ST. ANDREW’S JUNIOR COLLEGE H2 MATHEMATICS/JC1/2009 MSA 1 Revision Package Partial Fractions Express the following algebraic fractions in partial fractions: 1.
2.
3.
7.
3x + 1 2x 2 − x −1
4.
3 x 2 + 23 x + 45 x ( x + 3)
2 + 5 x +15 x 2 (2 − x)(1 + 2 x 2 )
5.
2 x 3 − x − 16 x3 − 8
2 x 2 − x +1 x 2 (1 − x)
6.
3 x 3 +1 ( x 2 +1) 2
Express
x3 + 3x + 1 ( x + 2) 2
in partial fractions. Hence express
2 x3 + 5 x ( x + 2) 2
in partial
fractions. Answers: 1.
3x + 1 1 1 4 = + 2 2x − x −1 3 2x +1 x −1
2.
2 + 5 x + 15 x 2 8 x−3 = + 2 (2 − x)(1 + 2 x ) 2 − x 1 + 2 x2
3.
2 x2 − x + 1 1 2 = 2+ 2 x (1 − x) x 1− x
4.
3x 2 + 23x + 45 15 1 = 3+ − x( x + 3) x x+3
5.
6.
7.
∴
2 x3 − x − 16 1 1 2− x = 2− + 2 3 x −8 6 x − 2 x + 2x + 4
3x3 + 1 3x 1 − 3x = 2 + 2 2 2 ( x + 1) x + 1 ( x + 1)2 x3 + 3x + 1 15 13 = x−4+ − 2 ( x + 2) x + 2 ( x + 2)2
; 2
Trigonometry
1.
It is given that
, and
Find the following, in terms of a.
is obtuse. ,
( x − 4) +
29 26 − x + 2 ( x + 2) 2
b. c. d. Prove the following identities (2 and 3) 2.
3.
4.
Sketch on the same diagram, the graphs of
and
for
.
Hence, state the number of solutions in the interval of the equation of .
5.
Given that value of
, show that
and state the
.
Prove the following identities (6, 7 and 8) 6.
7.
8.
9.
Prove that
.
Hence, solve for
10.
, the equation
The diagram shows a broken ladder PQR resting on a vertical wall PS. RS denotes the ground. The measurement of the ladder is as follows. .
a.
Obtain an expression for
b.
Express
in terms of
in the form of
and hence evaluate
and
, .
.
c.
State the maximum length of and the corresponding value of .
d.
Given that
, find the
value of
for which
.
Answers: 1.
2.
a.
− 1 −x2
b.
−
c.
−2 x 1 − x 2
d.
1 − 2x 2
7.
(Proof question)
8.
(Proof question)
x 1− x2
9.
x = 0,
2π π 4π 2π 8π , , , , or π 9 3 9 3 9
(Proof question) 10.
3.
(Proof question) a.
4.
3 solutions
b.
2 sin θ + cos θ 5 cos (θ −63 .4°) R=
h=6
6.
(Proof question)
d.
Number Systems, Surds & Indices
Simplify
2.
Simplify
3.
Simplify
α = 63 .4°
c. Maximum length is 5 when θ = α = 63 .4°
5.
1.
5,
2 + 2 − 2
(
) (
10 + 51 −
2 − 2− 2
)
10 − 51
125 + 175 − 28 +
1 20
2
θ = 79 .4°
4.
Simplify
2 5+ 2 5− 2
, expressing your answer in the form
are integers to be determined.
5.
Give the solution set for the following problems,
a.
2 log (2 x +1) (2 x + 4) − log(2 x +1) 4 = 2
b.
5(8e 2 x − 3)3 = 625
Answers:
1.
4
2.
6
3.
51 5 +3 7 10
4.
4 + 10 ; a = 4, b = 10
5. a. b.
2
{ x∈¡ { x∈¡
: x = 1}
: x = 0}
a + b , where a and b