Panel Pakar Runding GC MMMT
1449/1 1449/1 Mathematics Paper 1 October 2006 1 1 hours 4
Form Four
JABATAN PELAJARAN NEGERI NEGERI SEMBILAN DARUL KHUSUS PPSMI ASSESSMENT 2006 MATHEMATICS Form Four Paper 1 One hour and fifteen minutes
DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO 1. This question paper consists of 40 questions. 2. Answer all questions. 3. Each question in this paper has four suggested answers marked A, B, C and D. Choose only one answer for each question and shade the correct space on the answer sheet provided. 4. Think carefully before answering. If you wish to change your answer, erase properly and shade your new answer.
This question paper has 20 printed pages [Turn Over
1449/1 PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
Panel Pakar Runding GC MMMT
1449/1
The following formulae may be helpful in answering the questions. The symbols given are the ones commonly used. RELATIONS 1
am × an = am+n
2
am ÷ an = am−n
3
(am) n = amn
4
A −1 =
5
P(A) =
6
P(A’) = 1 − P(A)
7
Distance =
8
Midpoint ⎛ x + x 2 y1 + y 2 ⎞ , (x, y ) = ⎜ 1 ⎟ 2 ⎠ ⎝ 2
9
Average speed =
10
Mean =
sum of data number of data
11
Mean =
sum of (class mark × frequency) sum of frequencies
12
Phythagoras Theorem c2 = a2 + b2
13
m=
14
m= −
1 ⎛ d − b⎞ ⎜ ⎟ ad − bc ⎜⎝ − c a ⎟⎠ n (A) n (S)
( x1 − x 2 ) 2 + ( y1 − y 2 ) 2
distance travelled time taken
y 2 − y1 x 2 − x1 y − intercept x − intercept
1449/1 PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1
3
Panel Pakar Runding GC MMMT
SHAPE AND SPACE 1 × sum of parallel sides × height 2
1
Area of trapezium =
2
Circumference of circle = πd = 2πr
3
Area of circle = πr2
4
Curved surface area of cylinder = 2πrh
5
Surface area of sphere = 4πr2
6
Volume of right prism = cross sectional area × length
7
Volume of cylinder = πr2h
8
Volume of cone =
9 10 11
1 2 πr h 3 4 Volume of sphere = πr3 3 1 × base area × height 3 Sum of interior angles of a polygon = ( n − 2) × 180°
Volume of right pyramid =
12
arc length angle subtended at centre = circumference of circle 360 o
13
area of sec tor angle subtended at centre = area of circle 360 o
14
Scale factor, k =
15
Area of image = k2 × area of object
PA ' PA
1449/1
[ Turn over
PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1
4
Panel Pakar Runding GC MMMT
Answer all questions.
1.
2.
3.
4.
Round off 5⋅0729 correct to two significant figures. A
5·1
B
5·07
C
5·10
D
5·072
Express 0·0048 in standard form. A
4⋅8 x 10 4
B
4·8 x 10 -3
C
4·8 x 10 -4
D
4·8 x 10 3 -5
8⋅3 × 10
-6
− 9⋅75 × 10 = -6
A
1⋅45 × 10
B
7⋅33 × 10
C
7⋅33 × 10
D
8⋅92 × 10
-5 -6 -5
(m + 4)(2m – 3) = A
2m2 + 5m − 12
B
2 m 2 + 5m + 12
C
2m 2 + 11m − 12
D
2m 2 + 11m + 12
1449/1 PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1 5.
6.
5
Panel Pakar Runding GC MMMT
One of the factors of 9r 2 – 1 is A
3r + 1
B
9r – 1
C
9r +1
D
r–1
Simplify m −2 n 3 × m 7 n 2 A mn11 B m13 n11 C m 2 n8 D
7.
m5n5
Find the value of A
1 2
B
1 4
C
2 3
D
3 2
(2
−4
× 32
) ÷ (2 1 2
−3
)
× 32 .
1449/1
[ Turn over
PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1 8.
Panel Pakar Runding GC MMMT
6
In Diagram 1, ABDEF is a regular pentagon and ABC is a straight line.
E
xD
D
yD
F
C
B A DIAGRAM 1 The value of x + y is
9.
A
108
B
162
C
168
D
180
Diagram 2 shows part of a regular polygon.
140°
DIAGRAM 2 Find the number of sides. A
5
B
8
C
9
D
10
1449/1 PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1 10.
Panel Pakar Runding GC MMMT
7 In Diagram 3, EG is a tangent to the circle FPQR at F. Q
110D P
R
58D
x°
G F
E
DIAGRAM 3 Find the value of x.
11.
A
52
B
55
C
58
D
70
In Diagram 4 , LMN and LQR are tangents to the circle centre O at M and Q. N P
M
β° O o
70
R
Q
α° L
DIAGRAM 4
MP is parallel to LQR . Calculate the value of α + β. A
70
B
90
C
110
D
140
1449/1
[ Turn over
PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1 12.
Panel Pakar Runding GC MMMT
8 In Diagram 5, PQR is a tangent to the circle QST at Q.
T
S
48D
P
xD
R
Q DIAGRAM 5
RST is a straight line. Find the value of x.
13.
A
18
B
24
C
25
D
48
Diagram 6 shows five points drawn on a Cartesian plane.
y A•
•B
P• C •
•D
M•
O
x
DIAGRAM 6 M is rotated 90 anticlockwise about the centre P. State the image of M. o
1449/1 PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1
14.
Panel Pakar Runding GC MMMT
9
Diagram 7 shows two triangles, V and W drawn on square grids. B•
•C
A•
•D
V
W
DIAGRAM 7
W is the image of triangle V under an enlargement. Which of the point, A , B , C or D is the center of the enlargement?
15.
In Diagram 8, PQR is a straight line.
P
θ° 8 cm
S
Q 6 cm
Find the value of cos θ °. A
4 5
B
3 5
C
−
3 5
D
−
4 5
DIAGRAM 8
R
1449/1
[ Turn over
PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1
16.
Given that cos 30° =
A
C
3 o o 1 and tan 30° = . Find 2 cos 330 + tan 150 = 2 3
1 2 3
4 3
B
5 2 3
D
17.
Panel Pakar Runding GC MMMT
10
2 3
Which of the following graphs represent y = sin x ? A
C y
y 1
1
180D
0
360D
x
0
90D
180D
90D
180D
x
-1
-1
B
D
y
y
1
0 -1
1
180D
360D
x
0 -1
1449/1 PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
x
1449/1 18.
19.
Panel Pakar Runding GC MMMT
11 It is given that sin θ = − 0⋅6821 and 180° ≤ θ ≤ 360°. Find the value of θ. A
43⋅01°
B
136⋅99°
C
223⋅01°
D
313⋅01°
Diagram 9 shows a prism.
F
E M
J
L
K DIAGRAM 9
State the angle between the plane EJM and the base JKLM. A
∠ MJE
B
∠ MJK
C
∠ EJL
D
∠ EJK
1449/1
[ Turn over
PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1
12
Panel Pakar Runding GC MMMT
Diagram 10 shows a cube with PQRS as the horizontal base.
20.
X•
H
E
G
F
S
Z •
P
R
Q DIAGRAM 10
X is the midpoint of GH and Z is the midpoint of RS. State the angle between the line PX the plane PQRS.
21.
A
∠ XPR
B
∠ XPS
C
∠ XPZ
D
∠ XPQ
Given 6 − 2 ( f + 1 ) = 5f , find the value of f . 3 A 7 B
4 7
C
7 4
D
8 7
1449/1 PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1
22.
23.
Panel Pakar Runding GC MMMT
13 Given 3k + 1 = A
5 14
B
9 14
C
5 2
D
9 2
k + 2 , find the value of k. 5
Diagram 11 shows two vertical poles, EF and PQ on a horizontal ground E
P 10 m
F
20 m
Q
DIAGRAM 11 The angle of depression of peak P from peak E is 50D . Calculate the height, in m, of the pole EF. A
13⋅84
B
23⋅84
C
26⋅78
D
33⋅84
1449/1
[ Turn over
PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1 24.
Panel Pakar Runding GC MMMT
14 Diagram 12 shows the positions of two spotlights J and L.
Spotlight L Φ
Pole
25 m
φ
Floor
Spotlight J DIAGRAM 12
Spotlight L is on top of the pole.The angle of elevation of spotlight L from spotlight J is 40°. Spotlight L is 25 m above the floor. Calculate the distance , in m , between spotlight J and the pole. A 20⋅98 B 29⋅79 C 32⋅64 D 38⋅89
25.
h h2 − 3 as a single fraction in its simplest form. Express − 4 8h
A
h2 − 3 8h
B
h2 + 3 8h
C
h−3 8
D
h+3 8
1449/1 PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1 26.
15
Panel Pakar Runding GC MMMT
( y + 1)2 − (y 2 − 1) = A 2y B 2y2 + 2y C 2y2 + 2y D 2y2 + 2y + 2
27.
28.
29.
Given that r =
k (2 + r ) , express k in terms of r. k −1
r 2
A
−
B
r 2
C
2r r−2
D
3r r−2
List all the integers x which satisfy both the inequalities 2x + 1 >17 and A
8, 9, 10, 11
B
9, 10, 11
C
9, 10, 11, 12
D
8, 9, 10, 11, 12
Find the solution of the simultaneous inequalities
3 x ≤ 9. 4
1 x < 2 and 1 − 4 x ≤ 7 where x is an 3
integer. A
x ≥ −1
B
x<6
C
−2 ≤ x < 6
D
−1 ≤ x < 6
1449/1
[ Turn over
PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1 30.
Panel Pakar Runding GC MMMT
16
Table 1 shows the cumulative frequency marks of 40 pupils in a quiz.
Marks
0
1
2
3
4
5
Cumulative frequency
3
8
17
27
34
40
TABLE 1 Find the mode.
31.
A
2
B
3
C
4
D
5
Diagram 13 is a pictograph showing the sale of food sold by students on Canteen Day. Cakes
⊛⊛⊛⊛⊛
Sandwiches
∆∆∆∆∆∆
⊛
represents 4 cakes
∆
represents 10 sandwiches DIAGRAM 13
Calculate the ratio of the total sale of cakes to the total sale of sandwiches based on the price tag below. ⊛
∆
Cakes
Sandwiches
RM 2.00 each
RM 0.50 each
A
1:3
B
3:4
C
4:1
D
4: 3
1449/1 PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1 32.
Panel Pakar Runding GC MMMT
17 Diagram 14 is a Venn diagram. ξ
Q
P A
B
D
C
DIAGRAM 14 Which of the region A, B, C, or D represents the set P’ ∩ Q ? 33.
Diagram 15 is a Venn diagram that shows the elements of set P, set Q and set R.
P
Q 5 7
3 4
2 6
R DIAGRAM 15 Find n ( P ∩ Q ∪ R).
34.
A
13
B
18
C
24
D
31
It is given that M = {a, b} . Find all the subsets of M. A
{a} , {b}
B
{a} , {b} , { }
C
{a} , {b} , {a, b} , { }
D
{a} , {b} , {a, b} , {b, a}
1449/1
[ Turn over
PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1 35.
Panel Pakar Runding GC MMMT
18 In Diagram 16, JK is a straight line.
y J(1,4)
x
O
K(3,−6) DIAGRAM 16 Find the gradient of PQ. A B
36.
1 5 1 − 2 −
C
−2
D
−5
In Diagram 17, PQ is a straight line. y P
O
Q 4
x
DIAGRAM 17 7 Given the gradient of PQ is − , find the y-intercept of PQ. 2 A 2
B
4
C
7
D
14
1449/1 PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1 37.
38.
Panel Pakar Runding GC MMMT
19
There are 16 red marbles and 24 blue marbles in a box. A marble is picked at random from the box. Find the probability of picking a red marble. A
2 5
B
3 5
C
1 3
D
2 3
Table 2 shows the distribution of students according to classes.
4 Alpha 4 Beta 4 Delta 4 Gamma 4 Sigma
Class Number of students
38
37
39
36
x
TABLE 2 Given that the probability of choosing a Form 4 Sigma student is A
25
B
30
C
35
D
40
1 . Find the value of x. 6
1449/1
[ Turn over
PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/
1449/1
39.
40.
20
Panel Pakar Runding GC MMMT
Which of the following sentences is a statement? A
7+9
B
a + 2b − c
C
x2+2x=2
D
52>25
“ If m = −8 then m 2 = 64 ”. The antecedent for the implication above is A
m = −8
B
m=8
C
m 2 = −64
D
m 2 = 64
END OF QUESTION PAPER
1449/1 PPSMI/Maths/F4/P1
https://panelmathsaddmathswordpress.com/