1 JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN 954/2 PERCUBAAN JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN STPM JOHOR 2009 JABATAN JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN MATHEMATICS T(MATEMATIK T) JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PAPER 2(KERTAS 2)JABATAN PELAJARAN JOHOR JABATAN JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN PELAJARAN JOHOR JABATAN
2 Q 1
Steps
Marks
Notes
1
Diagram with arrow in correct direction
1
using cosine rule
1
CA
a− b ~
b
~
θ
~
a ~
52 + 32 − 72 2(5 )(3) 0 θ = 120
cosθ =
Thus, angle between a and b is 1200 ~
1
1
~
conclusion
4
Alternative method: x m a = , b = ~ ~ y n 2 2 x + y = 25 and m2 + n2 = 9 x − m a − b = ~ ~ y −n (x – m)2 + (y – m)2 = 49 x2 + y2 +m2 +n2 – 2mx – 2ny = 49 15 mx + ny = − 2 a . b =| a || b | cos θ ~ ~
~
1
Either one correct
1
Dot product
1 1
CA
~
x m . = 5 x 3cosθ y n xm + yn = 5x3cosθ 15 = 5x3cosθ − 2 1 cosθ = − 2 0 θ = 120 Hence, the angle between a and b is 1200 ~
~
conclusion
4
3 2
3sinx + 4cos x = r sinx cosα + rcos x sin α rcos α = 3 , rsin α = 4 r = 5 or 32 + 42 seen 4 tanα = 3 α = 53.10 Hence, 3sinx + 4cos x ≡ 5 sin(x + 53.10)
both rcos α = 3 rsin α = 4 seen, if not, -1
1 1
1
6 sin x + 8 cos x + 5 = 10 sin(x + 53.1 ) + 5
1
for 10 sin(x + 53.10 ) + 5
-5 ≤ 10 sin(x + 53.10 ) + 5 ≤ 15 Max. value = 15 Min. value = -5
1
For his logic inequality
0
1
Both values correct
6
3(a)
Ν
θ 300
v P Q
Diagram with correct arrows
1 Ν
vQ
1200 vP QvP=
302 + 602 – 2(30)(60)cos 1200
1
Cosine rule based on his diagram
1
CA
1
His sine rule
Direction of QvP is S 49.10 W
1
CA
Shortest distance = 20 sin 40.90 = 13.09 km
1 1
Using his angle CA
QvP
= 30 7 or 79.37 km
sinθ sin 120 0 = 30 79.373 θ = 19.110 / 19.10
(b)
7
4 4.
2 sin2 x = 1 – cos 2x
1
CA
sin 3x = sin(2x + x) = sin 2x cos x + cos 2x sin x = 2 sin x cos2x + ( 1 – 2sin2x)sin x = 2 sin x(1 – sin2 x) + sin x – 2 sin3 x
1
Identity(either one)
1
CA
1
Using above ans.
1
Either one of the factor formula used
1
CA
= 3 sin x – 4 sin3 x 8 sin 5 x = (2sin2 x)(4sin3 x) = (1 – cos 2x)(3 sin x – sin 3x) = 3 sin x – sin 3x – 3cos 2x sin x + sin 3xcos 2x = 3 sin x –sin 3x – 3[ ½ sin 3x – ½ sin x] + ½ sin 5x + ½ sin x 5 = 5 sin x - sin 3x + ½ sin 5x 2 Hence, a = 5, b = -
1
5 1 ,c= 2 2
conclusion
7
5(a) C
Β
O D Α
∠BCO = ∠BAO = 900(radius perpendicular to tangent) BO = BO (common line) OC = OA (radii of circle) ∴∆BAO ≡ ∆BCO (RHS)
1
∴BC = AB
1
1 1
Must provide at least 1 correct reason, if not -1
Must have above 3 statements even without RHS
∆BAO ≡ ∆BCO seen
5 (b)
C
E x0
900-x0
0
D
Mark accordingly to his labelling
B
O x
x0 A
Let AOE be the diameter of the circle, ∠CAE = 900 – x0(tangent ⊥ to radius) ∠ECA = 900(angle in semicircle) ∠CEA = 1800 – (900- x0) - 900 = x0 ∠CDA = ∠CEA = x0(angle in same segment) ∴∠BAC = ∠ADC
Must provide at least 1 correct reason, if not -1
1 1
1 1
All the above 3 statements correct
C
(c)
Β D Α ∠BAC = ∠ADC = x0(from above) ∠ACD = x0 (base angle of isosceles ∆) ∠BCA= x0(base angle of isosceles ∆/alternate segment) ∴∠ACD = ∠BCA ∠DAC = 900 – 2x0 = ∠ABC Hence, ∆ ACD ≅ ∆ADC
either one
Must provide at least 1 correct reason, if not -1
1 1
1 1 12
6 6a
dp 3 1 = 12 − p = (24 − 3 p ) dt 2 2 1 dp ∫ 24 − 3 p = ∫ 2 dt 1 1 − ln(24 − 3 p ) = t + c 3 2 1 1 − ln[24 − 3(0 )] = (0) + c 3 2 1 c = − ln 24 3 1 1 1 − ln(24 − 3 p ) = t − ln 24 3 2 3 24 3 = t ln 24 − 3 p 2 3
− t 24 − 3 p =e 2 24
p = 8 – 8e
3 − t 2
= 8(1- e
3 − t 2
)
1
Any correct separation
1
Integrate
1
Correct subst. for finding c
1
Get rid of ln
1
CA
1
Shape of curve & 8 seen.
1
All correct
p 8
0
t
7
7 6(b
dv = g − gk 2 v 2 dt dv ∫ 1 − k 2 v 2 = ∫ gdt
1 A B By writing = + (1 − kv )(1 + kv) 1 − kv 1 + kv 1 = A(1 + kv) + B(1 – kv) 1 1 A= ,B= 2 2 ⇒∫
1 1 + dv = ∫ gdt 2(1 − kv) 2(1 + kv) 1 1 + kv ln = gt + c 2k 1 − kv 1 ln(1) = g (0 ) + c 2k 1 + kv ln = 2 kgt 1 − kv 1 + kv 2 kgt =e 1 − kv 1 + kv = (1 − kv )e 2 kgt
v=
e 2 kgt − 1 k + ke 2 kgt
1 Any correct separation
1
1
Correct A & B
1
His correct integration base on his A&B Correct subst.
1
Correct subs. for finding c
1
Get rid of ln
1
CA
7
7(a)
(b)
2e − λ λ1 e − λ λ2 = 1! 2! −λ −λ 2 4e λ - e λ = 0 e − λ (4 - λ) = 0 e − λ ≠ 0, λ = 4
1
Forming correct equation
1
CA
P(X > 3) = 1 – [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)] 42 43 = 1 - e − 4 1 + 4 + + 2! 3!
1
Complement
1
At least 3 correct terms with his λ.
= 0.5666
1
CA
5
8 8
2 1 , P(X ∩Y) = 7 21 3 P(X|Y’) = 7 P( X ∩ Y ' ) 3 = P(Y ' ) 7 3 P(X ) –P(X ∩ Y) = [1 – P(Y)] 7 2 1 3 − = [1 − P(Y )] 7 21 7 4 P(Y) = 9 P(X) =
(a)
2 4 1 + 7 9 21 43 = 63
P(X ∪ Y) =
(b)
P(X).P(Y) =
2 4 8 x = 7 9 63
1
Expansion of P(X|Y’) correctly.
1
Seen/applied in the equation
1
Correct formula with his value
1
CA
1
Shown 2 7
x
4 or his 9
value
P(X).P(Y) ≠ P(X ∩ Y) ∴X and Y are not independent events. 9(a)
(b)
(c)
1 6
5 5 5 5 5 5 m + m + m + m + m + m = 1 0 1 2 3 4 5 m + 5m + 10m + 5m + m = 1 1 m= 32
x P(X = x)
0 1 32
1 5 32
2 10 32
3 10 32
4 5 32
19 or 9.5 2
63
1
At least one of the equation seen
1
CA
5
1
1 32
At least 4 prob. correct based on his m.
1
All correct with table
1 1
Finding E(X) based on his m For correct usage of formula 5E(X) - 3
E(5X – 3) = 1 5 10 10 5 1 5[0( )+1( )+2( )+3( )+4( )+5( )] - 3 32 32 32 32 32 32 =
Both statements correct and 8 seen
1
CA
7
9 10 (a)
(b)
,0 ≤ x ≤ 2 ,2 ≤ x ≤ 3 , otherwise
31 x f ( x ) = − 23 x + 2 0
1
,x <0 0 x2 ,0 ≤ x < 2 F ( x) = 6 - 1 ( x 2 − 6 x + 6 ), 2≤ x <3 3 1 ,x ≥3
1
For 3
x
seen
− 23 x + 2
1 1
For
1
At least one quadratic function correct
1
All correct
1
Curves correct shape
1
All correct
1
App. of formula/integration
1
Correct subst.
1
CA
seen
All correct
F(x) 1 2 3
0 (c)
x 1
2
3
P(0.9 < X ≤ 2.1) = F(2.1) – F(0.9) (0.9)2 1 2 = − [(2.1) – 6(2.1) + 6] 3 6 = 0.73 – 0.135 = 0.595
10
11 (a)
(b)
0.750 − 0.760 P(S < 0.750) = P z < 0.008 = P(Z < -1.25) = 0.1057
1
Standardization
1
CA
X~B(10, 0.1057)
1
Binomial distrb/implied
P(X ≥ 3) = 1 – P(X = 0) – P(X = 1) – P(X = 2) = 1- [90.8943]10 + (10(0.1057)(0.8943)9 + 45(0.1057)2(0.8943)8]
1
Correct subst of his binomial
1
CA
= 0.0803
10
(c)
F = S1 + S2 + S3 + S4 Let T = F – G
G = L1 + L2 + L3 Correct linear combination(4S-3L is accepted if his var(T) is correct)
1
E(T) = 4(0.760) – 3(1.010) = 0.01
1
Var(T) = 4(0.0082) +3(0.0092) = 0.000499
1
P(T > 0) 0 − 0.01 = P Z > 0.000499
All correct
All correct
1
= 0.6728
Standardization based on his values
1
CA
10
12 (a)
−
∑ x ÷120
1
His
1
CA
1 1
510020
1
CA
1
Boundaries
1
Axes & >6 pts correct
1
All correct with smooth curve
(i) From the graph, median 64.5 ± 0.5
1
Shown in graph by dotted line
(ii) Range for one deviation from mean for marks = [50.11, 77.39] Range for one deviation from mean for number of students = [14, 107]
1
Answer in this range
7650 120 = 63.75
x=
510020 7650 − σ = 120 120 = 13.64
2
Correct formula
(b) 120 110
105
Number of students
100 90 80 70 60
median = 64.5 ± 0.5
50 40 30 20
16.3
10 0 20.5
30.5
40.5
50.5
60.5
70.5
80.5
90.5
100.5
Marks
11
105 − 16 × 100 120 = 74.2%
% students in this range =
1
Correct formula based on his value
1
Accept 74% - 78%
12