describes  the  context  of  the  case  reported   here  and  the  data  gathering  procedures.  Section  3  provides  the  results  of  evaluating  a  small   sample  of  users  and  discusses  these  preliminary  findings.  An  example  of  instruction  design  from   the  analysis  of  assignment  data  is  provided  in  Section  4.  Finally,  conclusions  and  outlook  is   provided  in  Section  5.  

2.  Context  and  data  gathering   The  ACM/IEEE/AIS  curricula  recommendations  for  Computer  Science  include  8  core  hours  of   Human-­‐Computer  Interaction,  which  is  concerned  with  the  required  skill  of  “knowing  how  to   create  a  usable  interface  and  testing  the  usability  of  that  interface”.  In  the  detailed  topics  related   to  HCI,  the  recommendations  include  “evaluation  without  typical  users”,  including  guidelines,   heuristics  and  expert-­‐based  analysis.  While  user  testing  is  considered  the  most  reliable  way  of   evaluating  user  interfaces,  teaching  guidelines  and  heuristic  evaluation  have  the  benefit  of  not   requiring  students  to  be  provided  with  an  observational  setting,  so  that  distance  students  are  able   to  exercise  that  kind  of  evaluation.  Further,  such  kinds  of  evaluations  do  not  rely  on  the  availability   of  users  for  testing,  but  on  the  application  of  theoretical  elements  and  guides.  If  these  elements   are  used  for  summative  assessment  of  students,  the  student’s  responses  can  be  evaluated  rather   objectively  by  instructors.     The  context  of  the  present  case  was  an  elective  course  on  Human  Computer  Interaction  at  the  last   year  of  a  four-­‐year  degree  in  Computer  Science.  The  authors  had  been  teaching  the  course  since   2004  following  a  continuous  assessment  method.  The  course  starts  with  an  HCI  fundamentals   module,  followed  by  a  module  on  user  interface  design  and  then  a  usability  evaluation  module.   81  

Students  are  taught  about  user  testing,  but  also  other  methods  including  heuristic  evaluation.  One   of  the  assignments  included  in  the  continuous  assessment  presents  the  students  with  concrete   Web  sites  for  heuristic  evaluation,  following  Nielsen’s  heuristics  and  rating  scales.  Students  have   previously  exercised  the  technique  at  an  heuristic  evaluation  lab,  and  they  are  equipped  with   knowledge  on  guideline-­‐based  assessment  as  a  supplementary  tool6.   The  users  have  to  report  on  problems  found  as  exemplified  by  the  Table  1  entry.     Table  1.  Categories  for  problems,  severity  and  error  description  in  problems  found.   0  

Severity   1   2   3  

VSS  

 

X  

 

 

UCF  

 

 

 

 

Category  

4  

Error  description  

The  Web  site  is  too  much   interactive   Some  pages  linked  from  the   homepage  have  no  option   X   to  go  back  or  this  option  is   difficult  to  find.    

Categories  for  problems  are  the  following:  visibility  of  system  status  (VSS),  Match  between  system   and  the  real  world  (MSRW),  user  control  and  freedom  (UCF),  consistency  and  standards  (CS),  error   prevention  (EP),  recognition  rather  than  recall  (RRR),  flexibility  and  efficiency  of  use  (FEU),   aesthetic  and  minimalist  design  (AMD),  help  users  recognize,  diagnose,  and  recover  from  errors   (HURE)  and  help  and  documentation  (HD).  Hvannberg,  Lai-­‐Chong  and  Larusdottir  (2008)  found  no   significant  differences  between  using  Nielsen’s  heuristics  and  the  cognitive  principles  of  Gerhardt-­‐ Powals,  and  no  difference  was  also  found  in  either  using  a  web  tool  or  paper,  so  we  have  not   initially  not  considered  these  variables  in  the  design  of  the  study.   The  analysis  of  assignments  requires  a  detailed  representation  of  problems  found  versus  actual   problems  (as  identified  by  the  instructors),  an  analysis  of  the  appropriateness  of  the  assessment  of   severity,  and  the  qualitative  examination  of  justifications  in  the  problems  found.  The  data  analysis   was  done  by  creating  a  database  following  the  schema  depicted  in  the  Fig.  1.  

Fig.  1.  Database  created  for  data  analysis     6

 Concretely,  they  have  been  introduced  at  the  beginning  of  the  course  to  guideline-­‐based  usability  analysis  using  the   research-­‐based  guidelines  elaborated  by  the  U.S.  Department  of  Health  and  Human  Services  available  at:   http://www.usability.gov/pdfs/guidelines.html    

82  

Table  Students  recorded  information  on  the  students  evaluated,  the  academic  year  in  which   they  took  the  HCI  course,  the  site  they  evaluated  heuristically  and  their  overall  grade  in  the  course   (score).  Then,  each  of  the  problems  identified  by  students  is  recorded  in  the  problemsFound   table,  including  severity  assigned,  Nielsen  category  selected,  and  the  related  guideline(s)  identified   (if  any).  The  instructors  filled  the  Error  field,  classifying  entries  in  which  students  failed  to  justify   the  reason  of  the  problem,  or  simply  reported  a  situation  that  was  not  actually  a  usability   problem.  Problems  found  that  were  actual  problems  are  related  to  the  Problems  table,  which   stores  the  “correct”  problems,  categories  and  severity  ratings.  Matching  problem  found   descriptions  was  done  by  the  instructions,  even  though  matching  problems  has  been  found  to  be   controversial  across  matching  techniques  (Hornbaek  and  Frokjaer,  2008),  here  the  group  and   criteria  are  homogeneous,  and  they  are  built  by  the  same  matcher.    

3.  Discussion   A  sample  of  the  problems  found  by  five  students  (related  to  the  same  target  web  site)  was  used  as   a  first  application  of  the  analysis  method.  A  total  of  82  problems  were  found  by  the  students,  of   which  31  were  correctly  identified  problems.  Despite  the  apparent  high  error  rate  of  this  figure   (below  50%),  it  represents  a  common  situation,  as  there  is  in  general  a  high  dispersion  in  actual   problems  found,  pointing  out  that  there  is  some  barrier  for  some  students  even  to  identify  some   prominent  problems.  This  suggests  general  misunderstandings  of  usability  problems,  as  confirmed   by  the  qualitative  analysis  of  justification  reports.  For  example,  the  student  with  Id  5  reported  a   total  of  31  problems,  of  which  only  11  matched  actual  problems.      Nonetheless,  from  the  other  20   problems,  10  of  them  were  incorrect  because  they  are  considered  redundant  statement  (see   section  4),  that  is,  very  related  or  identical  to  problems  already  detected.  For  example  the  student   detected  that  there  is  no  a  link  to  the  homepage  in  4  pages  and  reported  4  different  errors.  There   were  other  3  reported  errors  that  are  considered  as  partially  mistakes  because  they  are  very  vague   descriptions  of  errors  or  very  subjective  (and  obvious)  opinions  (see  in  section  4  ‘vague   statements’).     Severity  assessments  in  properly  identified  problems  were  identical  to  instructor  assessments  in   only  13  cases,  however,  relaxing  the  coincidence  in  plus/minus  one  severity  point,  the  figure  was   21  out  of  31,  which  represents  a  reasonable  fit  given  that  severity  ratings  entail  a  degree  of   subjectivity  associated  with  the  identification  of  priorities  in  fixing  errors.    

4.  Elaborating  problem  statements  from  data   Evidence  gathered  from  student  assignments  can  be  used  for  developing  new  assignments  and   also  for  the  development  of  guided  problems  that  are  targeted  to  raise  difficulties  found  by   students  in  the  past.  This  requires  a  categorization  of  mistakes  found.  In  the  sample  discussed   above,  errors  were  classified  in  three  categories:  incorrect,  redundant  and  vague  statements.     Redundant  statements  entail  the  repetition  of  the  same  problem  found  in  several  sections  of  the   Web  site.  This  adds  nothing  to  the  heuristic  evaluation  report  and  should  be  avoided.  This   frequent  error  category  reveals  a  methodological  mistake,  which  can  be  avoided  easily  by   emphasizing  the  unique  nature  of  problem  entries  in  the  report.  In  this  case,  a  clarification  about   redundancy  was  included  in  the  heuristic  evaluation  report  given  to  students,  and  an  example   emphasizing  that  aspect  was  also  included  in  the  case  presented  at  the  lab,  which  is  discussed  with   the  tutors.   83  

Vague  statements  in  contrast  represent  a  very  broad  category,  including  statements  that  are  to   some  extent  correct,  but  fail  in  accurately  describing  the  problem  form  a  usability  perspective  or   even  use  clichés  and  stereotypes.  Examples  of  these  statements  are  “the  page  is  too  interactive”   (supposedly  referring  to  the  impossibility  of  avoiding  animation,  i.e.  a  lack  of  user  control)  or  “the   consistency  of  contents  and  interfaces  is  poor”  (which  fails  in  detailing  the  concrete  inconsistent   elements,  e.g.  navigation  structures,  general  appearance,  etc.).     Those  reported  errors  that  don’t  reflect  real  usability  problems  are  considered  incorrect   statements.  Examples  of  incorrect  statements  are  “The  site  is  not  WAI  compliant”  or  “In  page  X   there  is  no  link  to  homepage”  when  it  exists.  Although  statements  like  the  last  one  can  reflect   usability  problems,  they  are  considered  as  errors  in  the  assessment  of  a  report  on  heuristic   usability  evaluation.   Once  the  errors  reported  by  students  have  been  analyzed,  teachers  can  fine  tune  the  problems   (examples  and  lab  practices)  to  reflect  in  usability  evaluation  case  studies  most  common   misunderstandings.  To  do  so,  found  errors  can  be  grouped  by  heuristic.  After  explanations  of  most   common  errors  by  heuristic,  the  students  must  evaluate  examples  and  counter  examples   implemented  ad-­‐hoc  as  prototypes  which  reflect  those  errors.  The  learning  process  can  be   strengthened  planning  user  interface  design  problems  in  which  students  had  to  reflect  explicitly   how  to  deal  with  that  kind  of  errors.    

5.  Conclusions  and  outlook   Problem-­‐based  approaches  to  instruction  rest  in  the  careful  design  of  problems  or  cases  that  are   used  both  for  tutoring  and  evaluating  students.  Some  topics  lack  reliable,  mature  problem   collections  that  could  be  used  by  instructors  as  a  point  of  departure.  In  these  cases,  evidence  can   be  gathered  form  student  assignments  involving  problem  solving,  so  that  new  or  revised  problems   can  integrate  aspects  known  to  have  been  difficult  to  master  or  sources  of  common  errors  in  their   statement  and  task  design.  This  paper  have  reported  on  the  preliminary  results  of  that  technique   applied  to  gaining  insight  on  student’s  difficulties  and  pitfalls  when  confronting  heuristic  usability   evaluation.  The  procedure  entailed  a  detailed  analysis  of  problem  report  entries  submitted  by   students  and  their  categorization,  leading  to  three  broad  categories  of  error  that  entail  different   kinds  of  update  of  teaching  material.   Future  work  will  cover  a  detailed  analysis  of  the  database  of  at  least  two  student  cohorts  in  the   HCI  course,  and  a  comprehensive  account  of  potential  sources  of  error  and  the  problem  design   guidelines  that  follow  from  them.  

Acknowledgements   The  research  is  within  the  framework  of  the  activity  of  the  educational  innovation  project   UAH/EV243,  from  University  of  Alcalá.  

References   Carroll,  J.  M.  and  Rosson,  M.  B.  2005.  A  case  library  for  teaching  usability  engineering:  Design   rationale,  development,  and  classroom  experience.  J.  Educ.  Resour.  Comput.  5,  1  (Mar.   2005),  3.   Hartson,  H.R.,  Andre,  T.S.  and  Williges,  R.C.  (2001)  Criteria  for  evaluating  usability  evaluation   methods,  International  Journal  of  Human–Computer  Interaction  13  (4)  (2001),  pp.  373–410.   84  

Hornbaek,  K.,  Frokjaer,  H.  (2008)  Comparison  of  techniques  for  matching  of  usability  problem   descriptions,  Interacting  with  Computers,  20(6),  pp.  505-­‐514   Hvannberg,  E.T.,  Lai-­‐Chong,  E.,  Larusdottir,  M.K.  (2008)  Heuristic  evaluation:  Comparing  ways  of   finding  and  reporting  usability  problems,  Interacting  with  Computers,  (19)2,  pp.  225-­‐240   Merrill,  M.D.  (2007)  A  Task-­‐Centered  Instructional  Strategy.  Journal  of  Research  on  Technology  in   Education,  40(1),  pp.  33-­‐50   Nielsen,  J.  1992.  Finding  usability  problems  through  heuristic  evaluation.  In  Proceedings  of  the   SIGCHI  Conference  on  Human  Factors  in  Computing  Systems  (Monterey,  California,  United   States,  May  03  -­‐  07,  1992).  P.  Bauersfeld,  J.  Bennett,  and  G.  Lynch,  Eds.  CHI  '92.  ACM,  New   York,  NY,  373-­‐380.   Nielsen,  J.,  and  Molich,  R.  (1990).  Heuristic  evaluation  of  user  interfaces,  Proceedings  of  the   Conference  on  Human  Factors  in  Computing  Systems  (CHI  90),  Seattle,  WA,  April  1-­‐5,  pp.   249-­‐256.   Rozanski,  E.  P.  and  Haake,  A.  R.  (2003).  The  many  facets  of  HCI.  In  Proceedings  of  the  4th   Conference  on  information  Technology  Curriculum  (Lafayette,  Indiana,  USA,  October  16  -­‐  18,   2003).  CITC4  '03.  ACM,  New  York,  NY,  pp.  180-­‐185.   Simons,  K.  and  Klein,  J.  (2007).  The  Impact  of  Scaffolding  and  Student  Achievement  Levels  in  a   Problem-­‐based  Learning  Environment.  Instructional  Science,  35(1),  pp.  41-­‐72.   Skov,  M.  B.  and  Stage,  J.  (2005).  Supporting  problem  identification  in  usability  evaluations.  In   Proceedings  of  the  17th  Australia  Conference  on  Computer-­‐Human  interaction  (Canberra,   Australia,  November  21  -­‐  25,  2005).  OZCHI,  vol.  122.  Computer-­‐Human  Interaction  Special   Interest  Group  (CHISIG)  of  Australia,  Narrabundah,  Australia,  pp.  1-­‐9.      

85  

      This  document  was  finished  in  Cádiz,   13  of  April  of  2009  

  ISBN  978-­‐84-­‐692-­‐3450-­‐1    

86  

Related Documents

Mcce 2009 Proceedings
April 2020 2
Mcce 2008 Proceedings
November 2019 4
Proceedings
December 2019 23
Proceedings
December 2019 27
Proceedings
May 2020 14
Ictd 2009 Proceedings
April 2020 5

More Documents from ""

Mcce 2008 Proceedings
November 2019 4
Mcce 2009 Proceedings
April 2020 2
Tecnomovil.pdf
October 2019 19
May 2020 2