OR Code No.220556 II-B.Tech. II-Semester –Supplementary-Examinations January-2003. MATHEMATICS-III (common to Electrical and Electronics Engineering, Electronics and Communication Engineering, Metallurgical Engineering, Electronics and Instrumentation Engineering, Electronics and Control Engineering, Metallurgy and Material Technology, Electronics and Telematics.) Time: 3 hours
1.a) b) 2.a)
Max. Marks:70 Answer any FIVE questions All questions carry equal marks --2 1 dx 1 x dx = Π/4 Show that ∫0 ∫ 0 4 4 1− x 1− x Prove that 22n-1 Π (n) Π (n+ ½)= Π (2n) Π 2 x nJn-(n+2)Jn+2+(n+4) Jn+4……… And hence deduce that x 2 Jn=(n+1)Jn+1-(n+3) Jn+3+(n+5)Jn+5……….. Prove that Jn-1= 1
b)
Prove that
∫ pm ( x) pn ( x)dx = 0 if m ≠ n
−1
3.a) b)
2 if m=n. 2n + 1 Prove that Zn is analytic and hence find its derivative. If u(x, y) and v(x,y) are harmonic functions in a region R, prove that the function ∂u ∂v ∂u ∂v − +i + is an analytic function. ∂y ∂x ∂x ∂y
4.a)
(i) Find the image of |Z| =2 under the transformation ω =3z. (ii) Find the points at which ω = cos hz is not conformal.
=
b)
5.a) b)
2 2 Find the conjugate harmonic of u = e x − y cos 2 xy . Hence find f(z) in terms of z.
State and prove Cauchy’s integral theorem. cos Π z 2 Evaluate ∫ 3 where C is |z| =3 by using Cauchy’s integral Formula. ( z − 1 )( z − 2 ) c Contd…….2
Code No.220556
-2-
OR
6.a)
Evaluate
12 z − 7
∫ (2 z + 3)( z − 1) 2 dz where C is x +y =4. 2
2
c
b)
(i) Calculate the residue at z=0 of f(z)= ∞
∫0 7.a) b) 8.a) b)
dx
1+ ez z cos 2 + sin 2
(ii) Evaluate
(x2 + a2 )2
Expand log(1-2) when |z|<1 using Taylor series. ∞ 1 + 2 cos θ dθ Evaluate ∫ 0 5 + 4 cos θ Find the bilinear transformation which transform the points ∞ , i, o in the Z-plane into o, i, ∞ in the w-plane. Prove that P(z)= ao+a1z+a2z2+……+an zn, an ≠ 0 has exactly n(-roots) – zeros. ---