Maths Sa.msa Revision Package Solutions

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Maths Sa.msa Revision Package Solutions as PDF for free.

More details

  • Words: 2,118
  • Pages: 7
St. Andrew’s Junior College H2 Mathematics/JC1/2009 MSA Revision Package Solutions Partial Fractions 1.

3x + 1 3x + 1 = 2 2 x − x − 1 (2 x + 1)( x − 1) A B + = 2x +1 x −1 1 3(− ) + 1 3(1) + 1 4 1 2 = = , B= Using Cover-Up Rule, A = 1 2(1) + 1 3 3 − −1 2 . 3x + 1 1 1 4  ∴ 2 =  +  2 x − x − 1 3  2 x + 1 x −1 

2.

3.

2 + 5 x + 15 x 2 A Bx + C = + 2 (2 − x )(1 + 2 x ) 2 − x 1 + 2 x2 2 + 5(2) + 15(2) 2 Using Cover-Up Rule, A = = 8. 1 + 2(2) 2 2 + 5 x + 15 x 2 = A(1 + 2 x2 ) + ( Bx + C )(2 − x ) x = 0 : 2 = A + 2C ⇒ C = −3 x : 5 = 2B − C ⇒ B = 1 2 + 5 x + 15 x 2 8 x−3 ∴ = + 2 (2 − x)(1 + 2 x ) 2 − x 1 + 2 x2 2 x2 − x + 1 A B C = + 2+ 2 x (1 − x) x x 1− x 2(1) 2 − 1 + 1 =2 12 2 x 2 − x + 1 = Ax + B (1 − x) + Cx2

Using Cover-Up Rule, C = x 0 :1 = B x : −1 = A − B ⇒ A = 0 2 x2 − x + 1 1 2 ∴ 2 = 2+ x (1 − x) x 1− x 4.

3x 2 + 23x + 45 14 x + 45 = 3+ x( x + 3) x ( x + 3) 14 x + 45 A B = + x( x + 3) x x + 3 45 14(−3) + 45 = 15, B = = −1 3 −3 3 x 2 + 23 x + 45 15 1 ∴ = 3+ − . x ( x + 3) x x+3 Using Cover-Up Rule, A =

5. 2 x 3 − x − 16 x = 2− 3 2 x −8 ( x − 2)( x + 2 x + 4) x A Bx + C = + 2 2 ( x − 2)( x + 2 x + 4) x − 2 x + 2 x + 4 2 1 A= 2 = 2 + 2(2) + 4 6 x = A( x 2 + 2 x + 4) + ( Bx + C )( x − 2) 1 x = 0 : 0 = 4 A − 2C ⇒ C = 2 A = Using Cover-Up Rule, 3 1 x2 : 0 = A + B ⇒ B = − A = − 6 3 2 x − x − 16 1 1 2− x  ∴ = 2−  + 2  3 x −8 6  x − 2 x + 2x + 4  6. 3x3 + 1 Ax + B Cx + D = 2 + 2 2 ( x + 1) x + 1 ( x2 + 1)2 3 x 3 + 1 = ( Ax + B)( x2 + 1) + Cx + D x3 : 3 = A x2 : 0 = B x : 0 = A + C ⇒ C = −3 x 0 :1 = B + D ⇒ D = 1 ∴

3x3 + 1 3x 1 − 3x = 2 + 2 2 2 ( x + 1) x + 1 ( x + 1)2

7. x3 + 3x + 1 15 x + 17 = x−4+ 2 ( x + 2) ( x + 2)2 15 x + 17 A B = + 2 ( x + 2) x + 2 ( x + 2)2 15 x + 17 = A( x + 2) + B x = −2 :15(−2) + 17 = B ⇒ B = −13 x = 0 :17 = 2 A + B ⇒ A = 15 ∴

x 3 + 3x + 1 15 13 = x−4+ − 2 ( x + 2) x + 2 ( x + 2)2

2 x 3 + 5 x 2( x3 + 3 x + 1) − x − 2 = Since ( x + 2) 2 ( x + 2)2  x3 + 3x + 1  x+2 2 − 2  =  ( x + 2)  ( x + 2)2  15 13  1 − − = 2 x − 4 + 2  x + 2 ( x + 2)  x + 2  29 26 − = 2 ( x − 4) + x + 2 ( x + 2) 2

.

.

Trigonometry θ is obtuse, so cos θ and tan θ are both negative. cos 2 θ + sin 2 θ = 1 cos 2 θ + x 2 = 1 cos 2 θ = 1 − x 2 cos θ = − 1 − x 2

tan θ =

.

sin 2θ = 2 sin θ cos θ

.

7 sin( A − B ) = 5 sin( A + B )

= −2 x 1 − x 2

7 sin A cos B −7 sin B cos A

cos 2θ = cos θ − sin θ 2

.

2

=1 − x − x 2

=5 sin A cos B +5 sin B cos A

2

=1 − 2x 2

2 sin A cos B =12 sin B cos A tan A = 6 tan B

RHS =

. =

1 + cos x csc x + cot x + tan x

= sin x cos x = LHS

RHS =

=

RHS =

cos x + cos 2 x + sin 2 x

cos x + 1

=

h=6

( sin x cos x )(1 + cos x )

( sin x cos x )(1 + cos x ) =

.

.

sin θ x =− cos θ 1− x2

tan x − cot x sec x − csc x

sin 2 x − cos 2 x sin x − cos x

( sin x − cos x )( sin x + cos x ) sin x − cos x

x x  x  cos −  2 cos 2 − 1 − 1 2 2  2  = x x x   1 − 1 − 2 sin 2  − 2 sin cos 2 2 2  2 sin

x x cos − 2 cos 2 2 2 = x 2 x 2 sin − 2 sin cos 2 2 2 sin

x 2 x 2

x x x  sin − cos  2 2 2 = x x x 2 sin  sin − cos  2 2 2 2 cos

= sin x +cos x

3 solutions

sin x − cos x −1 1 − cos x − sin x

x 2 = x sin 2 cos

=

2 cos 2 2 sin

= =

x 2

x x cos 2 2 x −1 +1 2 sin x

2 cos 2

2 sin A cos A cos 2 A + sin 2 A

=

sin 2 A 1

= sin 2 A = LHS

cos x +1 = LHS sin x

2 tan A 1 + tan 2 A

.

RHS =

.

LHS = cos 4 A = 1 − 2 sin

.

=

= 1 − 2( sin 2 A)

2

2A

2

= 1 − 2( 2 sin A cos A)

2

= 1 − 8 sin 2 A cos 2 A = 1 − 8 sin 2 A(1 − sin 2 A) = 8 sin 4 A − 8 sin 2 A +1 = RHS

LHS = sin 3 x + sin 6 x − sin 9 x = sin 3x + 2 sin 3 x cos 3 x − sin 3 x cos 6 x − sin 6 x cos 3 x

(

)

= sin 3 x + 2 sin 3 x cos 3 x − sin 3 x 2 cos 2 3 x −1 − 2 sin 3 x cos 2 3 x

(

= sin 3 x 1 + 2 cos 3 x − 2 cos 2 3 x +1 − 2 cos 2 3 x

(

= sin 3 x 2 + 2 cos 3 x − 4 cos 2 3 x

(

= 2 sin 3 x 1 + cos 3 x − 2 cos 2 3 x

)

)

= 2 sin 3 x(1 − cos 3 x )(1 + 2 cos 3 x ) = RHS

sin 3 x + sin 6 x = sin 9 x sin 3 x + sin 6 x − sin 9 x = 0 2 sin 3 x(1 − cos 3 x )(1 + 2 cos 3 x ) = 0

)

0.

sin 3 x = 0  π 2π  x = 0, , ,π   3 3 

1 − cos 3 x = 0  2π  x = 0,   3 

or

or

1 + 2 cos 3 x = 0  2π 4π 8π  x= , ,  9 9 9 

 2π π 4π 2π 8π  , , , , ,π   9 3 9 3 9 

So the solution set is x = 0,

a. PS = 2 sin θ + cos θ b. 2 sin θ + cos θ = R cos (θ − α ) where R is positive and α is acute 2 sin θ + cos θ = R cos θ cos α + R sin θ sin α

Comparing the two terms, we see that R cos α = 1 and

R sin α = 2

So, R 2 cos 2 α + R 2 sin 2 α = 12 + 2 2 R 2 ( cos 2 α + sin 2 α ) = 5

R2 = 5 R= 5

c. The maximum value of cosine is 1, hence, the maximum value for This maximum value is at θ − 63 .4° = 0 , so θ = 63 .4° d.

2.15 = 5 cos (θ −63 .4°)

θ = cos −1

2.15 + 63 .4° ≈ 79 .4° 5

5 cos (θ − 63 .4°) = 5

Number Systems, Surds & Indices Solutions 1)

  

(

=

 2 + 2 − 2   2 + 2− 2

(

= 2− 2− 2

)(

 2 − 2− 2   2 − 2− 2

)

)

=42 2

(

2

) ( ) = 10 + 51 − 2 ( 10 + 51 ) ( 10 − = 20 − 2 ( 10 + 51 ) ( 10 − 51 )  10 + 51 − 

10 − 51  

= 20 − 2 (100 − 51) 3

4

=6 1 20 1 = 5 5 +5 7 −2 7 + 2 5 1 = 5 5 +3 7 + 5 10 51 = 5 +3 7 10 2 5+ 2 2 5+ 2 5+ 2 = g 5− 2 5− 2 5+ 2 125 + 175 − 28 +

10 + 10 + 2 10 + 2 5−2 12 + 3 10 = 3 = 4 + 10 ∴ a = 4, b = 10 2 2 log x +4)4) log(2(2xx++1)1) 44== 22 log x+ −−log x +(2 1) (2 (2 x(2+1) =

5(i)

log (2 x +1)

(2 x + 4) 2 =2 4

(2 x + 4) 2 = (2 x + 1) 2 4 2 4 x + 16 x + 16 = 4 x2 + 4x + 1 4 3x 2 − 3 = 0 3( x + 1)( x − 1) = 0 x = 1 or -1

)

51 + 10 − 51

Check: When x = -1 , the base of the logarithmic becomes negative, therefore we reject this solution. ∴ Solution set = { x ∈ ¡ : x = 1} 5(ii)

5(8e 2 x − 3)3 = 625 (8e 2 x − 3)3 = 125 8e 2 x − 3 = 5 e2 x = 1 2 x = ln1 x=0 ∴ Solution set = { x ∈ ¡ : x = 0}

Related Documents