"#
%$&'
!
() * $ +# + + , (%--+# * () +' * $$# #.,) ., (% *'-+ $ +# + + / - .*# +' + (%** '- *' ( ' +$ *'-+ # * (!0 */ 1 # '' * (2 .# */ ' ( + + . #+ ' #+ ( '-+ * + * (3 #+*
% 5 5→
3 4 6
5
6
% # 45 6 6
6
→345 6
6
6
7545 6
6
6
6
→5
→
54
54
Anode : H2
2H+ + 2e-
Cathode: 1/2O2+ 2H+ + 2eOverall : H2 + 1/2O2
H2O
H2O Courtesy from Rina Lum (IHPC)
! '#∆%$(
% && )
' '
$
'
H2 + 1/2O2
H2O (l); ∆H = -286 kJ/mol - HHV
H2 + 1/2O2
H2O (g); ∆H = -242 kJ/mol - LHV
Parameter
#
' #∆" $(
*
"
'
Higher Heating Value (HHV)
Lower Heating Value (LHV)
Enthalpy ∆H
-286 kJ/mol
-242 kJ/mol
Gibbs Free Energy ∆G
-237 kJ/mol
-229 kJ/mol
Reversible Voltage, Er
1.229 V
1.185 V
Theoretical Efficiency, εr
83%
94.5%
H2 + 1/2O2
H2O
+ & '
(- ) ( (. ,
',
/ Transportation
Portable Power Generation
Stationary Power Generation
Space and Defense
/ ) (
8 -+# ' *: : ;
•
$ 93 ! . $$# #. + /+1 ' **
8 -+# ' $ < +# #* : : =
*
+ .>
. *. # '
* -
<+
& ( ( ( ( ( •
. *$ . %? +<+. $ . $ + # * $$ +# + + * < $. $ + %+ ? . $ + 3 . ' @
', ∆ A∆ → !
-. # *
8 ? *<+ $$# #. ε B ∆ 7∆
3 ** ? $$ +$ ' # C -+ ' D +1 @ #
# #
8 ** #
8 # +#
4- # # -
$ D. :#
+A ? *<+ +
# *$
*$ $# ' # ? /-
#? +
* -+ * ' ** *-
9 ? *<+ +***B
-.6 #
Q = −(T∆S )i / nF + i(η + η .
act
ohmic
+η
*$ 6 ' ** conc
*-
6
' # ? /-
)
E (i ) = Eo − b ln i − iR Eo = Er + b ln io
! B
' . ' # ? *<+ -
+
+
,
( •
3 ** ? # *# #* +1 @ D
$' +$ ' # : * - * ## # 1 # *<+ 1 @ #* $ ' +/* - +# # ' # + $' +
0
' Garcia, et al, 2004, JFSCT
Accounts for concentration variations of methanol across the anode backing layer (ABL), anode catalyst layer (ACL), and membrane
/ ( ( ( ( ( ( ( ( ( ( ( ( (
./* E * + . *- +3 * # # ** !% 3 ?# ? *$' +* + <+ ** # ** +. * * + <+ 9* ' +# * %+ +- .*# +- - * # * # * 4 + .+0 - * *# * *' * # < D ' * ** + ? *+ + * # * + + " # + 0 +< ' $# *# < *# < <. $ # %3" * ** ' < ' # / ' ** +# * # *+. *' + * ' * # % @ #*# < *# < <. * -' # *' # ? +*# * %3" 3 @ #*# < *# < <. $+ D- ** 1 ' ** *$ +' *
Mass transport equations are combined with kinetic equations to calculate the cell voltage Anode and cathode over-potential
δ I Vcell = U oO2 − U oMeOH − η a + η c − m cell κ
Thermodynamic equilibrium potentials of oxygen reduction and methanol oxidation
ηa, ηc and Icell are dependent on
Ohmic drop across the membrane
concentration profile of methanol
1
&
Anode Backing Layer (ABL) B dN MeOH ,z
Differential mass balance Methanol flux (Fick’s Law of Diffusion) Governing Equation
dz
B N MeOH , z = − DB B d 2 c: MeOH ,z
dz Boundary Conditions:
z= : 0 z = zI
Analytical solution
=0
2
B dc MeOH ,z
dz
=0
B cMeOH = cb B cMeOH = c IB = K I c IA
B cMeOH =
K I c IA − cb
δB
z + cb
'
1
&
'
Membrane Layer (M) Differential mass balance
M dN MeOH ,z
dz
Methanol flux (diffusion and electro-osmotic drag ) Governing Equation
M N MeOH , z = − DM
M d 2: cMeOH ,z
dz Boundary Conditions:
Analytical solution
=0
2
M dc MeOH ,z
dz
=0
M A z = z II c M = c = K c MeOH II II II z = z III c M MeOH ≈ 0
M c MeOH = K II c IIA
δB + δA − z +1 δM
I + ξ MeOH cell F Electro-osmosis drag coefficient, number of methanol molecules dragged by hydrogen ion in the membrane
1
&
'
Anode Catalyst Layer (ACL) Differential mass balance
A dN MeOH ,z
dz
r j = MeOH = − M MeOH 6F
Homogenous reaction Volumetric current density (A/cm3)
j = aI 0MeOH , ref
Methanol flux (Fick’s Law of Diffusion) Governing Equation
Boundary Conditions
A kcMeOH
A cMeOH + λeα Aη A F / RT
:
A N MeOH , z = −DA
DA
M d 2 c MeOH ,z
dz 2
=
j 6F
z = zI
A cMeOH = c IA
z = z II
A cMeOH = c IIA
eα Aη A F / RT
A dc MeOH ,z
dz
1
&
'
Anode Catalyst Layer (ACL) A Analytical solution cMeOH =
I cell z 2 + C1z + C2 12 Fδ A D A A A I cell δ B (δ B + δ A ) A (c II − c I )δ B + C2 = c I − δA 12 Fδ A D A A B N MeOH = N MeOH , z ,z A M N MeOH = N MeOH , z ,z
c IIA − c IA I cell (2δ B + δ A ) − C1 = δA 12 Fδ A D A Jump mass balance at interface of ACL
c IA =
c IIA =
z = z II
I cell δ B : I δ ) + δ M D A DB cb − (1 + 6ξ MeOH ) cell B 12 F 6F DB K I (δ A DM K II + δ M D A ) + δ B D A DM K II I I D A DB cb − δ A DB K I (1 + 12ξ MeOH ) cell − δ B D A (1 + 6ξ MeOH ) cell 2F 6F DB K I (δ A DM K II + δ M D A ) + δ B D A DM K II
δ A DM K II ( DB cb −
δM
z = z: I
' Cell current density
I cell =
δ B +δ A
δ B +δ A
δB
δB
j dz =
aI 0MeOH , ref
A kcMeOH
A cMeOH + λeα Aη A F / RT
eα Aη A F / RT dz
Obtain ηa for given value of Icell
Cathode Oxygen reduction
I cell + I leakage =
I 0O, 2ref
co 2 co 2 , ref
M eα cη c F / RT I leakage = 6 FN MeOH ,z
Obtain ηc for given value of Icell
)
+-
# $ # #
$$
'
+
3 #
- $+*$ <+ @# #
*
+# ** ? $ # #
$$
' *
+<+@
$$
' *
+
*
* <+ ** '$ $$ * *- ' @ # - ' * ' ' # +' +$ 1+ + D- ' +- + > 5 ' ' # +' + + * + +1 - # $' +# # - $+ # **< #@ $$ * # + .* ' '< +. *1 ' ' # +' +# + * ' ' +# ** ? 1 ' '<