Maths Paper Std 10th Gseb

  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Maths Paper Std 10th Gseb as PDF for free.

More details

  • Words: 5,732
  • Pages: 8
Ë{Þ :

3

f÷tf f÷tf]

„rý‚ Ëq[™tytu :

[fwfw÷ „wý :

Ätu h ý - 10

(1) (2) (3)

ƒÄt s «&™tu VhrsÞt‚ Au. þõÞ sýtÞ íÞtk ytf]r‚ Œtuhðe. ¼qr{r‚{tk h[™t™e hu¾tytu y™u [t… ÞÚttð‚ ò¤ððt. rð¼t„ − A



1Úte15 «&™tu™t ™e[u yt…u÷t sðtƒtu …ife Ët[tu rðfÕ… …ËkŒ fhtu. («íÞuf™tu 1 „wý)

1.

rî[÷ Ëwhu¾ Ë{efhýtu 2x + y = 6 y™u x + y = 3 ™u .......

2.

3. 4. 5. 6. 7.

8.

9.

10.

11.

12. 13.

14.

15.

100

15

(a)y™LÞ Wfu÷ Au (b) ƒu Wõ÷ {¤u (c) Wfu÷ ™ {¤u (d) yËkÏÞ Wfu÷ Au 3x3 × 2x2, 27x 8 ÷ 3x2 y™u (3x3)3 ™tu „w.Ët.y. ....... Au. (a) 6x5 (b) 3x 5 (c) 9x5 (d) 3x 6 +

+

= .......

(a) −3 (b) 0 (c) −1 (d) 1 rî½t‚ Ë{efhý 9x2 + 24x + 16 = 0 ™u R {tk Wfu÷ ....... (a)Ë{t™ Au (b) yË{t™ Au (c) ™ {¤u (d) yËkÏÞ ntuÞ 9 + 19 + 29 + ..... + 99 = ...... (a) 450 (b) 540 (c) 460 (d) 455 Y. 4000 ™wk ...... ÷u¾u 1 {tË™wk ËtŒwk ÔÞts Y. 50 ÚttÞ. (a) 10% (b) 12% (c) 15% (d) 25% yuf …wM‚f™e htufz ðu[tý ®f{‚ Y. 500 yÚtðt ¾heŒ‚e ð¾‚u Y. 250 htufzt y™u ºtý {tË ƒtŒ 16% ÔÞts™t Œhu ƒtfe™e hf{ Y. ...... [qfððt™e ÚttÞ. (a) 260 (b) 250 (c) 10 (d) 290 yuf {trn‚e™tu {æÞf 84 Au. òu Œhuf «tótkf{tk 3 W{uhe 5 ðzu ¼t„ðt{tk ytðu ‚tu ™ðtu {æÞf ....... ÚttÞ. (a) 1.74 (b) 8.4 (c) 87 (d) 17.4 ∆ABC {tk B − P − C, A − Q − C y™u || Au. òu CQ : QA = 1 : 3 y™u CP = 4 ntuÞ, ‚tu BC = ....... (a) 12 (b) 16 (c) 4 (c) 8 yuf þkfw™t …tÞt™e rºtßÞt fh‚tk ‚u™e 𢠟[tE ºtý „ýe Au, ‚tu ‚u þkfw™t ð¢Ë…txe™t ûtuºtV¤ y™u fw÷ Ë…txe™t ûtuºtV¤™tu „wýtu¥th ....... Au. (a) 4 : 3 (b) 3 : 1 (c) 3 : 4 (d) 1 : 3 yuf ™¤tfth™wk ½™V¤ y™u ‚u™e ð¢Ë…txe™t ûtuºtV¤™t {t…™t ykf Ëh¾t Au, ‚tu ™¤tfth™e rºtßÞt ...... yuf{ ntuÞ. (a) 2 (b) 4 (c) 6 (d) 8 = ....... (a) cot A (b) cos A (c) tan A (d) sin A yuf {ft™ A ™t ‚r¤ÞuÚte ƒeò {ft™ B ™tu WíËuÄftuý 45 Au y™u B {ft™™t ‚r¤ÞuÚte A {ft™™tu WíËuÄftuý 65 Au, ‚tu ....... (a) A fh‚tk B ™e Ÿ[tE ðÄthu Au. (b) A y™u B ™e Ÿ[tE Ë{t™ Au. (c) B fh‚tk A ™e Ÿ[tE ðÄthu Au. (d) A ‚Útt B ™e Ÿ[tE rðþu ËkƒkÄ {u¤ðe þftÞ ™rn ð‚w¤ o ™t ÔÞtË™wk yuf ykíÞ®ƒŒw (0, 0) y™u ð‚w¤ o ™wk fuLÿ (−1, 2) ntuÞ, ‚tu ÔÞtË™wk ƒeswk ykíÞ®ƒŒw .... Au. (a) (1, −2) (b) (−1, −2) (c) (−2, 4) (d) (2, −4) A (3, 2), B (7, 5) y™u C (2, 2) rþhtu®ƒŒw ðt¤t rºtftuý™wk {æÞfuLÿ ...... Au.

Std –10 / Mathematics

(a) → 16.

(3, 4) (b) (4, 3)

(c)

(d)

rð¼t„ − B 16 Úte 30 «&™tu™t yr‚xqkf{tk sðtƒ yt…tu. («íÞuftu™tu 1 „wý) 15 x ð»to …nu÷tk r…‚t y™u ƒu …wºteytu™e ô{h™tu Ëhðt¤tu y ð»to n‚tu. 2 ð»to …Ae ‚u{™e ô{h™tu Ëhðt¤tu þtuÄtu. ™wk yr‚Ëkrûtó Y… yt…tu.

17. 18.

yuðe Ëk{uÞ …Œtðr÷ ÷¾tu su{tk ykþ™e ƒnw…Œe™t þqLÞtu 4 y™u −3 ‚Útt AuŒ™e ƒnw…Œe™tk þqLÞtu −4 y™u 3 ntuÞ.

19.

kx2 − 7x + 6 = 0 ™wk yuf ƒes

20. 21.

+ 4 = 0 ntuÞ, ‚tu þtuÄtu. x+4 yuf ðM‚w™e htufz ðu[tý®f{‚ Y. 1650 Au. n…‚tÚte ¾heŒt™th™u ¾heŒ‚e ð¾‚u Y. 450 htufzt y™u Y. 1250 ƒu {tË …Ae yt…ðt™t ntuÞ, ‚tu ðu…the fux÷wk ÔÞts ÷uþu ? fhŒt‚t ftu™u fnu Au ? òu yi = xi − 1 y™u = 45 ntuÞ, ‚tu þtuÄtu. 10 «tótkftu™tu {æÞf 15.7 Au. yt {trn‚{tk ™ðwk yð÷tuf™ 19 W{uh‚tk {trn‚e™tu ™ðtu {æÞf þtuÄtu. ∆PQR {tk ∠P ™tu rî¼tsf ™u S {tk AuŒu Au y™u QS:RS = 4 : 5 Au. òu PQ = 4 ntuÞ, ‚tu PR þtuÄtu. Au. òu ≅ ntuÞ, ‚tu ™wk fuLÿÚte ¤ (P, 6) ™e Sðt yk‚h þtuÄtu. yuf ™¤tfth™t …tÞt™tu …rh½ 22 Ëu{e Au. òu ™¤tfth™e Ÿ[tE 10 Ëu{e ntuÞ, ‚tu ‚u™wk ½™V¤ þtuÄtu. òu tan 7θo tan 3θo = 1 ntuÞ, ‚tu θ þtuÄtu. òu secθ = ntuÞ, ‚tu tan2θ + cot2θ ™e ®f{‚ þtuÄtu.

22. 23. 24. 25. 26. 27. 28. 29.

2 5

™e Œþtkþ{tk ytþhu ®f{‚ fux÷e Au ?

30. → 31. 32. 33.

34.

rð¼t„ − C 31 Úte 42 ËwÄe™t «&™tu™e „ý‚he fhe™u xqkf{tk sðtƒ yt…tu. («íÞuf™t 2 „wý) 24 p(x) = 10x3 + 6x2 − 28x y™u q(x) = 9x3 + 15x2 − 6x ™tu „w.Ët.y. y™u ÷.Ët.y. þtuÄtu. ºtý ËkÏÞtytu Ë{tk‚h ©uýe{tk Au. ‚u{™tu Ëhðt¤tu 45 ‚Útt „wýtfth 3135 Au, ‚tu ‚u ËkÏÞtytu þtuÄtu. ytþtƒnu™™tu ðtŠ»tf …„th Y. 2,25,000 Au. ‚uytu Œh {tËu GPF {tk Y. 6000 ƒ[‚ f…tðu Au ‚Útt LIC ™wk ðtŠ»tf «er{Þ{ Y. 18,000 ¼hu Au. ‚tu ‚u{ýu [t÷w ð»tuo ytðfðuhtu ¼hðtu …zþu ? fux÷tu ? òu {æÞf 21 ntuÞ, ‚tu ™e[u™t ytð]r¥t − rð‚hý{tk ¾qx‚e {trn‚e f þtuÄtu. xi 10 15 20 25 35 fi

34.

36.

6

10

f

yÚtðt ™e[u yt…u÷t ytð]r¥t rð‚hý{tk {æÞf þtuÄtu. xi 37.5 32.5 27.5 fi

35.

Au, ‚tu K ™e ®f{‚ þtuÄtu.

6

54

29

10

8

22.5 17.5 9

2

∆ABC {tk A − D − B, CD = 6, BD = 9 y™u BC = 12 Au. òu m∠CAB = m∠BCD ntuÞ, ‚tu ∆ADC ™e …rhr{r‚ þtuÄtu. ∆PQR {tk PQ = 29 Ëu{e, QR = 40 Ëu{e, PR = 29 Ëu{e ntuÞ

1 ddfd

‚Útt

37.

37. 38. 39. 40. 41. 42. 42.

{æÞ„t Au ‚Útt G {æÞfuLÿ ntuÞ, ‚tu PG þtuÄtu. ð‚wo¤™tu ÔÞtË Au ‚Útt ð‚wo¤™e ÔÞtË ™ ntuÞ ‚uðe Sðt Au. ™t rðhwØ rfhý™u D {tk AuŒu Au. òu m∠BDC C yt„¤™tu M…þof = 60 ntuÞ, ‚tu m∠BAC þtuÄtu. yÚtðt ∠A ™tu rî¼tsf ∆ABC ™t …rhð]¥t™u D AuŒu Au. òu m∠BCD = 40 ntuÞ, ‚tu m∠BAC þtuÄtu. P, Q, R fuLÿtuðt¤t ºtý ð‚wo¤tu y™w¢{u A, B, C yt„¤ ƒnthÚte M…þuo Au. PQ = 18, QR = 13, RP = 15 Au, ‚tu ‚u{™e rºtßÞtytu þtuÄtu. 5 Ëu{e rºtßÞt y™u 41 Ëu{e fw÷ ÷kƒtE™t ƒk™u ƒtswyu 12 Ëu{e Ÿ[tE Ähtð‚t þkfwÚte ƒkÄ Au, ‚tu ƒkÄ ™¤tfth™e fw÷ Ë…txe™wk …]cV¤ þtuÄtu. (π = 3.14 ÷tu ) òu cosθ + sinθ = cosθ, ‚tu Ëtrƒ‚ fhtu fu cosθ − sinθ = sinθ ∆ABC {tk A (3, 4), B (11, a) y™u C (9, 12) ‚Útt ∠B ftxftuý ntuÞ ‚tu a þtuÄtu. ∆ABC ™wk {æÞfuLÿ (3, −1) y™u A (1, 3) ntuÞ, ‚tu ™t {æÞ®ƒŒw™t Þt{ þtuÄtu. yÚtðt ™t rºt¼t„ ®ƒŒwytu™t Þt{ (4, 3) y™u (1, 1) ntuÞ, ‚tu A y™u B ™t Þt{ þtuÄtu.

52.

53. 53.

54.

54.

∆PQR h[tu. su{tk m∠P = 90, QR = 7 Ëu{e y™u P {tkÚte …h™t ðuÄ™e ÷kƒtE 3 Ëu{e ntuÞ. h[™t™t {wÆt ÷¾tu. +

=

(∴ x ≠ −1, −2, −4) ™tu Wfu÷ {u¤ðtu.

yÚtðt yuf ‚¤tð{tk hnu÷ ntÚteytu™e fw÷ ËkÏÞt{tkÚte ‚u ËkÏÞt™t ð„o{q¤™t „ýt rf™thu ytðe „Þt Au. ßÞthu ƒu ntÚte …týe{tk „B{‚ fhu Au y™u rf™thu ytðu÷ ™Úte, ‚tu ntÚteytu™e fw÷ ËkÏÞt fux÷e nþu ? ntÚteytu™e ËkÏÞt Ä™ …qýtOf™t ð„o sux÷e Au. p(x) = x3 + ax2 + bx − 6 y™u q(x) = x3 − x (b − 4) + a ™tu „w.Ët.y. (x − 3) ntuÞ, ‚tu a y™u b ™e ®f{‚ þtuÄtu. yÚtðt p(x) = (x2 − 4x − 21) (x2 − 4x + a) y™u q(x) = (x 2 − 5x + 6) (x2 − 4x + b) ™tu „w.Ët.y. (x + 3) (x − 2) ntuÞ, ‚tu a y™u b ™e ®f{‚ þtuÄtu.

rð¼t„ − D 43 Úte 49 «&™tu™t {tøÞt «{týu „ý‚he fhe sðtƒ yt…tu. («íÞuf™t 3 „wý)

→ 43.

21 ƒu ytkfzt™e yuf ËkÏÞt y™u ‚u™t ykftu™e yŒ÷tƒŒ÷e fh‚tk {¤‚e ËkÏÞt™tu Ëhðt¤tu 110 Au. òu {q¤ ËkÏÞt{tkÚte 10 ƒtŒ fh‚tk {¤‚e ËkÏÞt {q¤ ËkÏÞt™t ykftu™t Ëhðt¤t™t …tk[ „ýtÚte 4 ðÄw Au, ‚tu {q¤ ËkÏÞt þtuÄtu.

44.

ËtŒwkY… yt…tu :

45.

yuf Y{fq÷h™e htufz ®f{‚ Y. 2400 Au y™u ‚u ¾heŒ‚e ð¾‚u Y. 1200 htufzt yt…e ¾heŒe þftÞ Au. ƒtfe™e hf{ ºtý Ëh¾t {trËf n…‚t{tk [qfððt™e Au. òu ÔÞts™tu Œh 12% ntuÞ, ‚tu [qfðu÷ n…‚t™e hf{ þtuÄtu. ™e[u™t Ë{t™ ÷kƒtE™t ð„tuoðt¤t ytð]r¥t − rð‚hý …hÚte {æÞf™e „ý‚he fhtu.

46.

47.

47.

®f{‚ (Úte ðÄw) 0

7

14

ytð]r¥t

334

303 268

360

21

28

35

42 49

226 144 73 19

100 {e Ÿ[tEðt¤e xufhe …hÚte r™heûtý fh‚tk yuf r{™tht™e xtu[™tu yðËuÄftuý 30 y™u ‚u™t ‚r¤Þt™tu yðËuÄftuý 45 {t÷q{ …zu Au, ‚tu r{™tht™e Ÿ[tE þtuÄtu. yÚtðt yuf xtðh …h h ÷kƒtE™tu yuf æðsŒkz ytðu÷tu Au. òu æðsŒkz™e xtu[ y™u ‚r¤Þt™t WíËuÄftuý s{e™ …h™t ftuE ®ƒŒwÚte {t…‚tk y™w¢{u α y™u β {t÷q{ …zu Au, ‚tu xtðh™e Ÿ[tE

48.

÷

×

∆ABC {tk y™u ™u Ë{tk‚h hu¾t m, 4EK.

Au, ‚u{ Ëtrƒ‚ fhtu.

{æÞ„tytu Au y™u G {æÞfuLÿ Au. D {tkÚte ™u K {tk AuŒu Au, Ëtrƒ‚ fhtu fu AC =

yÚtðt ∆PQR {tk ∠Q ftx¾qýtu Au. {æÞ„t Au. Ëtrƒ‚ fhtu fu PR2 = 2 2 PM + 3RM 49. yuf þkfw™e ð¢Ë…txe™wk ûtuºtV¤ 550 [tuËu{e Au. òu ‚u™tu ÔÞtË 14 Ëu{e ntuÞ, ‚tu ‚u™wk ½™V¤ þtuÄtu. yÚtðt 49. 1 Ëu { e ÔÞtËðt¤t [tk Œ e™t 600 {ýft r…„t¤e™u ‚u { tk Ú te 0.4 Ëu { e ÔÞtËðt¤tu ‚th ƒ™tÔÞtu , ‚tu ‚th™e ÷k ƒ tE þtu Ä tu .

48.

→ 50. 51.

rð¼t„ − E 50 Úte 54 «&™tu™t Wfu÷ þtuÄtu. («íÞuf™t 5 „wý) 25 …tEÚtt„tuhË™wk «{uÞ ÷¾tu y™u ‚u™wk «r‚«{uÞ Ëtrƒ‚ fhtu. Ëtrƒ‚ fhtu fu ð‚wo¤™t ÷½w[t…u fuLÿ yt„¤ ytk‚hu÷t ¾qýt™wk {t… ‚u [t…u ð‚wo¤™t ƒtfe™t ¼t„ …h™t ftuE…ý ®ƒŒw yt„¤ ytk‚hu÷t ¾qýt™t {t… fh‚tk ƒ{ýwk ntuÞ Au.

Std –10 / Mathematics

2 ddfd

„rý‚ …u … h Ëtu Õ Þw þ ™

Ätu h ý - 10

rð¼t„ − A 1. 3. 5. 7. 9. 11. 13. 14.

= 10 × 15.7 = 157 yuf ™ðwk yð÷tuf™ 19 W{uh‚tk, ™ðtu Σxi = 157 + 19 = 176 y™u n = 10 + 1 = 11

5

(d) yËkÏÞ Wfu÷ Au 2. (c) −1 4. (b) 540 6. (a) 260 8. (b) 16 10. (a) 2 12. (c) B fh‚tk A ™e Qk[tE ðÄthu Au. (c) (−2, 4) 15.

(b) 3x (a) Ë{t™ Au (c) 15% (d) 17.4 (c) 3 : 4 (d) sin A (b) (4, 3)

176 ™ðtu Σxi ∴ ™ðtu {æÞf =  =  = 16 n 11 25.

rð¼t„ − B 16.

3x + y + 6

17.

=

18.

19.

kx − 7x + 6 = 0 ™wk ƒes −7

∴k −

ynª, yi = ∴

24.

26.

=

xi − 1

=



= 18 − 1



= 17

Std –10 / Mathematics

Äthtu fu



∴ AM =

AB =

×6=3

yt{,

∴ PM = 3 27.

™wk fuLÿÚte yk‚h = 3

ynª, ™¤tfth™t …tÞt™tu …rh½ = 22 Ëu{e ∴ 2πr = 22 ∴2×

× r = 22

∴r= Ëu{e

∴r=

nðu, ™¤tfth™wk ½™V¤ = πr2h = 28.

×

×

× 10

= 385 ½™Ëu{e. ynª, tan 7θo tan 3θo = 1 ∴ tan 7θo =

(45) − 1 (

ynª, n = 10 y™u ∴ Σxi = n.

Au.

nðu, ∆PAM {tk m∠M = 90 ∴ PM2 = PA 2 − AM2 = (6)2 − (3)2 = 36 − 9 ∴ PM2 = 27

−1



ynª, ¤ (P, 6) ™e Sðt ≅ Au. ‚Útt ∴ PA = AB = 6

+6=0

23.

21.

= PR

∴ PR = 5

+6=0

22.

20.

=



Au.

∴ 9k − 42 + 24 = 0 ∴ 9k − 18 = 0 ∴ 9k = 18 ∴k=2 ynª, x + 4 +4=0 + 2)2 = 0 ∴( ∴ +2=0 = −2 ∴ ðM‚w™e htufz ðu[tý ®f{‚ = Y. 1650 ¾heŒ‚e ð¾‚u [qfððt™e ®f{‚ = Y. 450 ∴ [qfððt™e ƒtfe hf{ = Y. (1650 − 450) = Y. 1200 ƒu {tË …Ae [qfððt™e ®f{‚ = Y. 1250 ∴ ðu…theyu ÷eÄu÷wk ÔÞts = Y. (1250 − 1200) = Y. 50 ytðfðuhtu ¼h™th ÔÞÂõ‚™u fhŒt‚t fnu Au.

™u S {tk AuŒu Au.

=



=

2





= −2

Ëk{uÞ …Œtðr÷ {txu : ykþ™e ƒnw…Œe™t þqLÞtu 4 y™u −3 Au. ∴ p(x) = (x − 4) (x + 3) = x2 − x − 12 AuŒ™e ƒnw…Œe™t þqLÞtu −4 y™u 3 Au. ∴ q(x) = (x + 4) (x − 3) = x 2 + x − 12 nðu,

ynª, ∆PQR {tk ∠P ™tu rî¼tsf

∴ tan 7θo = cot 3θ o ∴ tan 7θ o = tan (90 − 3θ)o ∴ 7θo = 90 − 3θo ∴ 10θo = 90 ∴ θ = 9o

= 45)

= 15.7 Au.

29.

ynª, secθ = Au. …hk‚w 1 + tan2θ = sec2θ

3 ddfd

∴ tan2θ = sec2θ − 1 = ( )2 − 1 2 ∴ tan θ = 1 ∴ tanθ = 1 ∴ cotθ = 1 nðu, tan2θ + cot2θ = (1)2 + (1)2 = 2

{æÞ®f{‚

= 0.58

30.

rð¼t„ − C 31.ynª, p(x) = 10x3 + 6x2 − 28x y™u = 2x (5x2 + 3x − 14) = 2x (5x2 + 10x − 7x − 14) = 2x {x (x + 2) − 7 (x + 2)} = 2x (x + 2) (5x − 7) ∴ „w.Ët.y. h (x) = x (x + 2) ÷.Ët.y. m (x) = 6x (x + 2) (3x − 1) (5x − 7)

A = 32.5

37.5 A = 32.5 27.5 22.5 17.5

6 54 29 9 2

1 0 −1 −2 −3

6 0 −29 −18 −6

n = 100



Σfidi = −47

{æÞf

=A+

×c

= 32.5 +

×5

= 32.5 − 2.35 = 30.15 yt{, ytð]r¥t − rð‚hý™tu {æÞf 30.15 Au. ynª, D ∈ ∴A−D−B ∴ ∠CAB = ∠CAD ∠CAB ≅ ∠BCD (…ût) ∴ ∠CAD ≅ ∠BCD ∆ABC y™u ∆CBD {tk ∠ABC ≅ ∠CBD (yuf s ¾qýtu) ∠BAC ≅ ∠BCD (…ût) ∴ Ëk„‚‚t ABC ↔ CBD Ë{Y…‚t Au. (¾q¾q) ∴

=



=

= 16 ‚Útt AC =

∴ AB =

ynª, ∆PQR {tk ∴ QM =

× 40 = 20 Ëu{e

fixi

10 15 20 25 35

6 10 f 10 8

60 150 20f 250 280

n = 34 + f

Σfixi = 740 + 20f

PG =

∴ f = 26

yt{, ytð]r¥t rð‚hý{tk ¾qx‚e ytð]r¥t f = 26 Au. yÚtðt yt…u÷ {trn‚e{tk ð„tuo™e {æÞ®f{‚tu yt…u÷e Au. «íÞuf ƒu ¢r{f {æÞ®f{‚tu ðå[u™wk Ë{t™ yk‚h 5 Au. ‚uÚte ð„o÷kƒtE c = 5 Útþu. Äthu÷t {æÞf™e he‚u „ý‚he fh‚tk ytð]r¥t − rð‚hý™wk ftuüf ™e[u «{týu Útþu.

Std –10 / Mathematics

37.

=

=8

{æÞ„t Au.

ytð]r¥t fi

∴ 714 + 21f = 740 + 20f

=

nðu, AB = AD + DB ( A − D − B) ∴ 16 = AD + 9 ∴ AD = 16 − 9 = 7 ∆ ADC ™e …rhr{r‚ = AD + DC + AC = 7 + 6 + 8 = 21.

x = xi

∴ 21 =

34.

fi

∴ ⊥ ∴ ∆PMQ {tk m∠M = 90 ∴ …tEÚtt„tuhË™t rËØtk‚ «{týu, PM2 = PQ2 − QM2 = (29)2 − (20)2 = 841 − 400 ∴ PM2 = 441 ∴ PM = 21 nðu, G {æÞfuLÿ ntuðtÚte,

=

fidi

ynª, A = 32.5, Σfidi = −47, n = 100 y™u c = 5 Au.

Äthtu fu Ë{tk‚h ©uýe{tk ytðu÷e ºtý ËkÏÞtytu y™w¢{u a − d, a ‚Útt a + d Au. ‚u{™tu Ëhðt¤tu = 45 ∴ a − d + a + a + d = 45 35. ∴ 3a = 45 ∴ a = 15 ‚u{™tu „wýtfth = 3135 ∴ (a − d) a (a + d) = 3135 ∴ a (a2 − d2) = 3135 ∴ 15 (225 − d2) = 3135 ∴ 225 − d2 = 209 ∴ d2 = 16 ∴d=±4 d = 4 {txu {tk„÷u ËkÏÞtytu 11, 15, 19 Au. d = −4 {txu {tk„÷u ËkÏÞtytu 19, 15, 11 Au. 33. ∗ytþtƒnu™™e ðtŠ»tf ytðf = Y. 225000 ∗ytþtƒnu™™e ƒ[‚tu : (1) GPF (Y. 6000 × 12) = Y. 72000 (2) LIC ™wk «er{Þ{ = Y. 18000 ytþtƒnu™™e 80 − c nuX¤™e ƒ[‚tu = Y. 90000 ∗ ytþtƒnu™™e fh…tºt ytðf = Y. (2,25,000 − 90,000) = Y. 1,35,000 36. ytþtƒnu™ {rn÷t fhŒt‚t Au. {rn÷t fhŒt‚t {txu Y. 1,35,000 ËwÄe™e ytðf fh{wõ‚ ÚttÞ Au ‚uÚte ytþtƒnu™™u ftuE s ytðfðuhtu ¼hðt™tu Út‚tu ™Úte. = 21 Au. 34. ynª, {æÞf

fw÷

di =

xi

fw÷

q(x) = 9x3 + 15x2 − 6x = 3x (3x2 + 5x − 2) = 3x (3x2 + 6x − x − 2) = 3x {x (x + 2) − 1 (x + 2)} = 3x (x + 2) (3x − 1)

32.

{æÞf

ytð]r¥t

PM =

‚Útt PQ = QR = 29 Ëu{e

× 21 = 2 × 7 = 14

yt{, PG = 14 Ëu{e Äthtu fu m∠BAC = x ∴ m∠BCD = x ( Sðt™t rðhwØ ð]¥t¾kz™tu ¾qýtu) ‚Útt m∠ACB = 90 ( yÄoð‚wo¤{tk y‚„o‚ ¾qýtu) ∴ m∠ACD = x + 90 nðu, ∆ACD {txu, x + x + 90 + 60 = 180 ∴ 2x + 150 = 180 ∴ 2x = 30 ∴ x = 15

4 ddfd

∴ m∠BAC = 15 37.

yÚtðt ynª, m∠BCD = m∠BAD ( …hk‚w m∠BCD = 40 ∴ m∠BAD = 40

yuf s ð]¥t¾kz™t ¾qýt)

yu ∠A ™tu rî¼tsf Au. nðu, ∴ m∠BAC = 2 m∠BAD = 2 (40) ∴ m∠BAC = 80 38. ynª, P, Q, R fuLÿtuðt¤tk ºtý ð‚wo¤tu y™w¢{u A, B, C yt„¤ ƒnthÚte M…þuo Au. Äthtu fu P, Q, R fuLÿtuðt¤t ð‚wo¤™e rºtßÞtytu y™w¢{u r1, r2, r3 Au. ‚Útt PQ = 18 ∴ r1 + r2 = 18 QR = 13 ∴ r2 + r3 = 13 RP = 15 ∴ r3 + r1 = 15 ∴ 2 (r1 + r2 + r3) = 46 ∴ r1 + r2 + r3 = 23 nðu, r1 + r2 + r3 = 23 r1 + r2 + r3 = 23 r1 + r2 + r3 = 23 ∴ 18 + r3 = 23 ∴ r1 + 13 = 23 ∴ r2 + 15 = 23 ∴ r1 = 10 ∴ r2 = 8 ∴ r3 = 5 yt{, r1 = 10, r2 = 8 y™u r3 = 5 39. ynª, rºtßÞt r = 5 Ëu{e ™¤tfth™e Ÿ[tE h = fw÷ Ÿ[tE − 2 × þkfw™tu ðuÄ = 41 − (2 × 12) = 17 Ëu{e þkfw™e r‚Þof Ÿ[tE l =

∴ (a − 8)2 = 0 ∴a−8=0 ∴a=8 42. Äthtu fu B (x2, y2) y™u C (x3, y3) Au.‚Útt ∆ABC {tk A (1, 3) y™u {æÞfuLÿ (3, −1) Au. ∴ (3, −1) =

∴ 9 = 1 + x2 + x3 ∴ x2 + x3 = 8 nðu,

40.

∴ ∴ ∴ ∴

2

42.

∴ ∴

™wk {æÞ®ƒŒw Au.

P ™tu x − Þt{ =

P ™tu y − Þt{ =

∴4=

∴3=

∴ x1 + 1 = 8 ∴ x1 = 7 ®ƒŒw A ™t Þt{ (x1, y1) = (7, 5)

∴ y1 + 1 = 6 ∴ y1 = 5

∴ Q ™tu x − Þt{ =

Q ™tu y − Þt{ =

ƒk™u ƒtsw ð„o ÷u‚tk) ∴1=

cosθ + sinθ =

cosθ)

sinθ = cosθ − sinθ sinθ

41. Äthtufu ftxftuý ∆ABC ™tk rþhtu®ƒŒwytu A (3, 4), B (11, a) y™u C (9, 12) Au. AC2 = (9 − 3)2 + (12 − 4)2 = (6)2 + (8)2 = 36 + 64 = 100 AB2 = (11 − 3)2 + (a − 4)2 BC2 = (11 − 9)2 + (a − 12)2 = (8)2 + a2 − 8a + 16 = (2)2 + a2 − 24a + 144 2 = a2 − 24a + 148 = a − 8a + 80 nðu, ∠B ftxftuý ntuðtÚte …tEÚtt„tuhË™t «{uÞ y™wËth,AB2 + BC2 = AC2 ∴ a2 − 8a + 80 + a2 − 24a + 148 = 100 ∴ 2a2 − 32a + 128 = 0 ∴ a2 − 16a + 64 = 0 Std –10 / Mathematics

= (4, −3) ™wk {æÞ®ƒŒw (4, −3) Au. yÚtðt ™tk rºt¼t„ ®ƒŒwytu P y™u Q ™t Þt{ y™w¢{u (4, 3) y™u (1, 1) Au. Äthtu fu A ™t Þt{ (x1, y1) y™u B ™t Þt{ (x2, y2) Au.

™wk {æÞ®ƒŒw Q (1, 1) Au.

= cosθ − sinθ

∴ cosθ − sinθ =

™wk {æÞ®ƒŒw =

P (4, 3) yu

cos θ + 2 cosθ sinθ + sin θ = 2 cos2θ 2 cosθ sinθ = 2 cos2θ − cos2θ − sin2θ 2 cosθ sinθ = cos2θ − sin2θ 2 cosθ sinθ = (cosθ − sinθ) (cosθ + sinθ) cosθ (

∴ −3 = 3 + y2 + y3 ∴ y2 + y3 = −6

yt{,

2

∴ 2 cosθ sinθ = (cosθ − sinθ) ×

−1 =

=

= = = = 13 Ëu{e fw÷ …]cV¤ = 2πrh + 2πrl = 2πr (h + l) = 2 × 3.14 × 5 × (17 + 13) = 31.4 (30) = 942 [tu Ëu{e ynª, cosθ + sinθ = cosθ 2 ∴ (cosθ + sinθ) = ( cosθ)2 (

y™u

∴3=

43.

∴1=

∴ x2 + 4 = 2 ∴ 3 + y2 = 2 ∴ y2 = −1 ∴ x2 = −2 ®ƒŒw B ™t Þt{ (x2, y2) = (−2, −1) yt{, A ™t Þt{ (7, 5) y™u B ™t Þt{ (−2, −1) Au. rð¼t„ − D Äthtu fu ƒu ykftu™e ËkÏÞt™t yuf{™tu ykf x y™u Œþf™tu ykf y Au. ∴ {q¤ ËkÏÞt = 10y + x ykftu™t MÚtt™ yŒ÷ƒŒ÷ fhðtÚte {¤‚e ™ðe ËkÏÞt = 10x + y …hk‚w {q¤ ËkÏÞt y™u ™ðe ËkÏÞt™tu Ëhðt¤tu 110 Au. ∴ (10y + x) + (10x + y) = 110 ∴ 11x + 11y = 110 ∴ x + y = 10 ........(1) nðu, ƒeS þh‚ «{týu ∴ 10y + x − 10 = 5 (x + y) + 4 ∴ 10y + x − 10 = 5x + 5y + 4 ∴ 10y − 5y + x − 5x = 4 + 10 ∴ 5y − 4x = 14 ∴ 4x − 5y = − 14 ........(2) Ë{efhý (1) ™u 5 ðzu „wýe Ë{efhý (2) ËtÚtu Ëhðt¤tu fh‚tk, 5x + 5y = 50 x + y = 10 {tk x = 4 {qf‚tk, 4x − 5y = − 14 4 + y = 10

5 ddfd

∴ y = 10 − 4

9x = 36 ∴x=4

∴x=

∴y=6

yt{, x = 4, y = 6 ∴ {q¤ ËkÏÞt = 10y + x = 10 (6) + 4 = 60 + 4 = 64 44. =

= 45.

×

×

=1 Y{fq÷h™e htufz ®f{‚ = Y. 2400 ¾heŒ‚e ð¾‚u [qfððt™e ®f{‚ = Y. 1200 ∴ [qfððt™e ƒtfe hnu‚e hf{ = 2400 − 1200 = Y. 1200 ƒtfe hf{ ºtý Ëh¾t {trËf n…‚t îtht [qfðtÞ Au. Äthtu fu Œhuf Ëh¾t {trËf n…‚t™e hf{ = Y. x ∴ ºtý Ëh¾t {trËf n…‚t{tk [qfðtÞu÷ hf{ = Y. 3x n…‚t™e he‚{tk ÔÞts™e hf{ = Y. (3x − 1200) ºtý n…‚t Œhr{Þt™ n…‚t™e ƒtfe hf{ : «Út{ {rn™u (2400 − 1200) = Y. 1200 ƒeò {rn™u (1200 − x) = Y. (1200 − x) ºteò {rn™u (1200 − x − x) = Y. (1200 − 2x)

47.

fw÷ hf{ = Y. (3600 − 3x) ynª, P = Y. (3600 − 3x), R = 12%, N =



= 31.5 − 1.42

∴ = 30.08 ∗ xufhe™e Ÿ[tE (AC) = 100 {e ∗ Äthtu fu r{™tht™e Ÿ[tE (DE) = h {e y™u xufhe y™u r{™tht ðå[u™wk yk‚h (CD) = x {e ∴ BE = x {e ∗ m∠AEB = 30, m∠ADC = 45 ∆ACD {tk m∠C = 90 y™u ∆ABE {tk m∠B = 90

÷

×

= 31.5 −

47.

÷

×



ð»to, I = Y. (3x − 1200)

nðu, I =

36 9

∴ tan 45o =

∴ tan 30o =

∴1=



=

∴ x = 100



=

(

x = 100)

∴ 0.58 × 100 = 100 − h ∴ 58 = 100 − h ∴ h = 100 − 58 ∴ h = 42 {e yt{, r{™tht™e Ÿ[tE = 42 {e. yÚtðt ∗ Äthtu fu xtðh™e Ÿ[tE (BC) = y æðsŒkz™e ÷kƒtE (AB) = h ∴ AC = h + y ∗ Äthtu fu xtðhÚte ®ƒŒw D ËwÄe™wk yk‚h (CD) = x ∗ m∠ADC = α, m∠BDC = β nðu, ∆BCD {tk m∠C = 90 y™u ∆ACD {tk m∠C = 90 ∴ tanβ =

∴ tanα =

∴ tanβ =

∴ tanα =

∴ 3x − 1200 = ∴x=

∴ 100 (3x − 1200) = 3600 − 3x ∴ 300x − 120000 = 3600 − 3x ∴ 300x + 3x = 120000 + 3600 ∴ 303x = 123600

46.

ð„o

ytð]r¥t fi

{æÞ®f{‚ xi

0−7 7 − 14 14 − 21 21 − 28 28 − 35 35 − 42 42 − 49 49 − 57 fw÷

26 31 35 42 82 71 54 19 n = 360

3.5 10.5 17.5 24.5 31.5 A 38.5 45.5 52.5 −

∴ ð„o÷kƒtE (C) = 7 nðu,

=A+ ∴

= ∴ y tanα = h tanβ + y tanβ ∴ y tanα − y tanβ = h tanβ ∴ y (tanα − tanβ) = h tanβ

Std –10 / Mathematics

di =

fidi −4 −3 −2 −1 0 1 2 3 −

−104 −93 −70 −42 0 71 108 57 Σfidi = −73

∴y= yt{, xtðh™e Ÿ[tE 48.

…ût : ∆ABC {tk

{tkÚte

™u Ë{tk‚h hu¾t m, ËtæÞ : AC = 4 EK Ëtrƒ‚e : ∴

Au.

y™u

{æÞ„tytu Au y™u G {æÞfuLÿ Au. D ™u K {tk AuŒu Au.

ynª, ∆ADK {tk =

||

Au.

........(1)

…hk‚w G {æÞfuLÿ y™u {æÞ„t ntuðtÚte AG = 2 GD

×C

= 31.5 +

.......(2)

…rhýt{ (1) y™u (2) ™u Ëh¾tð‚tk,

∴ x = Y. 407.92 (ytþhu) yt{, n…‚t™e hf{ = Y. 407.92

∴x=

...(1) ∴ x =

×7



=2

6 ddfd



48.

=2

(…rhýt{ (1) …hÚte)

=

×h

∴ 100 × 25 = h

…hk‚w {æÞ„t ntuðtÚte E y™u ™wk {æÞ®ƒŒw Au. ∴ AC = 2 AE ∴ AC = 2 (2 EK) (…rhýt{ (2) …hÚte) ∴ AC = 4 EK yÚtðt

∴ h = 2500 Ëu{e ∴ h = 25 {exh yt{, ‚th™e ÷kƒtE = 25 {exh

{æÞ„t Au.

…ût : ∆PQR {tk ∠Q ftx¾qýtu Au. y™u ËtæÞ : PR2 = PM2 + 3RM2 {æÞ„t Au.

rð¼t„ − E 50. …tEÚtt„tuhË™wk «{uÞ : ftxftuý rºtftuý{tk fýo™e ÷kƒtE™tu ð„o ƒtfe™e ƒtswytu™e ÷kƒtEytu™t ð„tuo™t Ëhðt¤t ƒhtƒh ntuÞ Au. …tEÚtt„tuhË™wk «r‚«{uÞ : òu ∆ABC {tk BC2 = AB2 + AC2, ‚tu ∠ A ftxftuý Au. …ût : ∆ABC {tk BC2 = AB2 + AC2 ËtæÞ : ∠A ftxftuý Au.

™wk {æÞ®ƒŒw Au. ∴ M yu ∴ Q − M − R y™u QM = MR ÷tu. Ëtrƒ‚e : ftuE …ý ∴ QR = 2RM .......(1) ∆PQR {tk ∠Q ftxftuý Au. y™LÞ rfhý «tró „wýÄ{o y™wËth ™u ÷kƒ {¤u. ∴ …tEÚtt„tuhË™t «{uÞ «{týu, …h ON = AB ÚttÞ ‚uðkw ®ƒŒw N y™u …h AC = OM ®ƒŒw «tró „wýÄ{o y™wËth PR2 = PQ2 + QR2 ÚttÞ yuðkw ®ƒŒw M {¤u. = PQ2 + (2RM)2 ( …rhýt{ (1) …hÚte) nðu ∆MON {tk ∠O ftxftuý Au. = PQ2 + 4RM2 ∴ …tEÚtt„tuhË™t «{uÞ «{týu, = PQ2 + RM2 + 3RM2 MN2 = OM2 + ON2 = CA2 + AB2 ∴ PR2 = PQ2 + QM2 + 3RM2 .......(2) ( QM = RM) ∴ MN2 = BC2 (…ût) nðu, ∆PQM {tk m∠Q = 90 ∴ MN = BC nðu ∆CAB y™u ∆MON {tk ≅ , ≅ ∴ PM2 = PQ2 + QM2 ........(3) , ≅ …rhýt{ (2) y™u (3) …hÚte, ∴ Ëk„‚‚t ABC ↔ ONM yufY…‚t Au. (ƒtƒtƒt) PR2 = PM2 + 3RM2 ∴ ∠A ≅ ∠O. ytÚte m∠A = m∠O ÔÞtË = 14 Ëu{e ∴ r = 7 Ëu{e …hk‚w m∠O = 90 ynª, þkfw™e ð¢Ë…txe™wk ûtuºtV¤ = 550 [tuËu{e ∴ πrl = 550 ∴ m∠A = 90. ytÚte ∠A ftx¾qýtu Au. ∴

51. …ût : ÷½w ð‚wo¤™t fuLÿ O yt„¤ ∠AOB ytk‚hu Au ‚Útt ð‚wo¤™t ƒtfe™t ¼t„ yt„¤ ∠APB ytk‚hu Au. ËtæÞ : m∠AOB = 2m∠APB

× 7 × l = 550

∴l= ∴ l = 25 Ëu{e nðu, h2 = l2 − r2

49.

×

∴ AE = 2 EK .........(2)

Ëtrƒ‚e :∆PQR {tk

49.

∴ 600 ×

þkfw™wk ½™V¤ = πr2h

= (25)2 − (7)2

=

= 625 − 49 ∴ h2 = 576 ∴ h = 24 Ëu{e.

=1232 ½™Ëu{e

×

{ýft {txu

yÚtðt ‚th {txu

ÔÞtË = 1 Ëu{e

ÔÞtË = 0.4 Ëu{e

∴r=

Ëu{e

∴ R = 0.2 =

× 7 × 7 × 24

Ëu{e

{ýft™e ËkÏÞt = 600 ‚th™e ÷kƒtE (h) = (?) ynª, 600 {ýft …e„t¤e™u ‚th ƒ™tÔÞtu Au. ∴ 600 {ýft™wk ½™V¤ = ‚th™wk ½™V¤ ∴ 600 × πr3 = πR2h ∴ 600 ×

× r3 = R2h

Std –10 / Mathematics

Ëtrƒ‚e : …h ®ƒŒw C Au, su …h ™Úte. nðu ºtý rðfÕ… Au : (i) O yu ∠APB ™t ykŒh™t ¼t„{tk ntuÞ. (ii) O yu ∠APB ™t ƒnth™t ¼t„{tk ntuÞ. (iii) O yu ∠APB …h ntuÞ. nðu rðfÕ… (i) ‚Útt (ii) ƒk™u {txu rð[th fheyu. nðu, ∆OAP {txu ∠AOC ƒrn»ftuý Au. ∴ m∠AOC = m∠OPA + m∠OAP …hk‚w OA = OP ∴ m∠OPA = m∠OAP ∴ m∠AOC = 2m∠OPA ‚u s he‚u ∆OPB …hÚte m∠BOC = 2m∠OPB nðu rðfÕ… (i) (ytf]r‚ (1)) «{týu O yu ∠APB ™t ykŒh™t ¼t„{tk Au ‚Útt C …ý ∠AOB ™t ykŒh™t ¼t„{tk Au. ∴ m∠AOB = m∠AOC + m∠BOC (C yu ∠AOB ™t ykŒh™t ¼t„{tk Au.) = 2 m∠OPA + 2m∠OPB = 2 (m∠OPA + m∠OPB) = 2 m∠APB (O yu ∠APB ™t ykŒh™t ¼t„{tk Au.) ‚u s he‚u rðfÕ… (ii) (ytf]r‚ (2)) «{týu A yu ∠BOC ‚Útt ∠OPB ™t ykŒh™t ¼t„{tk Au. ∴ m∠BOC = m∠AOB + m∠AOC ∴ m∠AOB = m∠BOC − m∠AOC

7 ddfd

= 2m∠OPB − 2m∠OPA = 2(m∠ΟPB − m∠OPA) .......(1) nðu A yu ∠OPB ™t ykŒh™t ¼t„{tk Au. ∴ m∠OPA + m∠APB = m∠OPB ∴ m∠APB = m∠OPB − m∠OPA ∴ m∠AOB = 2m∠APB ((1) …hÚte) rðfÕ… (iii) (ytf]r‚ − 3) «{týu O yu ∠APB ™t yuf ¼qs …h Au. (∠APB …h Au.) m∠AOB = m∠OPA + m∠OAP = 2 m∠APB (OA = OP) yt{ ‚{t{ rðfÕ…{tk m∠AOB = 2m∠APB h[™t™t {wÆt :

∴x−

−2=0

∴ y2 − y − 2 = 0

(

∴ 2y2 − 7y − 4 = 0 ∴ (2y + 1) (y − 4) = 0 ∴ (2y + 1) = 0 yÚtðt ∴y=−

yÚtðt

= y yux÷u fu x = y2 Au. y > 0)

(y − 4) = 0 y=4

…hk‚w y > 0. ytÚte y = 4 ∴ x = y2 = (4)2 = 16 52. ∴ ntÚteytu™e fw÷ ËkÏÞt 16 nþu. ŒtuÞtuo. (1) 7 Ëu{e™e ÷kƒtE™tu 54. ynª, „w.Ët.y. (x − 3) Au. yux÷u fu (x − 3) ƒk™u ƒnw…Œe™tu yðÞð Au. ™t ÷kƒrî¼tsf™e {ŒŒÚte ‚u™wk (2) ∴ x − 3 ÷u‚tk ƒk™u ƒnw…Œe™wk {qÕÞ 0 {¤u. {æÞ®ƒŒw {u¤ðe, …h yÄoð‚wo¤ ŒtuÞwO. y™uq(x) = x3 − x (b − 4) + ∴ p(x) = x3 + ax2 + bx − 6 (3) Úte 3 Ëu{e Œqh || l hu¾t Œtuhe. a (4) hu¾t l yÄoð‚wo¤™u AuŒu íÞtk y™w¢{u P y™u P' ™t{ ytÃÞt. ∴ p(3) = (3)3 + a (3)2 + b (3) − 6 ∴ q(3) = (3)3 − 3 (b − 4) + a ∴ 0 = 27 + 9a + 3b − 6 ∴ 0 = 27 − 3b + 12 + a (5) ⊥ y™u ⊥ ∴ 0 = 9a + 3b + 21 ∴ 0 = a − 3b + 39 ‚u{s , , y™u ™e h[™t fhe. ∴ 0 = 3a + b + 7 ∴ a − 3b = −39 ........(2) ∴ ∆PQR y™u ∆P'QR {tk„u÷t rºtftuýtu Au. ∴ 3a + b = −7 ........(1) …rhýt{ (1) ™u 3 ðzu „wýe ‚u{tk …rhýt{ (2) W{uh‚tk, + = (x ≠ −1, −2, −4) 53. 9a + 3b = −21 nðu, 3a + b = −7 a − 3b = −39 ∴ 3 (−6) + b = −7 ∴ 10a = −60 ∴ −18 + b = −7 ∴ = ∴ a = −6 ∴ b = 11 yÚtðt ∴ = 54. p(x) = (x2 − 4x − 21) (x2 − 4x + a) = (x − 7) (x + 3) (x2 − 4x + a) ∴ (x + 4) (3x + 4) = 4 (x2 + 3x + 2) q(x) = (x2 − 5x + 6) (x2 − 4x + b) ∴ 3x2 + 16x + 16 = 4x2 + 12x + 8 = (x − 2) (x − 3) (x2 − 4x + b) 2 ∴ −x + 4x + 8 = 0 p(x) y™u q(x) ™tu „w.Ët.y. (x + 3) (x − 2) Au. ∴ x2 − 4x − 8 = 0 ∴ (x + 3) y™u (x − 2) yu p(x) y™u q(x) ™t yðÞð Au. p(x) = (x − 7) (x + 3) (x2 − 4x + a) ™tu yuf yðÞð (x − 2) Au. x2 − 4x − 8 = 0 ™u ax2 + bx + c = 0 ËtÚtu Ëh¾tð‚tk, ∴ p(2) = 0 a = 1, b = −4, c = −8 p(2) = (2 − 7) (2 + 3) [(2)2 − 4 (2) + a]= 0 rððu[f D = b2 − 4ac ∴ (−5) (5) (−4 + a) = 0 = (−4)2 − 4 (1) (−8) = 16 + 32 = 48 > 0 ∴ (−25) (a − 4) = 0 ∴a−4=0 ynª, D > 0 ntuðtÚte yt…u÷ rîÄt‚ Ë{efhý™u ƒu r¼Òt ðtM‚rðf ƒes {¤u. ∴ a = 4 .........(1) y™u β= α= q(x) = (x − 2) (x − 3) (x2 − 4x + b) ™tu yuf yðÞð (x + 3) Au. ∴ q(−3) = 0 = = q(−3) = (−3 − 2) (−3 − 3) [(−3)2 − 4 (−3) + b]= 0 ∴ (−5) (−6) (9 + 12 + b) = 0 = = ∴ (30) (21 + b) = 0 =2−2 = 2+2 ∴ 21 + b = 0 ∴ b = −21 ........(2) = 2 (1 − ) = 2 (1 + ) yt{, a = 4 y™u b = −21 yt{, yt…u÷ rî½t‚ Ë{efhý™tk ƒu ƒes 2 (1 − ) y™u 2 (1 + ) Au. yÚtðt 53. Äthtu fu ntÚteytu™e fw÷ ËkÏÞt x Au. ntÚteytu™e ËkÏÞt Ä™…qýtOf™t ð„o sux÷e Au. ytÚte x = y2 ÷E þftÞ, ßÞtk y ∈ N. ∴ rf™thu ytðe „Þu÷t ntÚteytu™e ËkÏÞt rf™thu ytððt™t ƒtfe Au. ∴x=

ÚttÞ y™u …týe{tkÚte ƒu ntÚte

+2

Std –10 / Mathematics

8 ddfd

Related Documents