Mathematics 2003 Paper 1 Marking Scheme

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Mathematics 2003 Paper 1 Marking Scheme as PDF for free.

More details

  • Words: 1,937
  • Pages: 8
HOK YAU CLUB HONG KONG MOCK EXAMINATION 2003 MATHEMATICS PAPER 1 (MARKING SCHEME)

3

1.

(2 mn) 6m 2 n 5

= = =

8m3 n 3 6m 2 n 5 4m 3 − 2 3n 5 − 3 4m

3n 2

1A 1M for a m ÷ a n = a m −n 1A ----(3)

2.

(a)

y = mx + t 2 mx = y − t 2 x=

(b)

x=

y −t2 m 10 − ( −2) 2 =3 2

1M 1A 1A ----(3)

3.

(a) (b)

x 2 + 6 x + 9 = ( x + 3) 2 x 2 + 6 x + 9 − 4 y 2 = ( x + 3) 2 − ( 2 y) 2 = ( x + 3 − 2 y ) ( x + 3 + 2 y) = ( x − 2 y + 3) ( x + 2 y + 3)

1A 1M 1A ----(3)

4.

(a)

2 a = 3b = 7c a b c = = 21 14 6

1M

a : b : c = 21 :14 : 6

1A

a b c = = = k , where k is a constant (常數). 21 14 6 We have a = 21k , b = 14k , c = 6k

(b) Let

1M

a 2 + b 2 ( 21k ) 2 + (14 k ) 2 = 2 ac 2 ( 21k ) ( 6k ) =

91 36

1A ----(4)

5.

(a)

f ( x ) = x 2 + ( k + 1) x + k Since f ( x ) = 0 has equal roots (等根), we have ∆ = ( k + 1) 2 − 4(1)( k ) = 0 ( k − 1) 2 = 0

k =1 (b) Sub. k = 1 into f (x) , we have f ( x ) = x 2 + 2 x + 1 . When f (x) is divided by x – 5, Remainder (餘數) = f (5) = 5 2 + 2 × 5 + 1 = 36

6.

1M 1A

1M 1A ----(4)

∠TSR = ∠ STR = ∠TRS = 60o

(Property of equilateral triangle / 等邊 ∆ 性質) 1A

∠PST = 90 − 60 = 30 As SP = ST, ∠PTS = ∠TPS

(base ∠ s of isos. ∆ / 等腰 ∆ 底角)

1A

( ∠ sum of ∆ / ∆ 內角和)

1A

o

o

o

180 o − 30 o = 75 o 2 o ∠UTR = 180 − 75 o − 60 o = 45o ∠PTS =

1A ----(4)

7.

( ∠ s in the same segment / 同弓形內的圓周角)

∠BED = ∠BAD o

= 40 ∠ACD = ∠ CAD (base ∠ s of isos. ∆ / 等腰 ∆ 底角) = 40o ∠ADE = 40o + 40o (ext. ∠ of ∆ / ∆ 外角) = 80o ∠ABE = ∠ADE ( ∠ s in the same segment / 同弓形內的圓周角) o = 80

8.

8 2 + 10 2 − 9 2 cos ∠ACB = 2 × 8 × 10 ∠ACB = 58.7 o a = 40o (alt. ∠ s, 2 lines //) b = 58.7o – 40o = 18.7o The bearing of C from B = N 18.7o W

(a) For L1 : 2 x + ky = 5

8 cm

1A 1A ----(4)

N

1M a

40°

b 10 cm

1A

N

A 9 cm

1M 1A ----(4)

passes P(1 , 3),

2(1) + 3k = 5 k=1 (b) For slope (斜率) of L1 = -2 and L1 ⊥ L2 , we have Slope of L2 =

1A

C

B

9.

1A

1 2

y −3 1 = x −1 2 x − 2y + 5 = 0

1M 1A

1A

Equation of L2 :

1A ----(4)

10. (a) Area of A1 =

1 1 ×8× 6 − × 4 ×3 2 2

= 18 square units (b) Area of A2 = =

1M

9 square units 2

1A

9 2

18

=

1 4

18 1 1− 4

P = −30 + k 1 x + k 2 x 3

1A 1M

= 24 square units

11. (a)

1A

1 1 3 × 4× 3− × 2× 2 2 2

(c) Common ratio = Total area =

1M

(where k 1 , k2 are constant. (常數))

When x = 1, P = -48, we have − 48 = −30 + k1 × 1 + k 2 × 13 k 1 + k 2 = −18 … … … … … … ..(1) When x = 6, P = 72, we have 72 = −30 + k1 × 6 + k 2 × 6 3 k 1 + 36k 2 = 17 … … … … … … ..(2)

1A ----(7)

1A 1M (substitution)

1A

(2) – (1) :

35k 2 = 35 k2 = 1 Sub. k 2 = 1 into (1), we have k 1 = -19. ∴ P = x 3 − 19 x − 30 (b) Let f ( x ) = x 3 − 19 x − 30

1

R = f ( −2) = ( −2) 3 − 19 × ( −2) − 30 = 0 ∴ (x – 2) is a factor of f(x). Hence, f(x) = ( x + 2 )( x 2 − 2 x − 15)

1M + 1A

= ( x + 2)( x + 3)( x − 5)

1A

When f(x) = 0, x = -2 or –3 or 5. So, 5 thousand copies (reject negative) should be sold.

1A 1A ----(9)

12. (a) For tan 30 o =

10 x 2

1M

x = 20 3

1A

Shaded area (陰影面積) =

1 ( 20 3 ) 2 sin 60 o − π × 10 2 2

1M

(300 3 − 100π ) cm2 1A 300 3 − 100π 100π The required probability (所求概率) = 2 × × 1M 300 3 300 3 = 0.478 1A =

(b) (i)

(ii) The required probability = 0.478117768 +

300 3 − 100π 300 3

= 0.634

×

300 3 − 100π 300 3 1M+1A ----(8)

13. (a) x = 100 – (12 + 18 + 16 + 24 + 10) = 20 y = 360 × 24% = 86.4 (b) Number of students who go to school by bus

1M + 1A 1A = 800 × 20% 1M = 160 1A (c) a = 20 × (1 + 10%) = 22 1A b = 18 × (1 + 33? %) = 24 1A % of student by private car = 100 – (22 + 12 + 24 + 16 +24) = 2% 1M o c = 360 × 2% = 7.2 1A ----(9)

1 1 14. (a) [ × 10 2 × θ − × 10 2 × sin θ ] × 3000 = 150000 2 2 50θ − 50 sin θ = 50 θ − sin θ − 1 = 0 Let f (θ ) = θ − sin θ − 1

For f(1) < 0 and f(2) > 0, there exist a root between 1 and 2

1M + 1A

1 1A

Range

mid-value c

f(c)

1<α<2

1.5

-

1.5 < α < 2

1.75

-

1.75 < α < 2

1.875

-

1.875 < α < 2

1.9375

+

1M (for next interval)

1A (for correct sign)

1M

1.875 < α <1.9375 So, θ = 1.9

1A

(b) Area of the road surface (路面面積) = 3000 × 10 2 + 10 2 − 2 × 10 × 10 cos 1.9 1M = 48804.9 m2 Cost of painting (油漆的費用) = $20 × 48804.9 = $976 000

15. (a)

1A 1A ----(11)

1 1 108 × 3 × 4 × sin θ + × 4 × 15 × sin θ = 2 2 5 36 sin θ =

108 5

sin θ =

(b) AA’= 3 sin θ = 3 ×

3 9 = cm 5 5

BB’= 15 sin θ = 3 ×

3 = 9 cm 5

3 5

A’X= 3 cos θ = 3 × So,

A’B’= 12 −

4 12 = cm 5 5

12 48 = cm 5 5

1A 1A

A

1A

3 5 −3 4 For sin θ = , cos θ = = 5 5 5 4 XB’= 15 cos θ = 15 × = 12 cm 5 2

1M + 1A

2

B’

θ

Y A’

θ

X

1M

B

1A

A’B =

tan ∠ABA ' =

( A' B' ) 2 + ( BB ' ) 2 = 9.6 2 + 9 2

1M

= 13.159 cm

1A

AA' 1 .8 = A' B 13.159

1M

∠ABA ' = 7.79 o Hence, the angle of elevation of A from B

is 7.79o

1A ----(11)

16. (a) z = 100 – x – y The constraints are : For z ≥ 0, 100 – x – y ≥ 0 x + y ≤ 100 … … … … … .(1) x ≥ 3 y … … … … … … . (2) z ≤ 6 y , 100 – x – y ≤ 6 y x + 7 y ≥ 100 … … … … .. (3) x ≥ 0, y ≥ 0 … … … … . (4)

1A

1A 1A 1A 1A

y 60

x + y = 100 40 x = 3y

20 x + 7y = 100

x 0

20

40

60

80

100

2A (straight lines) 1A (shaded region) (b)

P = 5x + 10 y + 15 z

= 5 x + 10 y + 15(100 − x − y ) = 1500 − 10 x − 5 y

1A

Draw the line 2x + y = 0 , P attains maximum at (30, 10) So, x = 30, y = 10 , z = 100 – 30 – 10 – 60

1M 1A ----(11)

2y + 5 … … … ..(1) 3 Sub. (1) into C : x 2 + y 2 − 4 x − 14 y + 27 = 0 , we have

17. (a) From L : 3x – 2y = 5 , x =

(

1M

2y + 5 2 2y + 5 ) + y 2 − 4× ( ) − 14 y + 27 = 0 3 3 y 2 − 10 y + 16 = 0

1A

(y – 2) (y – 8) = 0 y = 2 or y = 8 x = 3 or x = 7 So,

P = (3, 2) , Q = (7, 8)

Mid-point (中點) of PQ = ( Radius (半徑) =

1A 3+7 2 +8 , ) = (5, 5) 2 2

(5 − 3) 2 + (5 − 2) 2 = 13

So, equation of the required circle : (x – 5)2 + (y – 5)2 =

1M 13

2

1M+1A

x 2 + y 2 − 10 x − 10 y + 37 = 0 (b) O = ( −

− 4 − 14 ,− ) = (2 , 7) 2 2

Sub. (2, 7) in the circle, L.S. = 22 + 72 – 10(2) – 10(7) + 37 = 0 So, (2, 7) lies on the circle. As PQ is a diameter (直徑) of the circle, ∠POQ = 90 o ( ∠ in semicircle / 半圓上的圓周角) If A

1A

1M 1

lies on the major arc (優弧) PQ, ∠PAQ = 45o ( ∠ at centre twice ∠ at circumference / 圓心角兩倍於圓周角) 1A

If A

lies on the minor arc (劣弧) PQ, ∠PAQ = 180o - 45o = 135o (opp. ∠ , cyclic quad. / 圓內接四邊形對角) 1A ----(11)

Related Documents