OR
Code No: 320360
III B.Tech. II-Semester Supplementary Examinations, November-2003. MATHEMATICS-III (Common to Mechanical Engineering, Production Engineering, Mechanical Manufacturing Engineering) Time: 3 hours
1.a) b)
Answer any FIVE questions All questions carry equal marks --1 π Γ ( 2 m) . Prove that Γ(m) Γ(m + ) = 2 m 2 2 −1 Prove that b
∫a ( x − a) 2.a)
b) 3.a)
b) 4.a) b)
Max. Marks: 70
m
(b − x) n dx = (b − a) m + n +1 β (m + 1, n + 1) .
Prove that the f(z) defined by x 3 (1 + i ) − y 3 (1 − i ) f ( z) = , ( z ≠ 0) x2 + y2 f(0)=0 is continuous and the Cauchy’s Riemann equations are satisfied at the origin, yet f '(0) does not exist. If f(z)=u(xy)+iv(xy) be analytic function, show that u(xy)=c1 and v(xy)=c2 form an orthogonal system of curves. If f(z) is a regular function of Z, prove that ∂2 ∂ 2 + | f ( z ) | 2 = 4 | f ′( z ) | 2 . ∂x 2 ∂y 2 Find the regular function whose real part is u = e2x(x cos 2y – y zsin 2y). State and prove Cauchy’s Integral formula. z+3 Expand f ( z ) = when z ( z 2 − z − 2) (i) |z|<1 (ii) 1<|z|<2 (iii) |z|>2.
Contd…..2
Code No:320360 5.a)
-2z −1
∫ ( z + 1) 2 ( z − 2) dz where c is |z-i| = 2.
Evaluate
c
b)
3z 2 + 2
∫ ( z − 1)( z 2 + 9) dz
Evaluate
where c is |z-2| = 2.
c
6.a)
Use the residue theory to show that 2π
dθ
∫
b)
=
2πa
where a>0, b>0, a>b. 2 3/ 2 ( a + b cos θ ) ( a − b ) 0 Apply the Calulus of residue to prove that ∞
∫
2
dx
− ∞ (1 +
x 2 )3
=
2
3π . 8
7.a) b)
Discuss the transformation ω = log z Find the bilinear transformations that maps the points 2, i, -2 into 1, i, -1 respectively.
8.a)
Prove that one root of the equations z4+z3+1 = 0 lies in the first quadrant. State and prove Rouche’s theorem.
b)
---
OR