Matlab Untuk Guru Sma.pdf

  • Uploaded by: bara alfa
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Matlab Untuk Guru Sma.pdf as PDF for free.

More details

  • Words: 1,396
  • Pages: 144
MATLAB untuk GURU SMA/SMK

Hari Sutiksno SURABAYA, 10 OKTOBER 2018

SEKOLAH TINGGI TEKNIK SURABAYA

1

Singkatan dari MATrix LABoratory • • • • •

Scientific programming environment Very good tool for the manipulation of matrices Great visualisation capabilities Loads of built-in functions Easy to learn and simple to use 2

STARTING MATLAB

3

4

MATLAB

5

OPERATOR

6

MARI KITA MULAI % This is a comment >> ((1+2)*3 - 2^2 - 1)/2 ans: 2 % Use ; to suppress output (scripts and functions) >> ((1+2)*3 - 2^2 - 1)/2; No output

% You need to use the ... operator to wrap lines >> 1 + 2 + 3 + 4 + 5 ... +6+7+8+9 ans: 45 7

Logic and Assignment % Assignment with equality >> a = 5; No Output % Logical test like >, <, >=, <=, ~= >> a == 6 ans: 0 % 0 is false in Matlab >> a ~= 6 ans: 1 % 1 is true in Matlab not( a == 6 ) also works 8

Logical Operators % Short Circuited Logic >> true || (slow_function) ans: 1 % Evaluates Quickly >> true | (slow_function) ans: 1 % Evaluate slowly % Matrix logic >> matrix1 || matrix2 ans: Error >> matrix1 | matrix2 Pair wise logic 9

Round, Floor, Ceil, Fix Round

10

Round

11

Fix

12

Ceil

13

Mod and Rem

14

rem >> rem(15,3) ans = 0 >> rem(15,4) ans = 3

15

POLY, ROOTS, CONV >> poly([1 2 3]) ans = 1 -6 11 -6 >> roots([1 3 2]) ans = -2 -1

>> conv([1 3 2],[1 4]) ans = 1 7 14 8 16

Residue

17

Complex Number >> a = 3i+6 a = 6.0000 + 3.0000i >> b = 5-2i b = 5.0000 - 2.0000i >> (a+2i)^3 ans = -2.3400e+002 +4.1500e+002i >> exp(pi*i/2) ans = 0.0000 + 1.0000i

18

19

MATRIX % A simple array >> [1 2 3 4 5] ans: 1 2 3 4 5 >> [1,2,3,4,5] ans: 1 2 3 4 5 >> 1:5 ans: 1 2 3 4 5 >> 1:2:5 ans: 1 3 5 >> 5:-2:1 ans: 5 3 1

20

Accessing Matrices Elements % Make a matrix >> A = [1 2 3; 4 5 6; 7 8 9] >> A(1,:) ans: 1 2 3 % Access Individual Elements >> A([1, 3, 5]) ans = 1 7 5 >> A( [1,3], 2:end ) ans = 2 3 8 9 % Semuanya adalah data yang sama >> [1 2 3; 4 5 6; 7 8 9] >> [1,2,3; 4,5,6; 7,8,9] >> [[1 2; 4 5; 7 8] [3; 6; 9]] >> [[1 2 3; 4 21

% Creating all ones, zeros, or identity matrices >> zeros( rows, cols ) >> ones( rows, cols ) >> eye( rows )

% Creating Random matrices >> rand( rows, cols ) >> rand(1,2) ans = 0.1419 0.9157 0.4218 0.7922 >> randi(10,4) ans = 6 7 8 5 3 2 1 5 8 4 10 5 2 7 8 4 22

% Make 3x5 with N(1, 4) entries >> 1 + 2 * randn(3,5) Ans: 2.0753 2.7243 0.1328 6.5389 2.4508 4.6678 1.6375 1.6852 -1.6998 0.8739 -3.5177 -1.6154 8.1568 7.0698 2.4295 randi(10,[4 3]) ans = 7 7 10 9 1 1 4 7 5 8 4 5 % Get the size >> Matrix=[4 3 5;2 1 8]; >> [baris, kolom]=size(Matrix) ans= ? 23

% Make a matrix >> A = [1 2 3; 4 5 6; 7 8 9] A= 1 4 7

2 5 8

3 6 9

4 5 6

7 8 9

>> A' ans = 1 2 3

>> A(:)’ ans: 1 4 7 2 5 8 3 6 9

24

>> A=[1 2 3;4 6 7; 1 4 -8]

ans =

A= 1 4 1

>> inv(A)

2 6 4

3 7 -8

Columns 1 through 2

>> A'

-2.3750 0.8750 1.2188 -0.3438 0.3125 -0.0625

ans =

Column 3

1 2 3

4 6 7

1 4 -8

-0.1250 0.1563 -0.0625

>> det(A)

>> diag(A)

ans =

ans =

32

1 6 -8

25

Carilah x , y dan z dari persamaan berikut:

x + 2 y - 5z = 1 3x - y + 4 z = 3 5 x + 3 y + 2 z = 23 >> A=[1 2 -5;3 -1 4;5 3 23]

>> inv(A)*B

A=

ans =

1 3 5

2 -1 3

-5 4 2

3.0000 2.0000 1.0000

>> B=[2;11;23] B= 2 11 23

26

Menggambar GRAFIK

27

PLOT sebuah grafik t = 0:pi/100:2*pi; y = sin(t);plot(t,y)

28

PLOT 3 buah grafik >> t = 0:pi/100:2*pi; >> y2 = sin(t-0.25);y3 = sin(t-0.5);plot(t,y,t,y2,t,y3)

29

PLOT 3 grafik dengan tanda berbeda >> t = 0:pi/100:2*pi; >> y2 = sin(t-0.25);y3 = sin(t-0.5);plot(t,y,t,y2,t,y3) >> plot(t,y,'',t,y2,'--',t,y3,':')

30

SKALA SEMILOG VERTIKAL >> x=1:100; >> semilogy(x)

31

SKALA SEMILOG HORIZONTAL >> x=1:100; >> semilogx(x)

32

SKALA LOG-LOG >> x=1:100; >> loglog(x,x.^2)

33

>> Y = [5 2 18 7 39 8 65 5 54 3 2]; >> bar(Y)

34

>> Y = [5 2 18; 7 39 8; 65 5 54; 100 3 2]; >> bar3(Y)

35

>> t=0:10:100; >> x=t.^2; >> stem(t,x,'fill')

36

Contoh: >> t = 1:60; >> x = linspace(0,2*pi,60); >> a = sin(x);b = cos(x) >> stem(t,a+b); >> hold on >> plot(t,[a' b']) >> legend('a + b','a = sin(x)','b =cos(x)') >> xlabel('Time in \musecs') >> ylabel('Magnitude'); >> title('Linear Combination of Two Functions') 37

Hasil

38

MATLAB SYMBOLIC MATH TOOLBOX

39

MATLAB Symbolic Math Toolbox q q q q q q q q

Symbolic Objects Kalkulus (Diferensial, limit, integral dan deret Taylor) Penyederhanaan fungsi Penyelesaian Persamaan Linier/Nonlinier Penyelesaian Persamaan Diferensial Variable-precision arithmetic Transformasi Fourier, Laplace, dan z Grafik

40

1. SYMBOLIC OBJECTS Symbolic objects present symbolic variables, symbolic numbers, symbolic expressions and symbolic matrices.

• Symbolic Variables To declare variables x and y as symbolic objects use the syms command: Contoh 1:

41

• Symbolic Numbers Contoh 2:

• Symbolic expressions Contoh 3:

42

• Symbolic Matrices Contoh 4:

43

• Symvar

44

Contoh 5:

45

2. Calculus 2.1. Diferensial

46

Contoh 5:

47

Contoh 6:

48

Contoh 7:

49

Contoh 8:

50

Rangkuman Diferensial

51

2.2. Limit

52

Contoh 9:

Jawab 9a:

53

Jawab 9b:

Jawab 9c:

54

Jawab 9d:

Jawab 9e:

55

Rangkuman Limit

56

2.3. Integral

57

Contoh 10. Indefinite Integral

58

Contoh 11. Indefinite Integral

59

Contoh 12. Definite Integral

60

Contoh 13. Definite Integral

61

Rangkuman Integral

62

2.4. Deret Taylor

63

Contoh 14:

64

Contoh 15:

65

Rangkuman Deret Taylor

66

3. Simplication

67

3.1. Coeffs

68

Contoh 16 :

69

3.2. Collect

70

Contoh 17 :

71

3.3. Expand

72

Contoh 18 :

Contoh 19 :

73

Contoh 20 :

74

3.4. Factor

75

Contoh 21:

Contoh 22:

76

Contoh 23:

77

3.5. Simplify

78

Contoh 24:

Contoh 25:

79

Contoh 26:

Contoh 27:

80

Contoh 28:

81

3.6. Simple

82

Contoh 29:

83

Contoh 30:

84

Contoh 31:

Contoh 32:

85

3.7. Subexpr

86

Contoh 33:

87

3.8. Subs

88

Contoh 34:

Contoh 35:

89

Contoh 36:

90

4. Solution of Equations 4.1. Compose

91

Contoh 37:

92

Contoh 38 :

93

Contoh 39 :

94

4.2. Solve

95

Contoh 40:

96

Contoh 41:

97

Contoh 42:

98

Contoh 43:

x=2 y=5 99

4.3 Dsolve

100

Contoh 44:

y = Ae

-2 x

+ Be

-4 x

101

Contoh 45:

Contoh 46:

102

Contoh 47:

103

4.4 Finverse

104

Contoh 48:

105

5. Variable Precision Arithmetic

106

Contoh 49:

107

Contoh 50:

108

6. TRANSFORMASI INTEGRAL 6.1. Transormasi Fourier

109

Contoh 51:

Contoh 52:

110

Contoh 53:

111

6.2 Inverse Fourier Transform

112

Contoh 54:

113

6.3. Transformasi Laplace

114

Contoh 55:

115

6.4. Inverse Transformasi Laplace

116

Contoh 56:

117

6.5. Transformasi z

118

Contoh 57:

119

Contoh 58:

1 z Z [( ) k ] = 1 2 z2 120

6.6. Inverse Transformasi Laplace

121

Contoh 59:

122

7. Tambahan 7.1. Jacobian

123

Contoh 60:

124

7.2. pretty(f)

Contoh 61:

125

7.3. int8, int16, int32, dan int64

126

Contoh 62:

127

7.4. uint8, uint16, uint32, dan uint64

Contoh 63:

128

8.Grafik 8.1. ezplot(f)

129

Contoh 64:

130

Contoh 65:

131

Contoh 66:

132

Contoh 67:

133

8.2. ezsurf

134

Contoh 68:

135

Contoh 69:

136

8.3. ezsurfc

137

Contoh 70:

138

Contoh 71:

139

8.3 ezpolar

140

Contoh 72:

141

Contoh Aplikasi Contoh 73:Optimasi

142

Contoh 74:Rangkaian Listrik

143

144

Related Documents

Matlab Untuk Guru Sma.pdf
November 2019 12
Matlab
July 2020 24
Matlab
May 2020 31
Matlab
April 2020 36

More Documents from ""