Matrices

  • Uploaded by: jose
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Matrices as PDF for free.

More details

  • Words: 12,656
  • Pages: 43
1 Matrices

Tema 1

MATRICES Y DETERMINANTES

1.1 DEFINICIÓN Y DESCRIPCIÓN DE MATRICES

Una matriz es una ordenación rectangular de elementos dispuestos en filas y columnas encerrados entre paréntesis, por ejemplo ⎛ 2 −1 0 1 ⎞ ⎟ A = ⎜⎜ −3 2 1 0⎟ ⎜ ⎟ ⎝ 0 4 −2 −2 ⎠

Las matrices se nombran con letras mayúsculas A, B, C, .... y sus elementos con minúsculas con dos subíndices aij, que indican respectivamente la fila y la columna en la que se sitúa el elemento Columnas ⇓ 1ª



⎛ a11 a12 ⎜ a a 22 A = {a ij} = ⎜ 21 ⎜ ... ... ⎜⎜ ⎝ a n1 a n 2

m-ésima ... a1m ⎞ 1ª ⎟ ... a 2m ⎟ 2ª  filas ... ... ⎟ ... ⎟ ... a nm ⎟⎠ n − ésima

Una matriz de n filas y m columnas se dice que es una matriz de orden n¥m y se representa por An¥m siendo n el nº de filas y m el nº de columnas. Definimos dimensión de una matriz como el número n¥ m de elementos que tiene; bien claro que, no será igual una matriz n¥m que una matriz m¥n, aunque tengan igual dimensión: ⎛ 1 −4 2 ⎞ A2¥3 = ⎜ ⎟ ⎝ −3 0 5 ⎠

Orden 2¥3, dimensión 6 Fundamentos Matemáticos de la Ingeniería

⎛ 1 A3¥2 = ⎜⎜ −4 ⎜ 2 ⎝

−3 ⎞ ⎟ 0 ⎟ 5 ⎟⎠

Orden 3¥2, dimensión 6

2 Matrices

Tema 1

Atendiendo al orden de una matriz, podemos definir: i) Matriz cuadrada, matriz que verifica n = m, en este caso se escribe An o An¥n y se dice que es una matriz de orden n. ⎛1 4 7⎞ ⎛ 1 3⎞ ⎜ ⎟ A2 = ⎜ A3 = ⎜ 2 5 8 ⎟ ⎟ ⎝ 2 4⎠ ⎜ 3 6 9⎟ ⎝ ⎠ ii) Matriz rectangular, matriz en la que nπm ⎛ 1 −4 A 2×3 = ⎜ ⎝ −3 0

0 ⎞ ⎟ 0 ⎠

A 4×3

⎛1 ⎜ 0 =⎜ ⎜3 ⎜⎜ ⎝1

5 7 8 3

2⎞ ⎟ 4⎟ 0⎟ ⎟ 2 ⎟⎠

Casos notables: ii-a ) Matriz fila: es una matriz de orden (1¥m): ( a11 a12 .......a1m ) ii-b ) Matriz columna: es una matriz de orden (n¥1): ⎛ a11 ⎞ ⎜ ⎟ ⎜ a 21 ⎟ ⎜ ... ⎟ ⎜⎜ ⎟⎟ ⎝ a n1 ⎠

Atendiendo a sus elementos: iii) iii_a) Matriz real, sus elementos son números reales: aij e — iii_b) Matriz compleja, sus elementos son números complejos aij e ¬ iii_c) Matriz nula, sus elementos son todos nulos ⎛0 ⎛ 0 0 0⎞ ⎜ ⎛ 0 0⎞ ⎛ 0 0 0⎞ ⎜ ⎟ ⎜0 O =⎜ ⎟ , O = ⎜ 0 0 0⎟ , O = ⎜ ⎟, O =⎜ 0 ⎝ 0 0⎠ ⎝ 0 0 0⎠ ⎜ 0 0 0⎟ ⎜⎜ ⎝ ⎠ ⎝0

Fundamentos Matemáticos de la Ingeniería

0 0 0 0

0⎞ ⎟ 0⎟ 0⎟ ⎟ 0 ⎟⎠

3 Matrices

Tema 1

1.2 OPERACIONES CON MATRICES

Sea Mn¥m el conjunto de las matrices de orden n¥m con elementos reales 1.2.1 Igualdad de matrices

Decimos que dos matrices del mismo orden A = {aij}, B ={bij} son iguales si "i,j ŒÕ

aij = bij

Es decir, tienen todos los elementos iguales y en el mismo orden. 1.2.2 Suma y diferencia de matrices

Dadas las matrices A = {aij}, B = {bij} se define A ± B como la matriz C = {cij} tal que cij = aij ± bij Para realizar estas operaciones, las matrices deben ser del mismo orden y el resultado es una matriz de ese mismo orden. Ejemplo 1.1 ⎛ 3 2⎞ ⎜ ⎟ A = ⎜ −1 0 ⎟ ⎜ 4 1⎟ ⎝ ⎠

⎛ 1 0⎞ ⎜ ⎟ B = ⎜ −1 −1 ⎟ ⎜ 2 −1 ⎟ ⎝ ⎠

⎛ 4 2⎞ A + B = ⎜⎜ −2 −1 ⎟⎟ ⎜ 6 0⎟ ⎝ ⎠

Propiedades de la suma: i) Asociativa: " A, B, C Œ Mn¥m :

⎛2 2⎞ ⎜ ⎟ A−B=⎜ 0 1⎟ ⎜2 2⎟ ⎝ ⎠

A + (B + C) = (A + B) + C

ii) Conmutativa: " A, B Œ Mn¥m :

A+B=B+A

iii) Elemento neutro: " A Œ Mn¥m , $ O Œ Mn¥m / A + O = O + A = A Fundamentos Matemáticos de la Ingeniería

4 Matrices

Tema 1

iv) Elemento opuesto: " A Œ Mn¥m $ -A Œ Mn¥m /

A + (-A) = O

A la matriz –A se denomina matriz opuesta de A y resulta de considerar la matriz cuyos elementos son los opuestos de los elementos de A. 1.2.3 Producto de un escalar por una matriz

Dado un escalar aŒ— y una matriz AŒ Mn¥m, se define el producto a · A = A · a como otra matriz del mismo orden, que resulta de multiplicar a por cada

elemento de A: ⎛ a11 a12 ⎜ a a 22 a · A =a · ⎜ 21 ⎜ ... ... ⎜⎜ a ⎝ n1 a n 2

... a1m ⎞ ⎟ ... a 2m ⎟ = ... ... ⎟ ⎟ ... a nm ⎟⎠

⎛ α·a11 α·a12 ⎜ ⎜ α·a 21 α·a 22 ⎜ ... ... ⎜⎜ α·a ⎝ n1 α·a n 2

... α·a1m ⎞ ⎟ ... α·a 2m ⎟ =A·a ... ... ⎟ ⎟ ... α·a nm ⎟⎠

Ejemplo 1.2 ⎛ 1 −1 0 ⎞ ⎛ 5 ⋅1 5 ⋅ (−1) 5 ⋅ 0 ⎞ ⎛ 5 −5 0 ⎞ 5 ⋅⎜ ⎟= ⎜ ⎟=⎜ ⎟ 5 ⋅1 5 ⋅ 3 ⎠ ⎝ 10 5 15 ⎠ ⎝ 2 1 3 ⎠ ⎝5⋅ 2 Propiedades del producto de un escalar por una matriz: i) Asociativa respecto del producto por escalares: " a, b Œ— y "AŒ Mn¥m (a ⋅ b) ⋅ A = a ⋅ (b ⋅ A) ii) Conmutativa: " a Œ— y "AŒ Mn¥m a⋅ A = A⋅ a iii) Distributiva respecto de la suma de matrices: " a Œ— y "A, B Œ Mn¥m a ⋅ (A + B) = a ⋅ A + a ⋅ B iv) Distributiva respecto de la suma de escalares: " a, b Œ— y "AŒ Mn¥m A ⋅ (a + b) =A ⋅ a + A ⋅ b

Fundamentos Matemáticos de la Ingeniería

5 Matrices

Tema 1

1.2.4 Producto de matrices

Dadas dos matrices cualesquiera An¥m y Bm¥p compatibles para el producto, es decir, tales que el número de columnas de A coincide con el número de filas de B, se define el producto de A ⋅ B como otra matriz C que tiene tantas filas como A y columnas como B, siendo su elemento cij el resultado de sumar los productos de los elementos de la fila i de A por los de la columna j de B: C = A ⋅ B = {cij } / cij =

∑a

ik

⋅ b kj

"i, "j

k

El algoritmo puede entenderse fácilmente observando el siguiente esquema: Columna j fl

Fila i

⎛ ⎛ ⎞ ⎜ ⎜ ⎟ fi ⎜" " " "⎟ ⋅ ⎜ ⎜ ⎟ ⎜⎜ ⎝ ⎠ ⎜ ⎝

n¥ m

⎛ ⎞ ⎜ ⎟ ⎜ ... ⎟=⎜ ⎟ ⎜ ⎟⎟ ⎜ ... ⎠ ⎜ ⎝ ...

# # # #

cij = a i1 ⋅ b1j + ...... + a im ⋅ b jn

m¥ p

n¥p

Ejemplo 1.3 i) Multiplicar las siguientes matrices ⎛ 1 0⎞ 1⎞ ⎜ ⎛2 3 ⎟ ⎜ ⎟ ⋅ ⎜ −1 2 ⎟ ⎝ 0 −1 −2 ⎠ ⎜ ⎟ ⎝ −2 3 ⎠ ⎛ 1 0⎞ 1⎞ ⎜ 2 ⋅ 0 + 3 ⋅ 2 + 1⋅ 3 ⎞ ⎛2 3 ⎟ ⎛ 2 ⋅1 + 3 ⋅ (−1) + 1 ⋅ (−2) ⎜ ⎟ ⋅ ⎜ −1 2 ⎟ = ⎜ ⎟= ⎝ 0 −1 −2 ⎠ ⎜ ⎝ 0 ⋅1 + (−1) ⋅ (−1) + (−2) ⋅ (−2) 0 ⋅ 0 + (−1) ⋅ 2 + (−2) ⋅ 3 ⎠ ⎟ ⎝ −2 3 ⎠

2¥ 3

3 ¥2



2¥2 ⎛ −3 9 ⎞ =⎜ ⎟ ⎝ 5 −8 ⎠

Fundamentos Matemáticos de la Ingeniería

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

6 Matrices

Tema 1

ii) Multiplicar las siguientes matrices ⎛1⎞ ⎜ ⎟ A = ⎜ 2⎟, ⎜ 3⎟ ⎝ ⎠

B = (1 2 3) ,

⎛1 2⎞ C=⎜ ⎟ ⎝3 4⎠

⎛1⎞ ⎛ 1 ⋅ 2 1 ⋅1 1 ⋅ 3 ⎞ ⎜ ⎟ A ⋅ B = ⎜ 2 ⎟ ⋅ (1 2 3) = ⎜⎜ 2 ⋅ 2 2 ⋅1 2 ⋅ 3 ⎟⎟ ⎜ 3⎟ ⎜ 3 ⋅ 2 3 ⋅1 3 ⋅ 3 ⎟ ⎝ ⎠ ⎝ ⎠

3¥ 1

1 ¥3



3¥3

⎛1⎞ B ⋅ A= (1 2 3) ⋅ ⎜⎜ 2 ⎟⎟ = (1⋅1 + 2 ⋅ 2 + 3 ⋅ 3) = (14 ) ⎜ 3⎟ ⎝ ⎠

1¥ 3

3 ¥1

fi 1¥1

Los demás productos A ⋅ C, C ⋅ A, B ⋅ C, C ⋅ B no son compatibles y no se pueden realizar. Propiedades del producto de matrices: i) Asociativa: " A, B, C Œ Mn¥m

A ⋅ (B ⋅ C) = (A ⋅ B) ⋅ C ii) Distributiva respecto a la suma de matrices: " A, B, C Œ Mn¥m

A ⋅ (B + C) = A ⋅ B + A ⋅ C (B + C) ⋅ A = B ⋅ A + C ⋅ A iii) El producto de matrices no siempre es conmutativo: " A, B Œ Mn¥m

A⋅ B π B⋅ A - Cuando dos matrices verifican que A ⋅ B = B ⋅ A se dicen conmutativas

Fundamentos Matemáticos de la Ingeniería

7 Matrices

Tema 1

Es condición obligada aunque no suficiente que las matrices sean cuadradas para que conmuten:

A(n¥m) ⋅ B(m¥p) = C(m¥m) B(m¥p) ⋅ A(n¥m) = C(n¥ n) siempre que sean compatiblesfi n = p Si conmutan, C(m¥m) = C(n¥ n) fi n = mfi matrices cuadradas - Cuando dos matrices verifican A ⋅ B = - B ⋅ A se dicen anticonmutativas iv) El producto de matrices tiene divisores de cero: " A, B Œ Mn¥m

Si A ⋅ B = O ¤ no necesariamente A = O o B = O Ejemplo 1.4 ⎛1 1 ⎞ ⎛ −3 −2 ⎞ Dadas las matrices A = ⎜ ⎟πO y B= ⎜ ⎟π O 2⎠ ⎝1 1 ⎠ ⎝ 3 ⎛1 1⎞ ⎛ −3 −2 ⎞ ⎛ 0 0 ⎞ A⋅B =⎜ ⎟ ⋅⎜ ⎟= ⎜ ⎟= O 2⎠ ⎝ 0 0⎠ ⎝ 1 1⎠ ⎝ 3 v) El producto de matrices no verifica la propiedad de simplificación: " A, B, C Œ Mn¥m

Si A ⋅ B = A ⋅ C ¤ no necesariamente B = C Ejemplo 1.5 A⋅ B = A⋅ C ¤ B π C

⎛ 1 1⎞ ⎛ −3 −2 ⎞ ⎛ 1 1⎞ ⎛ 2 −1⎞ ⎜ ⎟ ⋅⎜ ⎟= ⎜ ⎟⋅⎜ ⎟ 2 ⎠ ⎝ 1 1⎠ ⎝ − 2 1 ⎠ ⎝ 1 1⎠ ⎝ 3

⎛ −3 −2 ⎞ ⎛ 2 −1⎞ B =⎜ ⎟≠⎜ ⎟=C 2 ⎠ ⎝ −2 1 ⎠ ⎝ 3

Fundamentos Matemáticos de la Ingeniería

8 Matrices

Tema 1

1.3 MATRICES CUADRADAS Definimos una matriz cuadrada como aquella que tiene igual número de filas que de columnas.

1.3.1 Definiciones en las matrices cuadradas: En una matriz cuadrada n¥n se llama diagonal principal a la línea formada por los elementos cuyos subíndices de fila y columna coinciden: a11, a22, a33, .....ann. Se llama triángulo superior al formado por los elementos aij situados por encima de la diagonal principal. Se llama triángulo inferior al formado por los elementos aij situados por debajo de la diagonal principal. ⎛ ∗ ∆ ∆ ∆⎞ ⎜ ⎟ ∇ ∗ ∆ ∆⎟ ⎜ A = {a ij } = ⎜∇ ∇ ∗ ∆⎟ ⎜⎜ ⎟⎟ ⎝∇ ∇ ∇ ∗ ⎠

∆ = Triángulo sup erior ∗ = diagonal principal ∇ = Triángulo inf erior

Se llama traza en una matriz cuadrada, a la suma de los elementos de la diagonal principal: n

Tr(A) =

∑a i =1

ii

= a11 + a 22 + a 33 + ......a nn

1.3.2 Tipos de matrices cuadradas: Matiz triangular: matriz cuadrada que tiene un triángulo superior (matriz triangular inferior) o inferior (matriz triangular superior) nulo.

M inf erior

0 ⎛2 ⎜ 4 −3 =⎜ ⎜3 1 ⎜⎜ 6 ⎝0

0 0 0 5

0⎞ ⎟ 0⎟ 0⎟ ⎟ 1 ⎟⎠

M sup erior

1 ⎛2 ⎜ 0 −3 =⎜ ⎜0 0 ⎜⎜ 0 ⎝0

0 3 0 0

−2 ⎞ ⎟ 5⎟ 4⎟ ⎟ 1 ⎟⎠

Matiz estrictamente triangular: es una matriz triangular cuya diagonal principal es nula

Fundamentos Matemáticos de la Ingeniería

9 Matrices

Tema 1

M estric. inf erior

⎛0 ⎜ 4 =⎜ ⎜3 ⎜⎜ ⎝0

0 0 1 6

0 0 0 5

0⎞ ⎟ 0⎟ 0⎟ ⎟ 0 ⎟⎠

M estric. sup erior

⎛0 1 ⎜ 0 0 =⎜ ⎜0 0 ⎜⎜ ⎝0 0

0 −2 ⎞ ⎟ 3 5⎟ 0 4⎟ ⎟ 0 0 ⎟⎠

Matriz diagonal: es aquella matriz cuadrada que es triangular superior e inferior a la vez.

M diagonal

⎛1 ⎜ 0 =⎜ ⎜0 ⎜⎜ ⎝0

0 2 0 0

0 0 4 0

0⎞ ⎟ 0⎟ 0⎟ ⎟ 3 ⎟⎠

Matriz escalar: es una matriz diagonal cuyos elementos son todos iguales.

M escalar

⎛2 ⎜ 0 =⎜ ⎜0 ⎜⎜ ⎝0

0 2 0 0

0 0 2 0

0⎞ ⎟ 0⎟ 0⎟ ⎟ 2 ⎟⎠

La más usual de estas matrices escalares es la matriz identidad (unidad)), cuya diagonal está formada por unos. ⎛1 0 ⎛ 1 0 0⎞ ⎜ ⎛ 1 0⎞ ⎜ ⎟ ⎜0 1 = = I2 = ⎜ , I 0 1 0 , I ⎟ 3 ⎜ 4 ⎟ ⎜0 0 ⎝0 1⎠ ⎜0 0 1⎟ ⎜⎜ ⎝ ⎠ ⎝0 0

0 0 1 0

0⎞ ⎟ 0⎟ ....etc 0⎟ ⎟ 1 ⎟⎠

Matriz inversa: Dada una matriz cuadrada A decimos que tiene inversa B si:

A⋅ B = B⋅ A = I

A la inversa de A se le denota por A-1 = B y entonces la definición se convierte en A ⋅ A-1 = A-1 ⋅ A = I Hay matrices que tienen inversa, se les llama regulares o invertibles y otras que no tienen inversa, se dice singulares.

Fundamentos Matemáticos de la Ingeniería

10 Matrices

Tema 1

Propiedades: A-1 es única (A-1 )-1 = A (A ⋅ B)-1 =B-1 ⋅ A-1

1 -1 ⋅A "lπ0 Œ— λ Matriz simétrica: Se dice que una matriz cuadrada es simétrica, cuando los elementos simétricos respecto a la diagonal principal son iguales. (l ⋅ A)-1 =

⎛ 1 2 1⎞ ⎜ ⎟ ⎜ 2 0 4⎟ ⎜ 1 4 3⎟ ⎝ ⎠

Matriz antisimétrica: Se dice que una matriz cuadrada es antisimétrica, cuando los elementos simétricos respecto a la diagonal principal son iguales pero opuestos y los elementos de la diagonal principal son nulos .

⎛ 0 −5 −1 − 4 ⎞ ⎜ ⎟ 3 2⎟ ⎜5 0 ⎜ 1 −3 0 1⎟ ⎟ ⎜⎜ 4 −2 −1 0 ⎟⎠ ⎝

1.3.3 Propiedades de las matrices cuadradas: i) El producto de dos matrices triangulares, ambas superiores o inferiores, es otra matriz superior o inferior.

Ejemplo 1.6 ⎛ 1 2 1 ⎞ ⎛ 2 1 1 ⎞ ⎛ 2 2 10 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 0 3 0 ⎟ ⋅ ⎜ 0 0 4 ⎟ = ⎜ 0 0 12 ⎟ ⎜0 0 1⎟ ⎜ 0 0 1⎟ ⎜ 0 0 1 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎛ 1 0 0⎞ ⎛ 2 0 0⎞ ⎛ 2 0 0⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 1 2 0⎟⋅⎜ 3 0 0⎟ = ⎜ 8 0 0⎟ ⎜ 2 3 3 ⎟ ⎜ 1 2 1 ⎟ ⎜ 16 6 3 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Fundamentos Matemáticos de la Ingeniería

11 Matrices

Tema 1

ii) El producto de dos matrices diagonales, es otra matriz diagonal.

Ejemplo 1.7 ⎛ 1 0 0⎞ ⎛ 3 0 0⎞ ⎛ 3 0 0⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 0 2 0⎟⋅⎜ 0 2 0⎟ = ⎜ 0 4 0⎟ ⎜ 0 0 3⎟ ⎜ 0 0 1⎟ ⎜ 0 0 3⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

iii) Las matrices diagonales conmutan entre sí.

Ejemplo 1.8 ⎛ 1 0 0⎞ ⎛ 3 0 0⎞ ⎛ 3 0 0⎞ ⎛ 3 0 0⎞ ⎛ 1 0 0⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 0 2 0⎟⋅⎜ 0 2 0⎟ = ⎜ 0 4 0⎟ = ⎜ 0 2 0⎟⋅⎜ 0 2 0⎟ ⎜ 0 0 3⎟ ⎜ 0 0 1⎟ ⎜ 0 0 3⎟ ⎜ 0 0 1⎟ ⎜ 0 0 3⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

iv) Para la matriz identidad se verifican las relaciones siguientes:

An¥m ⋅ Im = An¥m In ⋅ An¥m = An¥m Ejemplo 1.9 A2¥3 ⋅ I3 = A2¥3

⎛ 1 0 0⎞ ⎛ 1 0 2⎞ ⎜ ⎟ ⎛ 1 0 2⎞ fi⎜ ⎟⋅⎜ 0 1 0⎟ = ⎜ ⎟ ⎝ 0 2 3⎠ ⎜ ⎟ ⎝ 0 2 3⎠ 0 0 1 ⎝ ⎠

⎛ 1 0⎞ ⎛ 2 1 2⎞ ⎛ 2 1 2⎞ I2 ⋅ A2¥3 = A2¥3 fi ⎜ ⎟⋅⎜ ⎟= ⎜ ⎟ ⎝ 0 1⎠ ⎝ 1 4 3⎠ ⎝ 1 4 3⎠

1.3.4 Potencia de una matriz cuadrada Ak : Se llama potencia k-ésima de una matriz cuadrada A, donde k Œ Õ, un entero positivo, al producto de A por sí misma, repetido k veces.

Ak =A ⋅ A ⋅ A ⋅ ......k veces ...... ⋅ A Se conviene en que:

A- k = (A- 1) k A0 = I Fundamentos Matemáticos de la Ingeniería

"kŒÕ

12 Matrices

Tema 1

A partir de la definición de potencia tenemos: i) Matriz periódica de periodo n es aquella matriz que verifica

An = A siendo n el menor entero positivo que cumple la igualdad. Para n = 2, A2 = A se dice que A es idempotente. ii) Matriz nilpotente de índice n, es aquella matriz tal que An = O siendo n el menor entero positivo que cumple la igualdad. iii) Matriz involutiva es aquella matriz que verifica: A2 = I ¤ A ⋅ A = I ¤ A = A-1 1.4 TRANSPUESTA DE UNA MATRIZ Dada una matriz An¥m se llama transpuesta de A y se escribe At, a la matriz que resulta de cambiar ordenadamente las filas por las columnas.

A = An¥m Æ transposición Æ Am¥n = At

⎛ a11 a12 ⎜ a a 22 A = ⎜ 21 ⎜ ... ... ⎜⎜ a ⎝ n1 a n 2

... a1m ⎞ ⎛ a11 ⎟ ⎜ ... a 2m ⎟ a î ⎜ 12 ⎜ ... ... ... ⎟ ⎟ ⎟ ⎜⎜ a ... a nm ⎠ ⎝ 1m

a 21 a 22 ... a 2m

... a n1 ⎞ ⎟ ... a n 2 ⎟ = At ... ... ⎟ ⎟ ... a nm ⎟⎠

Ejemplo 1.10 ⎛ 1 0⎞ ⎛ 1 2 4⎞ ⎜ ⎟ t A =⎜ ⎟ → transpuesta → ⎜ 2 3 ⎟ = A 0 3 5 ⎝ ⎠ ⎜ 4 5⎟ ⎝ ⎠ ⎛ 1 B = ⎜⎜ 3 ⎜ −2 ⎝

⎞ ⎟ t ⎟ → transpuesta → (1 3 -2 ) = B ⎟ ⎠

Propiedades: i)

(At)t = A

ii) (l ⋅ At) = l ⋅ At

"lŒ—

Fundamentos Matemáticos de la Ingeniería

13 Matrices

Tema 1

iii) (A ± B)t = At ± Bt iv) (A ⋅ B)t = Bt ⋅ At v) Si A es simétrica ï A = (A)t vi) Si A es antisimétrica ï - A = (A)t

1.4.1 Teoremas relativos a matrices simétricas: Teorema 1.- Dada una matriz cuadrada A , A + At es una matriz simétrica

En efecto, sea S = A + At comprobemos que S es simétrica: St = (A + At) t =At + At t = At + A = A + At = S

Ejemplo 1.11 ⎛ 1 0 ⎞ Hallar una matriz simétrica a partir de A = ⎜ ⎟ ⎝ −2 3 ⎠ ⎛ 1 0 ⎞ ⎛ 1 −2 ⎞ ⎛ 2 −2 ⎞ S = A + At = ⎜ ⎟+⎜ ⎟= ⎜ ⎟ ⎝ −2 3 ⎠ ⎝ 0 3 ⎠ ⎝ −2 6 ⎠ Teorema 2.- Dada una matriz cuadrada An , A − At es una matriz antisimétrica

En efecto, sea T = A − At comprobemos que T es antisimétrica: Tt = (A − At )t = At – At t = At – A = − (A − At ) = − T

Ejemplo 1.12 ⎛ 1 0 ⎞ Hallar una matriz antisimétrica a partir de A = ⎜ ⎟ ⎝ −2 3 ⎠ ⎛ 1 0 ⎞ ⎛ 1 −2 ⎞ ⎛ 0 2 ⎞ T = A-At = ⎜ ⎟ − ⎜ ⎟= ⎜ ⎟ ⎝ −2 3 ⎠ ⎝ 0 3 ⎠ ⎝ −2 0 ⎠ Teorema 3.- Toda matriz cuadrada A se puede expresar como suma de una matriz simétrica y otra antisimétrica: A=S+Tt Fundamentos Matemáticos de la Ingeniería

14 Matrices

Tema 1

En efecto: ⎧ 1 S = (A + A t ) es también simétrica ⎧⎪S = A + A t simétrica ⎪⎪ 2 ⇒⎨ Sean ⎨ t ⎪⎩T = A − A antisimétrica ⎪T = 1 (A − A t ) es también antisimétrica ⎪⎩ 2 Sumando esas ecuaciones: S+T =

1 1 (A + A t ) + (A − A t ) = A 2 2

Ejemplo 1.13 ⎛ 2 Expresar la matriz ⎜ ⎝ −3

1⎞ ⎟ como suma de una matriz simétrica y otra 5⎠

antisimétrica. 1 1 ⎡⎛ 2 1 ⎞ ⎛ 2 −3 ⎞ ⎤ 1 ⎛ 4 S = (A + A t ) = ⎢⎜ ⎟+⎜ ⎟⎥ = ⎜ 2 2 ⎣ ⎝ −3 5 ⎠ ⎝ 1 5 ⎠ ⎦ 2 ⎝ − 2

−2 ⎞ ⎛ 2 −1⎞ ⎟=⎜ ⎟ 10 ⎠ ⎝ −1 5 ⎠

1 1 ⎡⎛ 2 1 ⎞ ⎛ 2 −3 ⎞ ⎤ 1 ⎛ 0 T = (A − A t ) = ⎢⎜ ⎟−⎜ ⎟⎥ = ⎜ 2 2 ⎣⎝ −3 5 ⎠ ⎝ 1 5 ⎠ ⎦ 2 ⎝ −4

4 0

⎞ ⎛ 0 ⎟=⎜ ⎠ ⎝ −2

2⎞ ⎟ 0⎠

⎛ 2 −1⎞ ⎛ 0 2 ⎞ ⎛ 2 1 ⎞ A =⎜ ⎟+⎜ ⎟=⎜ ⎟ ⎝ −1 5 ⎠ ⎝ −2 0 ⎠ ⎝ −3 5 ⎠ Teorema 4.- Dada una matriz cualquiera A = An¥m , S = A ⋅ At y R = At ⋅ A son matrices simétricas.

Sea S = A ⋅ At para ver que es simétrica ï St = (A ⋅ At )t = (At)t ⋅ At = A ⋅ At = S R = At ⋅ A simétrica ï Rt = (At ⋅ A)t = At ⋅ (At)t = At ⋅ A = R Ejemplo 1.14 ⎛2 3 ⎞ Hallar una matriz simétrica a partir de A = ⎜⎜ 1 0 ⎟⎟ ⎜ 4 −1 ⎟ ⎝ ⎠

Fundamentos Matemáticos de la Ingeniería

15 Matrices

Tema 1 ⎛2 3 ⎞ ⎛2 S = A ⋅ At = ⎜⎜ 1 0 ⎟⎟ ⋅ ⎜ ⎜ 4 −1 ⎟ ⎝ 3 ⎝ ⎠

⎛2 R = At ⋅ A = ⎜ ⎝3

⎛13 2 5 ⎞ 4⎞ ⎜ ⎟ ⎟=⎜ 2 1 4 ⎟ 0 −1 ⎠ ⎜ ⎟ ⎝ 5 4 17 ⎠

1

⎛2 3⎞ 4⎞ ⎜ ⎟ ⎛ 21 2 ⎞ 0⎟ = ⎜ ⎟⋅⎜1 ⎟ 0 −1⎠ ⎜ ⎟ ⎝ 2 10 ⎠ 4 1 − ⎝ ⎠

1

1.5 DETERMINANTE DE UNA MATRIZ CUADRADA 1.5.1 Definición: A toda matiz cuadrada An le asociamos un número llamado determinante, A , simbolizado de la forma:

A =

a11

a12

... a1n

a 21

a 22

... a 2n

... ... ... ... a n1 a n 2 ... a nn

Dicho número es un resultado que se puede obtener de diferentes maneras. Según el orden y tipos de determinantes estudiaremos ciertos métodos para hallar el determinante. 1.5.2 Cálculo de un determinante: I) Método de Sarrus Cuando el determinante es de orden dos o tres se usa la regla de Sarrus, que consiste en sumar todos los productos que se obtienen al multiplicar dos o tres elementos de la matriz de todas las formas posibles, con la condición de que en cada producto exista un elemento de cada fila y uno de cada columna, con sus signos correspondientes y para ello se utiliza el esquema que sigue: Para un determinante de orden 2: a11 a12 ⊗ ∗ = a11 ⋅ a 22 − a12 ⋅ a 21 ⇔ − a 21 a 22 ⊗ ∗

Fundamentos Matemáticos de la Ingeniería

16 Matrices

Tema 1

Para un determinante de orden 3: a11 a12 a13 a 21 a 22 a 23 = a11 ⋅ a 22 ⋅ a 33 + a13 ⋅ a 21 ⋅ a 32 + a12 ⋅ a 23 ⋅ a 31 ⋅ a 31 a 31 a 32 a 33 − (a13 ⋅ a 22 ⋅ a 31 + a11 ⋅ a 23 ⋅ a 32 + a12 ⋅ a 21 ⋅ a 33 )

La regla nos recuerda el desarrollo: ⊗ ⊗ ⊗

Con signo positivo

∗ ∗ ∗

⊗ ⊗ ⊗ , con signo negativo ∗ ∗ ∗ ⊗ ⊗ ⊗ ∗ ∗ ∗

Ejemplo 1.15 Calcular los determinantes

2 −3 1

1

2 ,

0 −2

−1

1

1 −2 0 3

−3 = 2 ⋅ 1 − ( − 3) ⋅ 1 = 5 1

2 1 2 0 −2

−1 1 0

1 −2 3

= 2 ⋅ 1 ⋅ 3 + 1 ⋅ 0 ⋅ 0 + ( − 1) ⋅ ( − 2) ⋅ ( − 2) − [1 ⋅ 1 ⋅ ( − 2) + 2 ⋅ 0 ⋅ ( − 2) + ( − 1) ⋅ 0 ⋅ 3] = = 6 + 0 − 4 − ( − 2 + 0 + 0) = 0

II) Cálculo del determinante de orden n, por los adjuntos: Cuando el orden de los determinantes es superior a 3 la regla de Sarrus no es fácilmente aplicable y entonces utilizamos el método de los adjuntos, que reduce el orden en una unidad cada vez que le utilizamos. Para ello vamos a definir dos nuevos conceptos: Menor complementario: Dada una matriz An se llama menor complementario de un elemento aij al determinante de la matriz, que resulta de suprimir la fila i y la columna j en la matriz An: se llama mij. Adjunto de un elemento: Al producto de (-1)i+j por el menor complementario mij de aij se llama adjunto de un elemento aij y se escribe Aij . i+j

Aij = (-1)

Fundamentos Matemáticos de la Ingeniería

⋅ mij

17 Matrices

Tema 1

A partir de estas definiciones obtenemos otra forma de calcular un determinante: el valor de un determinante de orden n es igual a la suma de los productos de los elementos de una fila o columna por sus respectivos adjuntos. n

A = ∑ a ij ×A ij = a i1 ⋅ A i1 + a i2 ⋅ A i2 + a i3 ⋅ A i3 + ...... + a in ⋅ A in = i o j=1

a1j ⋅ A1j + a 2 j ⋅ A 2 j + a 3 j ⋅ A 3 j + ...... + a nj ⋅ A nj Ejemplo 1.16

1 0 2 1 2 0 Calcular el valor del determinante −1 1 4 3 −1 −3

0 1 −1 −2

Elegimos la primera fila ya que tiene dos elementos nulos y eso va a simplificar el cálculo: 1 0 2 1 2 0 −1 1 4 3 −1 −3 2

0

0 1 = 1⋅ A11 + 0 ⋅ A12 + 2 ⋅ A13 + 0 ⋅ A14 = −1 −2 1

1

2

1

= 1 ⋅ (−1)1+1 ⋅ 1 4 −1 + 0 ⋅ m12 + 2 ⋅ (−1)1+3 ⋅ −1 1 −1 + 0 ⋅ m14 = − 1 − 3 −2 3 −1 − 2 cuando llegamos a un determinante de orden tres, podemos aplicar Sarrus: 1 ⋅ [ (−16) + (−3) − [(−4) + 6]] + 2 ⋅ [ (−2) + 1 + (−6) − [3 + 1 + 4]] = −51

III) Método del pivote o de Chio Si a los elementos de una fila o columna se suman los correspondientes de otras paralelas multiplicados por un número, el valor del determinante no varía. (Suma de una combinación lineal de otras filas o columnas) Basándonos en esta propiedad, podemos obtener un determinante igual, pero con una fila o columna todos nulos salvo uno, que al aplicar el método anterior, se reduce su cálculo a un solo determinante de orden menor. Fundamentos Matemáticos de la Ingeniería

18 Matrices

Tema 1

Ejemplo 1.17

1 0 1 0 1

Calcular por el método del pivote el determinante

1 0 1 0 1

2 0 1 0 2

1 1 0 1 2

2 1 0 1 1

1 1 0 = 3ª fila − 1ª fila = 2 1

1 0 = F5 − F1 = 0 0 0

2 0 1 0 2

1 1 0 1 2

2 1 0 1 1

1 1 0 2 1

1 2 1 2 1 0 0 1 1 1 0 −1 −1 −2 −1 = 0 0 1 1 2 1 2 2 1 1

2 1 2 1 0 1 1 1 −1 −1 −2 −1 0 1 1 2 0 1 −1 0

desarrollamos el determinante por la 1ª columna: 0 1 1 1 0 1 1 −1 −1 −2 −1 −1 −1 −2 1 ⋅ A11 = 1 ⋅ (−1)1+1 ⋅ = 0 1 1 2 0 1 1 0 1 −1 0 0 1 −1

1 −1 = 2 0

repito el proceso desarrollando el determinante por la ª columna:

1

(-1) ⋅ A21 = (−1) ⋅ (−1)

2 +1

1

⋅ 1 1 1 −1

1

1

1

1

1

2 1

2 = 1 1 2 = F1 + F2 = 1 0 1 −1 0 1

2 2 0 0

y por último si aplico el proceso por la 3ª fila: (-1) ⋅ A31 = 1⋅ (−1)3+1 ⋅

Fundamentos Matemáticos de la Ingeniería

2 1 =2 2 2

19 Matrices

Tema 1

Antes de desarrollar el método siguiente, vamos a comentar las propiedades más singulares de los determinantes, para el cálculo del determinante: Propiedades:

a) Si los elementos de una fila o columna son nulos el valor del determinante es nulo. b) Un determinante con dos filas o columnas paralelas iguales es nulo. c) Si un determinante tiene dos filas o columnas proporcionales su valor es nulo. d) Si cambiamos dos filas o columnas el determinante cambia de signo. e) Para multiplicar un número por un determinante se multiplica el número por los elementos de una fila o columna cualquiera.(En un determinante se puede sacar factor común, siempre que exista un número que multiplique a todos los elementos de una fila o columna) f)

At = A λ ⋅ A = λn ⋅ A A⋅B = A ⋅ B A −1 =

1 A

IV) Método triangularizante Cuando calculamos el determinante de matrices triangulares o diagonales observamos que se verifica que el resultado coincide con el producto de los elementos de la diagonal principal. Con las propiedades anteriores podemos llegar a obtener un determinante que sea triangular y aplicar seguidamente el contenido expresado arriba: Ejemplo 1.18

Calcular el determinante

Fundamentos Matemáticos de la Ingeniería

1 0 1 0 1

2 0 1 0 2

1 1 0 1 2

2 1 1 1 0 0 1 2 1 1

20 Matrices

1 0 1 0 1

2 0 1 0 2

1 1 0 1 2

2 1 0 1 1

Tema 1

1 1 0 = F3 − F1 = 2 1

1 2 1 2 1 0 0 1 1 1 0 −1 −1 −2 −1 = F5 − F1 = 0 0 1 1 2 1 2 2 1 1

1 0 0 0 0

2 1 2 1 0 1 1 1 − 1 −1 − 2 − 1 = 0 1 1 2 0 1 −1 0

cambiamos las filas 2ª y 3ª (cambia el signo)

1 2 1 0 −1 −1 − 0 0 1 0 0 1 0 0 1

2 −2 1 1 −1

1 −1 1 = F4 − F3 = − 2 0

1 2 1 0 − 1 −1 0 0 1 0 0 0 0 0 1

1 2 1 2 0 −1 −1 −2 = F5 − F4 = − 0 0 1 1 0 0 0 0 0 0 0 −2

2 −2 1 0 −1

1 −1 1 = 1 0

1 −1 1 1 −1

cambiamos 4ª y 5ª fila para dejarle triangular(el determinante cambia de signo):

1 2 1 2 0 −1 −1 −2 =F4GF5= (−) ⋅ (−) 0 0 1 1 0 0 0 −2 0 0 0 0

1 −1 1 = 1⋅ (−1) ⋅1⋅ (−2) ⋅1 = 2 −1 1

1.6 CÁLCULO DE LA MATRIZ INVERSA DE UNA DADA Dada una matriz cuadrada An se llama matriz adjunta, Adj(An) a la matriz que resulta de sustituir cada uno de los elementos de la matriz An por sus adjuntos respectivos.

Fundamentos Matemáticos de la Ingeniería

21 Matrices

Tema 1

Ejemplo 1.19 1⎞ ⎛ 1 2 ⎜ ⎟ Hallar la matriz adjunta de A = ⎜ −1 −2 3⎟ ⎜ −3 1 −1 ⎟ ⎝ ⎠

⎛ ⎜ ⎜ ⎜ Adj(A) = ⎜ − ⎜ ⎜ ⎜ ⎜ ⎝

−2 3 1 −1

2 −1 1 −1



−1 3 −3 −1 −1 −2 −3 1

1 −1 −3 −1 −

2 −1 −2 3 −

1 2 −3 1

⎞ ⎟ ⎟ ⎟ ⎛ −1 1 4 ⎞ ⎟ = ⎜ −10 − 4 − 2 ⎟ ⎟ ⎟ ⎜⎜ ⎟ 7 7 0 − − ⎠ ⎟ ⎝ ⎟ ⎟ ⎠

1 −1 −1 3

1 2 −1 −2

Resultado: Adj(A t ) A = A -1

Una matriz tiene inversa si y solo si A ≠ 0

Ejemplo 1.20 ⎛ 1 −1 −3 ⎞ Calcular la matriz inversa de ⎜⎜ 2 −2 1 ⎟⎟ ⎜ −1 3 −1⎟ ⎝ ⎠

A = −14

1⎞ ⎛ 1 2 ⎜ ⎟ A = ⎜ −1 −2 3⎟ ⎜ −3 1 −1 ⎟ ⎝ ⎠ t

⎛ −1 1 4 ⎞ Adj(A ) = ⎜⎜ −10 − 4 − 2 ⎟⎟ ⎜ −7 −7 0 ⎟ ⎝ ⎠ t

⎛ −1 1 4 ⎞ Adj(A t ) 1 ⎜ A = = ⋅ ⎜ −10 − 4 − 2 ⎟⎟ −14 ⎜ A ⎟ ⎝ −7 −7 0 ⎠ -1

Fundamentos Matemáticos de la Ingeniería

22 Matrices

Tema 1

1.7 MATRIZ ORTOGONAL Definición: Una matriz cuadrada es una matriz ortogonal si verifica A ⋅ At = At ⋅ A = I Propiedades: a) La inversa de una matriz ortogonal es su traspuesta y es ortogonal también: Por definición se tiene : A ⋅ At = I ï At = A-1

(A-1) ⋅ (A-1)t = At ⋅ (At)t = At ⋅ A = I (A-1)t ⋅ (A-1) = (At)t ⋅ At = A ⋅ At = I b) El determinante de una matriz ortogonal vale 1 ó -1 De A ⋅ At = I tomando determinantes: 2

A ⋅ A t = I ⇒ A ⋅ A t = A = 1 ⇒ A = ±1

Ya que A t = A c) El producto de matrices ortogonales es ortogonal:

Sean A y B ortogonales: A ⋅ At = At ⋅ A = I y B ⋅ Bt = Bt ⋅ B = I (A ⋅ B) ⋅ (A ⋅ B) t = A ⋅ B ⋅ Bt ⋅ At = A ⋅ I ⋅ At = A ⋅ At = I (A ⋅ B)t ⋅ (A ⋅ B) = Bt ⋅ At ⋅ A ⋅ B = Bt ⋅ I ⋅ B = Bt ⋅ B = I

Fundamentos Matemáticos de la Ingeniería

23 Matrices

Tema 1

1.8 MATRICES ELEMENTALES 1.8.1 Operaciones elementales Definición 1: Sobre una matriz An¥m decimos que efectuamos una operación elemental sobre una fila o columna, cuando realizamos cualquiera de estas transformaciones:

i) Cambiar entre sí dos filas o columnas : Eij ii) Multiplicar una fila o columna por un número real k π 0: Ei(k) iii )Sumar a la fila o columna i, la fila o columna j multiplicada por un número real k π 0: Ei,j(k) Definición 2: Se llama matriz elemental a una matriz cuadrada, que resulta de efectuar una operación elemental sobre una fila o columna en la matriz identidad.

Ejemplo 1.21 ⎛ 1 0⎞ ⎛ 0 1⎞ ⎜ ⎟ → F1,2 = ⎜ ⎟ = E1 Cambiar dos filas ⎝ 0 1⎠ ⎝ 1 0⎠ ⎛ 1 0 0⎞ ⎛ 1 0 0⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 0 1 0 ⎟ → C2 (−3) = ⎜ 0 −3 0 ⎟ = E 2 Multiplicar la 2ª columna por (−3) ⎜ 0 0 1⎟ ⎜ 0 0 1⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 1 0 0⎞ ⎛ 1 0 0⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 0 1 0 ⎟ → F3,2 (2) = ⎜ 0 1 0 ⎟ = E 3 Sumar a la 3ª fila la 2ª por 2 ⎜ 0 0 1⎟ ⎜ 0 2 1⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 1 0⎞ ⎛ 1 −5 ⎞ ⎜ ⎟ → C2,1 (−5) = ⎜ ⎟ = E 4 Sumar a la 2ª columna la 1ª por − 5 ⎝ 0 1⎠ ⎝ 0 1⎠ Según el orden de la matriz unidad obtenemos una matriz elemental del mismo orden.

Fundamentos Matemáticos de la Ingeniería

24 Matrices

Tema 1

1.8.2 Teorema: Si en una matriz A efectuamos una operación elemental por filas la matriz que obtenemos es E ⋅ A, donde E es la matriz elemental resultante de efectuar la misma operación elemental. Si en una matriz A efectuamos una operación elemental por columnas la matriz que obtenemos es A ⋅ E, donde E es la matriz elemental resultante de efectuar la misma operación elemental.

Ejemplo 1.22 ⎛ 2 1 0 −1 ⎞ Sea A = ⎜⎜ 1 −2 1 −2 ⎟⎟ ⎜ 3 −1 0 1 ⎟ ⎝ ⎠

Por filas: ⎛ 2 1 0 −1 ⎞ ⎛ 2 1 0 −1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 1 −2 1 −2 ⎟ → F2,1 (−2) = ⎜ −3 −4 1 0 ⎟ ⎜ 3 −1 0 1 ⎟ ⎜ 3 −1 0 1 ⎟ ⎝ ⎠ ⎝ ⎠

Matriz elemental obtenida al hacer la misma operación: ⎛ 1 0 0⎞ ⎛ 1 0 0⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 0 1 0 ⎟ → F2,1 (−2) = ⎜ −2 1 0 ⎟ = E ⎜ 0 0 1⎟ ⎜ 0 0 1⎟ ⎝ ⎠ ⎝ ⎠

Producto de E ⋅ A: ⎛ 1 0 0 ⎞ ⎛ 2 1 0 −1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ −2 1 0 ⎟ ⋅ ⎜ 1 −2 1 −2 ⎟ = ⎜ 0 0 1 ⎟ ⎜ 3 −1 0 1 ⎟ ⎝ ⎠ ⎝ ⎠

⎛ 2 1 0 −1 ⎞ ⎜ ⎟ ⎜ −3 −4 1 0 ⎟ ⎜ 3 −1 0 1 ⎟ ⎝ ⎠

Por columnas: ⎛ 2 1 0 −1 ⎞ ⎛2 ⎜ ⎟ ⎜ ⎜ 1 −2 1 −2 ⎟ → C2,1 (−2) = ⎜ 1 ⎜ 3 −1 0 1 ⎟ ⎜3 ⎝ ⎠ ⎝

Fundamentos Matemáticos de la Ingeniería

−3

0 −1 ⎞ ⎟ −4 1 − 2 ⎟ − 7 0 1 ⎟⎠

25 Matrices

Tema 1

Matriz elemental obtenida al hacer la misma operación: ⎛ 1 0 0 0⎞ ⎛ 1 −2 ⎜ ⎟ ⎜ ⎜ 0 1 0 0 ⎟ → C (−2) = ⎜ 0 1 2,1 ⎜ 0 0 1 0⎟ ⎜0 0 ⎜⎜ ⎟⎟ ⎜⎜ ⎝0 0 0 1⎠ ⎝0 0

0⎞ ⎟ 0⎟ =E 0⎟ ⎟ 1 ⎟⎠

0 0 1 0

Producto de A ⋅ E: ⎛ 1 −2 ⎛ 2 1 0 −1 ⎞ ⎜ ⎜ ⎟ ⎜0 1 ⎜ 1 −2 1 −2 ⎟ ⋅ ⎜ 0 0 ⎜ 3 −1 0 1 ⎟ ⎜ ⎝ ⎠ ⎜0 0 ⎝

0 0 1 0

0⎞ ⎟ ⎛2 0⎟ ⎜ = 1 0 ⎟ ⎜⎜ ⎟ 3 1 ⎟⎠ ⎝

−3

0 −1 ⎞ ⎟ −4 1 −2 ⎟ − 7 0 1 ⎟⎠

A partir de ahora, sólo consideraremos las matrices elementales resultado de efectuar operaciones elementales sobre las filas.

1.8.3 Operaciones elementales inversas Se llama operación elemental inversa aquella operación que nos anula la acción de cada operación elemental:

Ejemplo 1.23 Sean las matrices elementales obtenidas como resultado de las siguientes operaciones elementales: ⎛ 1 0 0⎞ ⎛ 0 0 1⎞ ⎜ ⎟ ⎜ ⎟ I3 = ⎜ 0 1 0 ⎟ → F13 = ⎜ 0 1 0 ⎟ = E1 ⎜ 0 0 1⎟ ⎜ 1 0 0⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 1 0 0⎞ ⎛ 1 0 0⎞ ⎜ ⎟ ⎜ ⎟ I3 = ⎜ 0 1 0 ⎟ → F2 (2) = ⎜ 0 2 0 ⎟ = E 2 ⎜ 0 0 1⎟ ⎜ 0 0 1⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 1 0 0⎞ ⎛1 ⎜ ⎟ ⎜ I3 = ⎜ 0 1 0 ⎟ → F2,3 (−3) = ⎜ 0 ⎜ 0 0 1⎟ ⎜0 ⎝ ⎠ ⎝

Fundamentos Matemáticos de la Ingeniería

0 0⎞ ⎟ 1 −3 ⎟ = E 3 0 1 ⎟⎠

26 Matrices

Tema 1

Existen otras operaciones sobre estas matrices elementales que nos anulan las operaciones anteriores y volvemos al punto de partida o sea a I3. ⎛ 0 0 1⎞ ⎛ 1 0 0⎞ ⎜ ⎟ ⎜ ⎟ E1 = ⎜ 0 1 0 ⎟ → F3,1 = ⎜ 0 1 0 ⎟ = I3 ⎜ 1 0 0⎟ ⎜ 0 0 1⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 1 0 0⎞ ⎛ 1 0 0⎞ 1 ⎜ ⎟ ⎜ ⎟ E 2 = ⎜ 0 2 0 ⎟ → F2 ( ) = ⎜ 0 1 0 ⎟ = I3 2 ⎜ ⎜ 0 0 1⎟ ⎟ ⎝ ⎠ ⎝ 0 0 1⎠ ⎛1 ⎜ E3 = ⎜ 0 ⎜0 ⎝

0 0⎞ ⎛ 1 0 0⎞ ⎟ ⎜ ⎟ 1 −3 ⎟ → F2,3 (3) = ⎜ 0 1 0 ⎟ = I3 ⎜ 0 0 1⎟ 0 1 ⎟⎠ ⎝ ⎠

Estas operaciones se llaman operaciones inversas de las hechas en primer término.

Resumiendo: OPERACIÓN ELEMENTAL

OPERACIÓN INVERSA

Cambiar la fila i por la j

Cambiar la fila j por la i

Multiplicar una fila por k π 0

Multiplicar una fila por

Sumar a la fila i, la j por k π 0

Sumar a la fila i, la j por – k π 0

1 π0 k

1.8.4 Matrices elementales inversas Cuando en la matriz In efectuamos una operación elemental obtenemos una matriz elemental E. Cuando en la matriz In efectuamos la operación elemental inversa obtenemos la matriz elemental inversa de la matriz elemental E, E-1. Luego toda matriz elemental tiene inversa y es una matriz elemental

Fundamentos Matemáticos de la Ingeniería

27 Matrices

Tema 1

En efecto, cuando hacemos una operación elemental, obtenemos E y si efectuamos la operación elemental inversa sobre E volvemos al punto de partida In, luego se verifica: InôOperación elemental (E)ôOperación inversa (Eo )ô In Eo ⋅ E ⋅ In = Eo ⋅ E = In E ⋅ Eo ⋅ In = E ⋅ Eo = In Luego Eo es la inversa de E.

Ejemplo 1.24 Dadas las matrices elementales que se obtienen de realizar las operaciones elementales: i) Cambiar las filas 1 y 3. ii) Multiplicar la 2ª fila por 2. iii) Sumar a la 2ª fila la 3ª por –3.

Hallar sus matrices inversas. i) Matriz elemental que resulta de hacer la operación elemental F13 ⎛ 1 0 0⎞ ⎛ 0 0 1⎞ ⎛ 1 0 0⎞ ⎛ 0 0 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ I3 = ⎜ 0 1 0 ⎟ → F13 = ⎜ 0 1 0 ⎟ = E1 ⇔ I3 = ⎜ 0 1 0 ⎟ → F3,1 = ⎜ 0 1 0 ⎟ = E1−1 ⎜ 0 0 1⎟ ⎜ 1 0 0⎟ ⎜ 0 0 1⎟ ⎜ 1 0 0⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

ii) Matriz elemental que resulta de hacer la operación elemental F2(2) ⎛ 1 0 0⎞ ⎛ 1 0 0⎞ ⎛ 1 0 0⎞ ⎛ 1 0 0⎞ ⎜ ⎟ 1 1 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ I3 = ⎜ 0 1 0 ⎟ → F2 (2) = ⎜ 0 2 0 ⎟ = E 2 ⇔ I3 = ⎜ 0 1 0 ⎟ → F2 ( ) = 0 0 ⎟ = E 2−1 ⎟ 2 ⎜ 2 ⎜ 0 0 1⎟ ⎜ 0 0 1⎟ ⎜ 0 0 1⎟ ⎜ 0 0 1⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ iii) Matriz elemental que resulta de hacer la operación elemental F2,3(-3) ⎛ 1 0 0⎞ ⎛1 ⎜ ⎟ ⎜ I3 = ⎜ 0 1 0 ⎟ → F2,3 (-3) = ⎜ 0 ⎜ 0 0 1⎟ ⎜0 ⎝ ⎠ ⎝

0 1 0

0⎞ ⎛ 1 0 0⎞ ⎛1 ⎟ ⎜ ⎟ ⎜ −3 ⎟ = E 3 ⇔ I3 = ⎜ 0 1 0 ⎟ → F2,3 (3) = ⎜ 0 ⎜ 0 0 1⎟ ⎜0 1 ⎟⎠ ⎝ ⎠ ⎝

Fundamentos Matemáticos de la Ingeniería

0 1 0

0⎞ ⎟ 3 ⎟ = E 3−1 1 ⎟⎠

28 Matrices

Tema 1

Ejemplo 1.25 ⎛ 1 −1 ⎞ Dada la matriz A = ⎜ ⎟ hallar: ⎝0 2⎠ i) Las matrices elementales tales que E2 ⋅ E1 ⋅ A = I ii) Las matrices elementales inversas de E2 y E1 iii) Escribir A como producto de matrices elementales. iv) Escribir A-1 como producto de matrices elementales. ⎛1 ⎛ 1 −1 ⎞ 1 ⎛ 1 −1 ⎞ i) A = ⎜ ⎟ → F2 ( ) = ⎜ ⎟ ⇔ I2 = ⎜ 2 ⎝ 0 1⎠ ⎝0 ⎝0 2⎠

⎛1 0⎞ 1 ⎜ ⎟ → F2 ( ) = ⎜ 1⎠ 2 ⎜0 ⎝

0⎞ ⎟ 1 ⎟ = E1 ⎟ 2⎠

⎛ 1 −1⎞ ⎛ 1 0⎞ ⎛1 0⎞ ⎛1 1⎞ ⎜ ⎟ → F1,2 (1) = ⎜ ⎟ ⇔ I2 = ⎜ ⎟ → F1,2 (1) = ⎜ ⎟ = E2 ⎝ 0 1⎠ ⎝ 0 1⎠ ⎝ 0 1⎠ ⎝ 0 1⎠ luego:

⎛1 ⎛1 1⎞ ⎜ E2 ⋅ E1 ⋅ A = ⎜ ⎟⋅ ⎝ 0 1⎠ ⎜⎜ 0 ⎝ ⎛1 ii) I 2 = ⎜ ⎝0

⎛1 0⎞ 1 ⎜ ⎟ → F2 ( ) = ⎜ 1⎠ 2 ⎜0 ⎝

0⎞ ⎟ ⎛ 1 −1 ⎞ = ⎛ 1 0 ⎞ = I 1⎟ ⋅ ⎜ ⎟ ⎜ ⎟ 2 ⎟ ⎝ 0 2 ⎠ ⎝ 0 1⎠ 2⎠

0⎞ ⎛1 ⎟ 1 ⎟ = E1 ⇔ I 2 = ⎜ ⎟ ⎝0 2⎠

0⎞ ⎛1 ⎟ → F2 (2) = ⎜ 1⎠ ⎝0

0⎞ −1 ⎟ = E1 2⎠

⎛1 0⎞ ⎛1 1⎞ ⎛ 1 0⎞ ⎛ 1 −1⎞ −1 I2 = ⎜ ⎟ → F1,2 (1) = ⎜ ⎟ = E 2 ⇔ I2 = ⎜ ⎟ → F1,2 (-1) = ⎜ ⎟ = E2 ⎝ 0 1⎠ ⎝ 0 1⎠ ⎝ 0 1⎠ ⎝0 1⎠ iii) E2 ⋅ E1 ⋅ A = I2 ï A = E1−1 ⋅ E 2−1 ⋅ I2 = E1−1 ⋅ E 2−1

⎛ 1 −1 ⎞ ⎛ 1 ⎟ =⎜ ⎝ 0 2⎠ ⎝ 0

A =⎜

0 ⎞ ⎛ 1 −1 ⎞ ⎟ ⎟⋅⎜ 2⎠ ⎝ 0 1 ⎠

Fundamentos Matemáticos de la Ingeniería

29 Matrices

Tema 1

iv) E2 ⋅ E1 ⋅ A = I2 ï E2 ⋅ E1 ⋅ A ⋅ A-1 = I2 ⋅ A-1 ï E2 ⋅ E1 ⋅ I2 = A-1 ï E2 ⋅ E1 = A-1

⎛1 ⎛1 1⎞ ⎜ -1 A =⎜ ⎟⋅ ⎝ 0 1⎠ ⎜⎜ 0 ⎝

⎛ 0 ⎞ ⎜1 ⎟ 1 ⎟ =⎜ ⎟ ⎜ 2 ⎠ ⎜0 ⎝

1⎞ 2⎟ ⎟ 1⎟ ⎟ 2⎠

1.8.5 Matrices equivalentes por filas Si partiendo de una matriz A podemos llegar a otra B efectuando un número finito de operaciones elementales sobre las filas y, de la misma manera, podemos volver a A desde B, realizando las operaciones inversas y en orden inverso, se dice que A y B son equivalentes por filas.

Ek ⋅ Ek-1 ⋅ ............ E2 ⋅ E1 ⋅ A = B ï A = E1−1 ⋅ E −21 ⋅ ..... ⋅ E −k1−1 ⋅ E −k1 ⋅ B En efecto: Si podemos llegar desde A a B por medio de operaciones elementales Ek ⋅ Ek-1 ⋅ ............. E2 ⋅ E1 ⋅ A = B Multiplicando por las matrices inversas obtenemos E1−1 ⋅ E 2−1 ⋅ ..... E k−1−1 ⋅ E k−1 ⋅ Ek ⋅ Ek-1 ⋅ ....... E2 ⋅ E1 ⋅ A = A = E1−1 ⋅ E −21 ⋅ ..... − E −k1−1 ⋅ E −k1 ⋅ B Si podemos llegar desde B a A por medio de operaciones elementales E1−1 ⋅ E −21 ⋅ .......E −k1−1 ⋅ E −k1 ⋅ B = A Multiplicando por las matrices elementales inversas obtenemos Ek ⋅ Ek-1 ⋅ ....... E2 ⋅ E1 ⋅ E1−1 ⋅ E −21 ⋅ ..... − E −k1−1 ⋅ E −k1 ⋅ B = B = Ek ⋅ Ek-1 ⋅ ....... E2 ⋅ E1 ⋅ A

Fundamentos Matemáticos de la Ingeniería

30 Matrices

Tema 1

Ejemplo 1.26 Demostrar que las matrices A y B son equivalentes por filas. ⎛ 2 0 −1⎞ A = ⎜⎜ 1 2 3 ⎟⎟ ⎜ 5 −2 1 ⎟ ⎝ ⎠

y

2 3⎞ ⎛1 ⎜ ⎟ B = ⎜ 2 0 −1 ⎟ ⎜ 4 −4 − 2 ⎟ ⎝ ⎠

2 3⎞ 2 3⎞ ⎛ 2 0 −1⎞ ⎛1 ⎛1 ⎜ ⎟ ⎜ ⎟ ⎜ A = ⎜ 1 2 3 ⎟ → F1,2 = ⎜ 2 0 −1⎟ → F3,1 (−1) = ⎜ 2 0 −1 ⎟⎟ = B ⎜ 5 −2 1 ⎟ ⎜ 5 −2 1 ⎟ ⎜ 4 −4 −2 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ 1 0 0⎞ ⎛ 0 1 0⎞ ⎜ ⎟ ⎜ ⎟ I3 = ⎜ 0 1 0 ⎟ → F1,2 = ⎜ 1 0 0 ⎟ = E1 ⎜ 0 0 1⎟ ⎜ 0 0 1⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 1 0 0⎞ ⎛ 1 0 0⎞ ⎜ ⎟ ⎜ ⎟ I3 = ⎜ 0 1 0 ⎟ → F3,1 (−1) = ⎜ 0 1 0 ⎟ = E 2 ⎜ 0 0 1⎟ ⎜ −1 0 1 ⎟ ⎝ ⎠ ⎝ ⎠

2 3⎞ ⎛ 1 0 0 ⎞ ⎛ 0 1 0 ⎞ ⎛ 2 0 −1⎞ ⎛ 1 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ E 2 ⋅ E1 ⋅ A = ⎜ 0 1 0 ⎟ ⋅ ⎜ 1 0 0 ⎟ ⋅ ⎜ 1 2 3 ⎟ = ⎜ 2 0 −1 ⎟ = B ⎜ −1 0 1 ⎟ ⎜ 0 0 1 ⎟ ⎜ 5 −2 1 ⎟ ⎜ 4 −4 −2 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 1.8.6 Cálculo de la matriz inversa por matrices elementales Si A es equivalente por filas a la matriz In entonces A tiene inversa

En efecto: si A es equivalente por filas a In: Ek ⋅ Ek-1 ⋅ ............. E2 ⋅ E1 ⋅ A = In

[1]

Multiplicando por A-1 por la derecha los dos miembros obtenemos: Ek ⋅ Ek-1 ⋅ ....... E2 ⋅ E1 ⋅ A ⋅ A-1 = Ek ⋅ Ek-1 ⋅ ........ E2 ⋅ E1 ⋅ In = In ⋅ A-1 = A-1 Luego A-1 viene como producto de matrices elementales. El método para el cálculo de A-1 sale de observar [1] y [2] Fundamentos Matemáticos de la Ingeniería

[2]

31 Matrices

Tema 1

Ek ⋅ Ek-1 ⋅ ............ E2 ⋅ E1 ⋅ A = In Ek ⋅ Ek-1 ⋅ ............. E2 ⋅ E1 ⋅ In = A-1 Las operaciones elementales que nos sirven para convertir A en la matriz unidad, efectuadas sobre la matriz unidad nos da la matriz inversa de A.

Ejemplo 1.27 ⎛ −1 1 1 ⎞ Hallar la matriz inversa de A = ⎜⎜ 0 1 0 ⎟⎟ ⎜ 1 0 1⎟ ⎝ ⎠

⎛ −1 1 1 ⎜ ⎜ 0 1 0 ⎜⎜ ⎝ 1 0 1

1 0 0⎞ ⎛1 − 1 − 1 − 1 0 0 ⎞ ⎛1 − 1 − 1 − 1 0 0 ⎞ ⎟ ⎜ ⎟ ⎜ ⎟ 0 1 0 ⎟ → F1 (−1) = ⎜ 0 1 0 0 1 0 ⎟ → F3,1 (−1) = ⎜ 0 1 0 0 1 0⎟ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟⎟ 0 0 1 ⎟⎠ 0 0 1⎟⎠ ⎝1 0 1 ⎝0 1 2 1 0 1⎠

⎛ ⎜1 − 1 − 1 − 1 0 ⎛1 − 1 − 1 − 1 0 0 ⎞ ⎜ ⎟ 1 ⎜ → F3,2 (−1) = ⎜ 0 1 0 0 1 0 ⎟ → F3 ( ) = ⎜ 0 1 0 0 1 2 ⎜ ⎜⎜ ⎟⎟ 1 1 ⎜ ⎝ 0 0 2 1−1 1 ⎠ − ⎜0 0 1 2 2 ⎝

⎛ 1 1 ⎜1 − 1 0 − 2 − 2 ⎜ → F1,3 (1) = ⎜ 0 1 0 0 1 ⎜ 1 1 ⎜ − ⎜0 0 1 2 2 ⎝

1 ⎞ ⎛ 1 1 1 0 0 − ⎟ ⎜ 2⎟ 2 2 ⎜ 0 ⎟ → F1,2 (1) = ⎜ 0 1 0 0 1 ⎟ ⎜ 1⎟ 1 1 ⎜ − 0 0 1 ⎟ ⎜ 2⎠ 2 2 ⎝

⎛ 1 1 ⎜− 2 2 ⎜ ⎜ 0 1 −1 luego A = ⎜ 1 1 − ⎜ ⎜ 2 2 ⎜ ⎝

⎞ 0 ⎟ ⎟ 0⎟ ⎟ 1⎟ 2 ⎟⎠

1⎞ 2 ⎟⎟ 0⎟ ⎟ 1⎟ 2 ⎟⎠

⎞ ⎟ ⎟ ⎟ 1 ⎟ ⎟ 2 ⎟ ⎟ ⎠

1 2 0

1.9 FORMAS ESCALONADA Y REDUCIDA DE UNA MATRIZ Fundamentos Matemáticos de la Ingeniería

32 Matrices

Tema 1

1.9.1 Forma escalonada Se llama forma escalonada por filas de una matriz Am¥n a aquella matriz que se obtiene a partir de A mediante operaciones elementales y que verifica: i) Si tiene filas cuyos elementos son todos nulos, están en las filas inferiores. ii) El primer elemento distinto de cero de una fila (empezando por la izquierda), se llama elemento pivote y a su columna, columna pivotal. iii) Dadas dos filas sucesivas, el elemento pivote de la 2ª fila está más a la derecha que el elemento pivote de la 1ª fila.

Ejemplo 1.28 Formas escalonadas: ⎛1 0 4 5⎞ ⎛ 2 5 6⎞ ⎛ 1 2⎞ ⎜ ⎟ ⎛ 2 3 5 0⎞ ⎜ ⎟ ⎜ ⎟ ; ⎜ 0 3 1 2⎟ ; ⎜ ⎟ ; ⎜ 0 1 4⎟ ⎝ 0 3⎠ ⎜ ⎟ ⎝ 0 0 0 1⎠ ⎜ 0 0 3⎟ ⎝0 0 0 0⎠ ⎝ ⎠

Formas no escalonadas:

⎛ 2 5 6⎞ ⎛ 0 0 0⎞ ⎜ ⎟ ⎜ ⎟ ; ⎜ 0 0 0⎟ ⎝ 0 2 1⎠ ⎜ 0 0 7⎟ ⎝ ⎠

⎛1 ⎜ ⎜0 ; ⎜0 ⎜ ⎜0 ⎜0 ⎝

4 2 0 0 0

5⎞ ⎟ ⎛1 3⎟ ⎜ 0 1⎟ ; ⎜ ⎟ ⎜0 2 ⎟ ⎜⎜ ⎝0 0 ⎟⎠

0 2 0 0

6 4 1 5

7⎞ ⎟ 8⎟ 3⎟ ⎟ 2 ⎟⎠

1.9.2 Forma reducida Se llama forma reducida por filas de una matriz Am¥n a toda matriz escalonada con los pivotes unidad y los demás elementos de la columna del pivote, nulos.

Ejemplo 1.29

Fundamentos Matemáticos de la Ingeniería

33 Matrices

Tema 1

⎛ 1 0 3⎞ ⎛ 1 3 0 0⎞ ⎜ ⎟ ⎜ ⎟ ⎛ 1 2 0 3⎞ 1 1 0 2 ; 0 0 0 ⎜ ⎟ ⎜ ⎟ ; ⎜ 0 0 1 4⎟ ⎠ ⎜ 0 0 0⎟ ⎜ 0 0 0 1⎟ ⎝ ⎝ ⎠ ⎝ ⎠

1.9.3 Obtención de una forma escalonada

El algoritmo para la obtención de una forma escalonada se llama eliminación de Gauss o gaussiana y consta de los siguientes pasos: 1º Partiendo de la izquierda, buscamos en la 1ª columna un elemento distinto de cero que llevaremos a la 1ª fila, si no le hay en la 1ª fila, (mediante operaciones elementales) y será el 1er pivote. Seguidamente con las operaciones elementales haremos ceros debajo del pivote. 2º Siguiendo a la derecha, buscamos en la 2ª columna un elemento distinto de cero en la 2ª fila o siguientes filas. Se opera para tener un 2ª pivote en la 2ª fila, si está en las siguientes filas. Seguidamente con las operaciones elementales haremos ceros debajo del 2ª pivote. 3º Seguimos sucesivamente moviéndonos hacia la derecha hasta no encontrar más pivotes. Evidentemente, dependiendo de la manera de operar y el orden de actuación, obtendremos diferentes formas escalonadas (hay infinitas), mientras que la forma reducida solo hay una. Ejemplo 1.30

⎛1 ⎜ 1 Hallar la forma escalonada de la matriz A = ⎜ ⎜2 ⎜⎜ ⎝1 ⎛1 ⎜ ⎜1 ⎜2 ⎜⎜ ⎝1

2 2 4 3

1 2 4 −1 5 1 1 2

1 0⎞ ⎛1 ⎟ ⎧F2,1 (−1) ⎜ 4 3⎟ ⎪ 0 → ⎨F3,1 (−2) = ⎜ ⎜0 5 −2 ⎟ ⎪ ⎟⎟ ⎩F4,1 (−1) ⎜⎜ 6 0⎠ ⎝0

Fundamentos Matemáticos de la Ingeniería

2 0 0 1

2 2 4 3

1 2 4 −1 5 1 1 2

1 0⎞ ⎟ 4 3⎟ 5 −2 ⎟ ⎟ 6 0 ⎟⎠

1 2 1 0⎞ ⎟ 3 −3 3 3 ⎟ 3 −3 3 −2 ⎟ ⎟ 0 0 5 0 ⎟⎠

34 Matrices

⎛1 ⎜ ⎜0 ⎜0 ⎜⎜ ⎝0

2 0 0 1

Tema 1

1 2 1 0⎞ ⎛1 ⎟ ⎜ 3 −3 3 3 ⎟ 0 → F4,2 = ⎜ ⎜0 3 −3 3 −2 ⎟ ⎟⎟ ⎜⎜ 0 0 5 0⎠ ⎝0 ⎛1 ⎜ 0 =⎜ ⎜0 ⎜⎜ ⎝0

2 1 0 0

2 1 0 0

1 2 1 0⎞ ⎟ 0 0 5 0⎟ → F4,3 (−1) = 3 −3 3 −2 ⎟ ⎟ 3 −3 3 3 ⎟⎠

1 2 1 0⎞ ⎟ 0 0 5 0⎟ 3 −3 3 −2 ⎟ ⎟ 0 0 0 5 ⎟⎠

1.9.4 Rango de una matriz Llamaremos rango de una matriz el número de filas con algún elemento distinto de cero que hay en cualquier forma escalonada por filas o también el número de columnas pivotales que tiene.

Ejemplo 1.31

⎛1 ⎛ 1 2 1 −1 ⎞ ⎜ ⎛ 1 −1⎞ ⎜ ⎟ ⎜0 -1 = = rg ⎜ 2 ; rg 0 4 3 2 ; rg ⎟ ⎜ ⎟ ⎜0 ⎝0 3⎠ ⎜ 0 0 0 0⎟ ⎜⎜ ⎝ ⎠ ⎝0

0⎞ ⎟ 5⎟ =2 0⎟ ⎟ 0 ⎟⎠

1.10 FACTORIZACIÓN L . U DE UNA MATRIZ

A partir del método de eliminación de Gauss, vamos a factorizar una matriz en producto de una triangular inferior unitaria L y otra triangular superior U, A = L⋅ U

⎛ 1 0 0 0⎞ ⎟ ⎜ ⎜ ∗ 1 0 0 ⎟ L= ⎜ ∗ .. 1 0 ⎟ ⎟ ⎜ ⎜ ∗ ... . 1 ⎟ ⎠ ⎝

y

⎛ ⎜ ⎜ U= ⎜ ⎜ ⎜ ⎝

a

0 0 0

b e

0 0

c f h 0

d g i j

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

Veremos también su aplicación a la resolución de determinantes. Distinguimos tres casos:

Fundamentos Matemáticos de la Ingeniería

35 Matrices

Tema 1

1.10.1 Factorización A = L ⋅ U de una matriz regular

Veámoslo con un ejemplo: 8 1 1 ⎞ ⎛ 2 ⎜ ⎟ 4 13 3 −1 ⎟ Sea la matriz A = ⎜ ⎜ −2 −5 −3 3 ⎟ ⎜⎜ ⎟⎟ ⎝ −6 −18 − 1 1 ⎠ Para hallar la matriz triangular superior U transformaremos A en una matriz escalonada, triangular superior, mediante operaciones elementales: 1º paso

8 1 1 ⎛ 2 ⎜ ⎜ 4 13 3 − 1 ⎜ −2 −5 −3 3 ⎜ ⎜ − 6 − 18 − 1 1 ⎝

⎞ ⎛ ⎧ E 2,1 (−2) ⎜ ⎟ ⎪ ⎟ ⎜ ⎟ ⇒ ⎨ E3,1 (1) = ⎜ ⎪ E (3) ⎜ ⎟ ⎟ ⎜ ⎩ 4,1 ⎠ ⎝

2 8 1 1 0 −3 1 −3 0 3 −2 4 0 6 2 4

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

Comprobemos que hacer una operación elemental sobre las filas de A, es lo mismo que multiplicar por la izquierda a la matriz A, por la matriz elemental que resulta de hacer esa operación elemental sobre I : Ek ⋅ Ek-1 ⋅ .....E2 ⋅ E1 ⋅ A = U

(*)

En nuestro ejemplo: ⎛1 ⎜ -2 E 2,1 (-2) = ⎜ ⎜0 ⎜⎜ ⎝0

0 1 0 0

0 0 1 0

0⎞ ⎛1 ⎟ ⎜ 0⎟ 0 ; E 3,1 (1) = ⎜ ⎜1 0⎟ ⎟⎟ ⎜⎜ 1⎠ ⎝0

0 1 0 0

⎛ ⎜ E4,1 (3) ⋅ E3,1 (1) ⋅ E2,1 ( − 2) ⋅ A = ⎜ ⎜ ⎜⎜ ⎝

0 0 1 0 2 0 0 0

0⎞ ⎛1 ⎟ ⎜ 0⎟ 0 ; E 4,1 (3) = ⎜ ⎜0 0⎟ ⎟⎟ ⎜⎜ 1⎠ ⎝3

0 1 0 0

0 0⎞ ⎟ 0 0 ⎟ 1 0⎟ ⎟ 0 1 ⎟⎠

8 1 1 ⎞ ⎟ −3 1 −3 ⎟ 3 −2 4 ⎟ ⎟ 6 2 4 ⎟⎠

Despejando A de la ecuación (*), dado que las matrices elementales tienen inversa, tendremos : Fundamentos Matemáticos de la Ingeniería

36 Matrices

Tema 1

A = (Ek ⋅ Ek-1 ⋅ .....E2 ⋅ E1)-1 ⋅ U = L ⋅ U ; L = (Ek ⋅ Ek-1 ⋅ .....E2 ⋅ E1)-1 = E1−1 ⋅ E−21 ⋅ ....... ⋅ Ek−1

⎛ 1 0 0 ⎜ ⎜ .... 1 0 Ei = ⎜ m ... 1 ⎜ i ⎜ ... ... ...... ⎝

0 ⎞ ⎟ 0 ⎟ 0 ⎟ ⎟ 1 ⎟⎠

⎛ 1 0 0 ⎜ ⎜ .... 1 0 E i−1 = ⎜ − mi ... 1 ⎜ ⎜ ... ... ...... ⎝

0 ⎞ ⎟ 0 ⎟ 0 ⎟ ⎟ 1 ⎟⎠

La matriz triangular inferior L se puede calcular mediante el siguiente algoritmo, sin necesidad de realizar los productos de las inversas de Ei:

⎛ 1 0 ⎜ ⎜ 2 1 L= ⎜ 1 ∗ ⎜ ⎜ −3 ∗ ⎝

0 0⎞ ⎟ 0 0⎟ donde los multiplicadores{-2, 1, 3 } se han cambiado de 1 0 ⎟ ⎟ ∗ 1 ⎟⎠

signo y colocados en la primera columna. 2º paso

⎛ ⎜ ⎜ ⎜ ⎜⎜ ⎝

⎛ 1 0 0 ⎜ ⎜ 2 1 0 L= ⎜ 1 −1 1 ⎜ ⎜ −3 −2 ∗ ⎝

2 8 1 1 0 − 3 1 −3 0 3 −2 4 0 6 2 4

0 0 0 1

⎛ ⎞ ⎜ ⎟ E3, 2 (1) ⎜ ⎧ ⎟⇒⎨ =⎜ ⎟ ⎩ E 4, 2 (2) ⎜ ⎜ ⎟⎟ ⎠ ⎝

2 8 1 1 0 −3 1 −3 0 0 −1 1 0 0 4 −2

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

⎞ ⎟ ⎟ ⎟ donde los multiplicadores{1, 2 } se han cambiado de signo y ⎟ ⎟ ⎠

colocados en la segunda columna.

Fundamentos Matemáticos de la Ingeniería

37 Matrices

Tema 1

3º paso ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

2 8 1 1 0 −3 1 −3 0 0 −1 1 0 0 4 −2

⎞ ⎟ ⎟ ⎟ ⇒ E 4,3 (4) = ⎟ ⎟ ⎠

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

2 8 1 1 ⎞ ⎟ 0 −3 1 −3 ⎟ =U 0 0 −1 1 ⎟ ⎟ 0 0 0 2 ⎟⎠

⎛ 1 0 0 0 ⎞ ⎜ ⎟ ⎜ 2 1 0 0 ⎟ donde el multiplicador{ 4 } se han cambiado de signo y L= ⎜ 1 −1 1 0 ⎟ ⎜ ⎟ ⎜ −3 −2 −4 1 ⎟ ⎝ ⎠ colocado en la tercera columna. Luego ya tenemos: 8 1 1 ⎞ ⎛ 1 0 0 0 ⎞ ⎛ 2 8 1 1 ⎞ ⎛ 2 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎜ 4 13 3 − 1 ⎟ ⎜ 2 1 0 0 ⎟ ⎜ 0 − 3 1 − 3 ⎟ ⋅ = = L⋅ U A= ⎜ − 2 − 5 − 3 3 ⎟ ⎜ 1 −1 1 0 ⎟ ⎜ 0 0 −1 1 ⎟ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎜ − 6 − 18 − 1 1 ⎟ ⎜ − 3 − 2 − 4 1 ⎟ ⎜ 0 0 0 2 ⎟ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ Factorización de forma única para toda matriz que cumpla los requisitos de salida, es decir para matrices regulares y sin intercambios.

1.10.1 Factorización P ⋅ A = L ⋅ U de una matriz regular con intercambios En el supuesto que la matriz tenga un cero en la posición deseada para alguno de los pivotes (recordemos que estos no pueden ser nulos), necesitaremos hacer una permutación de filas para evitar ese cero, de forma que introduciremos una matriz elemental Ei,j =P que resulta de hacer esa operación elemental sobre I. El efecto sobre L es la permutación, simultáneamente, de los multiplicadores. Veámoslo con un ejemplo: ⎛ 2 3 −1⎞ ⎛ 2 3 −1 ⎞ ⎛ 2 3 −1 ⎞ ⎜ ⎟ ⎧⎪E 2,1 (2) ⎜ ⎟ ⎜ ⎟ A = ⎜ −4 −6 5 ⎟ ⇒ ⎨ = ⎜ 0 0 3 ⎟ ⇒ E 2,3 (P) = ⎜ 0 − 5 2 ⎟ = U ⎜ 4 1 2 ⎟ ⎪⎩E 3,1 (−2) ⎜ 0 −5 2 ⎟ ⎜ 0 0 3⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Fundamentos Matemáticos de la Ingeniería

38 Matrices

Tema 1

⎛ 1 0 0 ⎞ ⎛ 1 0 0 ⎞ ⎟ ⎜ ⎟ ⎜ L = ⎜ − 2 1 0 ⎟ ⇒ despues de la permutación P ⇒ L = ⎜ 2 1 0 ⎟ ⎜ −2 0 1 ⎟ ⎜ 2 0 1 ⎟ ⎠ ⎝ ⎠ ⎝

Ejemplo 1.32 ⎛0 Factorizar A = ⎜⎜ 2 ⎜6 ⎝ ⎛0 A = ⎜⎜ 2 ⎜6 ⎝

3⎞ ⎟ 4 −1 ⎟ 5 5 ⎟⎠ 0

3⎞ ⎟ 4 −1 ⎟ ⇒ E 2,1 (P1 ) = 5 5 ⎟⎠ 0

⎛ 1 0 ⎜ L =⎜ 0 1 ⎜ 3 ∗ ⎝

⎛ 2 ⎜ ⎜ 0 ⎜ 6 ⎝

4 −1 ⎞ ⎛ 2 4 −1 ⎞ ⎟ ⎜ ⎟ 0 3 ⎟ ⇒ E 3,1 (−3) = ⎜ 0 0 3 ⎟ ⎜ 0 −7 8 ⎟ 5 5 ⎟⎠ ⎝ ⎠

0 ⎞ ⎛ 1 0 ⎜ ⎟ 0 ⎟ ⇒ despues de la permutación P1 ⇒ L = ⎜ 0 1 ⎜ 3 ∗ 1 ⎟⎠ ⎝

0 ⎞ ⎟ 0 ⎟ 1 ⎟⎠

⎛ 2 4 −1 ⎞ ⎛ 2 4 −1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 0 0 3 ⎟ ⇒ E 2,3 (P2 ) = ⎜ 0 −7 8 ⎟ = U ⎜ 0 −7 8 ⎟ ⎜0 0 3 ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 1 0 ⎜ L =⎜ 0 1 ⎜ 3 ∗ ⎝

0 ⎞ ⎛ 1 0 0 ⎞ ⎛ 0 1 0 ⎞ ⎟ ⎟ ⎟ ⎜ ⎜ 0 ⎟ ⇒ E 2,3 ( P2 ) ⇒ L = ⎜ 3 1 0 ⎟ y P = P2 ⋅ P1 = ⎜ 0 0 1 ⎟ ⎜ 0 0 1 ⎟ ⎜ 1 0 0 ⎟ 1 ⎟⎠ ⎠ ⎠ ⎝ ⎝

En este caso, el resultado de la factorización no es única ya que existen varias matrices de permutación para hacer la descomposición.

1.10.2 Factorización de Cholesky: A = C ⋅ Ct Es un caso particular para matrices simétricas y con pivotes positivos (matrices definidas positivas) resultando entonces que la factorización es en una matriz por su traspuesta.

Ejemplo 1.33 ⎛ 4 8 16 ⎞ ⎟ ⎜ Factorizar según Cholesky la matriz: A = ⎜ 8 20 44 ⎟ ⎜ 16 44 109 ⎟ ⎠ ⎝

Fundamentos Matemáticos de la Ingeniería

39 Matrices

Tema 1

Se basa en hallar U como una matriz escalonada pero reduciendo los pivotes en su raíz cuadrada en cada eliminación gaussiana en las columnas. Usaremos un algoritmo que simplifica su obtención:

i) Dividimos la 1ª fila por la raíz del primer pivote y reducimos la 1ª columna a ceros menos el pivote: ⎛4 A = ⎜⎜ 8 ⎜16 ⎝

16 ⎞ ⎛2 4 8 ⎞ ⎧ E 2,1 (−4) 1 ⎟ ⎜ ⎟ ⇒ 20 44 ⎟ ⇒ E1 ( ) = ⎜ 8 20 44 ⎟ ⇒ ⎨ ( − 8 ) E 4 3 , 1 ⎩ ⎜16 44 109 ⎟ 44 109 ⎟⎠ ⎝ ⎠ 8

⎛2 4 8 ⎞ = ⎜⎜ 0 4 12 ⎟⎟ ⎜ 0 12 45 ⎟ ⎝ ⎠

ii) Dividimos la 2ª fila por la raíz del 2º pivote y reducimos por debajo del pivote a ceros: ⎛2 4 8 ⎞ ⎛2 4 ⎛2 4 8 ⎞ 1 ⎜ ⎟ ⎜ ⎜ 0 4 12 ⎟ fi E 2 ( 4 ) = ⎜ 0 2 6 ⎟ ⇒ E3, 2 (−6) = ⎜ 0 2 ⎜ 0 12 45 ⎟ ⎜0 0 ⎜ ⎟ ⎝ ⎠ ⎝ ⎜ 0 12 45 ⎟ ⎝ ⎠

8⎞ ⎟ 6⎟ 9 ⎟⎠

iii) Dividimos la 3ª fila por la raíz del 3er pivote: ⎛2 4 ⎜ ⎜0 2 ⎜0 0 ⎝

8⎞ ⎛2 1 ⎟ ⎜ 6⎟ ⇒ E3( ) = ⎜ 0 9 ⎜ 9 ⎟⎠ ⎝0

4 2 0

8⎞ ⎛ 2 0 0⎞ ⎜ ⎟ ⎟ t 6⎟ = C ; C = ⎜ 4 2 0⎟ ⎜8 6 3 ⎟ 3 ⎟⎠ ⎝ ⎠

⎛ 4 8 16 ⎞ ⎛ 2 0 0 ⎞ ⎛ 2 4 8 ⎞ A = ⎜⎜ 8 20 44 ⎟⎟ = ⎜⎜ 4 2 0 ⎟⎟ ⋅ ⎜⎜ 0 2 6 ⎟⎟ = C ⋅ Ct ⎜16 44 109 ⎟ ⎜ 8 6 3 ⎟ ⎜ 0 0 3 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ Ejemplo 1.34

8 1 1⎞ ⎛ 2 ⎜ ⎟ 4 13 3 − 1 ⎟ ⎜ Calcular el valor del determinante de la matriz A = ⎜ −2 −5 − 3 3 ⎟ ⎜⎜ ⎟⎟ ⎝ −6 − 18 − 1 1 ⎠

Fundamentos Matemáticos de la Ingeniería

40 Matrices

Tema 1

Como sabemos la matriz A se puede factorizar (pag. 34)

0 0 0⎞ ⎛ 2 8 1 1 ⎞ ⎛ 1 ⎟ ⎜ ⎟ ⎜ 0 3 1 3 − − 2 1 0 0 ⎜ ⎟ ⎟⋅ = L⋅ U A =⎜ ⎜ ⎜ 1 −1 1 0 ⎟ 0 0 −1 1 ⎟ ⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟ ⎝ −3 −2 −4 1 ⎠ ⎝ 0 0 0 2 ⎠ Luego: 1 0 0 2 1 0 A = L⋅U = 1 −1 1 −3 −2 − 4

0 2 8 1 1 0 0 −3 1 − 3 ⋅ =1 ⋅ 12 = 12 0 0 0 −1 1 1 0 0 0 2

Por ser matrices triangulares su determinante es el producto de los elementos de la diagonal.

Fundamentos Matemáticos de la Ingeniería

41 Matrices

Tema 1

Hoja nº 1 ⎛ 1 0 ⎞ 1º Hallar una matriz simétrica y otra antisimétrica a partir de A = ⎜ ⎟ ⎝ −2 3 ⎠ ⎛ 2 1⎞ 2º Expresar la matriz ⎜ ⎟ como suma de una matriz simétrica y otra ⎝ −3 5 ⎠ antisimétrica. ⎛2 3 ⎞ ⎜ ⎟ 3º Hallar dos matrices simétricas distintas a partir de A = ⎜ 1 0 ⎟ ⎜ 4 −1 ⎟ ⎝ ⎠

1 0 2 1 2 0 4º Calcular el valor del determinante −1 1 4 3 −1 −3

0 1 −1 −2

por los adjuntos.

5º Calcular por el método del pivote y por el método triangularizante el determinante 1 0 1 0 1

2 0 1 0 2

1 1 0 1 2

2 1 0 1 1

1 1 0 2 1

⎛ 1 −1 −3 ⎞ 6º Calcular la matriz inversa de ⎜⎜ 2 −2 1 ⎟⎟ ⎜ ⎟ ⎝ −1 3 −1⎠

7º Dadas las matrices: 2 3⎞ 3 ⎞ ⎛1 2 ⎛ 1 ⎛ 2 0 − 1⎞ ⎛1 2 3 ⎞ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ A = ⎜ 2 0 - 1⎟ , B = ⎜ 1 2 3 ⎟ , C = ⎜ − 6 0 3⎟ , D = ⎜ 2 0 − 1 ⎟ ⎜ 4 − 4 − 2⎟ ⎜ 5 − 2 1⎟ ⎜5 − 2 1 ⎟ ⎜5 - 2 1 ⎟ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ Hallar las matrices elementales E1,E2,E3,E4 tales que E1A = B , E2A = C , E3A = D y E4D = A.

8º Dadas las matrices elementales que se obtienen de realizar las operaciones elementales que se numeran debajo, hallar sus matrices elementales inversas.

Fundamentos Matemáticos de la Ingeniería

42 Matrices

Tema 1

i) Cambiar las filas 1 y 3. ii) Multiplicar la 2ª fila por 2. iii) Sumar a la 2ª fila la 3ª por –3. ⎛ 1 −1 ⎞ 9º Dada la matriz A = ⎜ ⎟ hallar: ⎝0 2⎠ i)Las matrices elementales tales que E2 ⋅ E1 ⋅ A = I ii)Las matrices elementales inversas de E2 y E1 iii)Escribir A como producto de matrices elementales. iv)Escribir A-1 como producto de matrices elementales. 10º Demostrar que las matrices A y B son equivalentes por filas. ⎛ 2 0 −1⎞ A = ⎜⎜ 1 2 3 ⎟⎟ ⎜ 5 −2 1 ⎟ ⎝ ⎠ ⎛ −1 11º Hallar la matriz inversa de A = ⎜⎜ 0 ⎜ 1 ⎝

2 3⎞ ⎛1 ⎜ ⎟ y B = ⎜ 2 0 −1 ⎟ ⎜ 4 −4 − 2 ⎟ ⎝ ⎠ 1 1⎞ ⎟ 1 0⎟ 0 1 ⎟⎠

⎛1 ⎜ 1 12º Hallar la forma escalonada de la matriz A = ⎜ ⎜2 ⎜⎜ ⎝1

2 2 4 3

8 1 1 ⎞ ⎛ 2 ⎜ ⎟ 4 13 3 −1 ⎟ 13º Factorizar las matrices A = ⎜ ⎜ −2 −5 −3 3 ⎟ ⎜⎜ ⎟⎟ ⎝ −6 −18 − 1 1 ⎠ 3⎞ ⎛0 0 ⎜ C = ⎜ 2 4 −1 ⎟⎟ ⎜6 5 5 ⎟⎠ ⎝

1 2 4 −1 5 1 1 2

⎛ 2 3 −1⎞ ⎜ ⎟ B = ⎜ −4 −6 5 ⎟ ⎜ 4 1 2⎟ ⎝ ⎠

⎛ 4 8 16 ⎞ ⎟ ⎜ 14º Factorizar según Cholesky la matriz: A = ⎜ 8 20 44 ⎟ ⎜ 16 44 109 ⎟ ⎠ ⎝

Fundamentos Matemáticos de la Ingeniería

1 0⎞ ⎟ 4 3⎟ 5 −2 ⎟ ⎟ 6 0 ⎟⎠

43 Matrices

8 1 1⎞ ⎛ 2 ⎜ ⎟ 4 13 3 − 1 ⎟ ⎜ 15º Calcular el valor del determinante de la matriz A = ⎜ −2 −5 − 3 3 ⎟ ⎜⎜ ⎟⎟ ⎝ −6 − 18 − 1 1 ⎠

Fundamentos Matemáticos de la Ingeniería

Tema 1

Related Documents

Matrices
November 2019 36
Matrices
May 2020 19
Matrices
June 2020 18
Matrices
December 2019 30
Matrices
November 2019 34
Matrices
May 2020 0

More Documents from ""

Ouriquepdf
April 2020 2
November 2019 12
December 2019 14
May 2020 1