Mathematical Modeling Of Fuel Cell.pdf

  • Uploaded by: David Wee
  • 0
  • 0
  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Mathematical Modeling Of Fuel Cell.pdf as PDF for free.

More details

  • Words: 1,399
  • Pages: 21
"#

%$&'

!

() * $ +# + + , (%--+# * () +' * $$# #.,) ., (% *'-+ $ +# + + / - .*# +' + (%** '- *' ( ' +$ *'-+ # * (!0 */ 1 # '' * (2 .# */ ' ( + + . #+ ' #+ ( '-+ * + * (3 #+*

% 5 5→

3 4 6

5

6

% # 45 6 6

6

→345 6

6

6

7545 6

6

6

6

→5



54

54

Anode : H2

2H+ + 2e-

Cathode: 1/2O2+ 2H+ + 2eOverall : H2 + 1/2O2

H2O

H2O Courtesy from Rina Lum (IHPC)

! '#∆%$(

% && )

' '

$

'

H2 + 1/2O2

H2O (l); ∆H = -286 kJ/mol - HHV

H2 + 1/2O2

H2O (g); ∆H = -242 kJ/mol - LHV

Parameter

#

' #∆" $(

*

"

'

Higher Heating Value (HHV)

Lower Heating Value (LHV)

Enthalpy ∆H

-286 kJ/mol

-242 kJ/mol

Gibbs Free Energy ∆G

-237 kJ/mol

-229 kJ/mol

Reversible Voltage, Er

1.229 V

1.185 V

Theoretical Efficiency, εr

83%

94.5%

H2 + 1/2O2

H2O

+ & '

(- ) ( (. ,

',

/ Transportation

Portable Power Generation

Stationary Power Generation

Space and Defense

/ ) (

8 -+# ' *: : ;



$ 93 ! . $$# #. + /+1 ' **

8 -+# ' $ < +# #* : : =

*

+ .>

. *. # '

* -

<+

& ( ( ( ( ( •

. *$ . %? +<+. $ . $ + # * $$ +# + + * < $. $ + %+ ? . $ + 3 . ' @

', ∆ A∆ → !

-. # *

8 ? *<+ $$# #. ε B ∆ 7∆

3 ** ? $$ +$ ' # C -+ ' D +1 @ #

# #

8 ** #

8 # +#

4- # # -

$ D. :#

+A ? *<+ +

# *$

*$ $# ' # ? /-

#? +

* -+ * ' ** *-

9 ? *<+ +***B

-.6 #

Q = −(T∆S )i / nF + i(η + η .

act

ohmic



*$ 6 ' ** conc

*-

6

' # ? /-

)

E (i ) = Eo − b ln i − iR Eo = Er + b ln io

! B

' . ' # ? *<+ -

+

+

,

( •

3 ** ? # *# #* +1 @ D

$' +$ ' # : * - * ## # 1 # *<+ 1 @ #* $ ' +/* - +# # ' # + $' +

0

' Garcia, et al, 2004, JFSCT

Accounts for concentration variations of methanol across the anode backing layer (ABL), anode catalyst layer (ACL), and membrane

/ ( ( ( ( ( ( ( ( ( ( ( ( (

./* E * + . *- +3 * # # ** !% 3 ?# ? *$' +* + <+ ** # ** +. * * + <+ 9* ' +# * %+ +- .*# +- - * # * # * 4 + .+0 - * *# * *' * # < D ' * ** + ? *+ + * # * + + " # + 0 +< ' $# *# < *# < <. $ # %3" * ** ' < ' # / ' ** +# * # *+. *' + * ' * # % @ #*# < *# < <. * -' # *' # ? +*# * %3" 3 @ #*# < *# < <. $+ D- ** 1 ' ** *$ +' *

Mass transport equations are combined with kinetic equations to calculate the cell voltage Anode and cathode over-potential

δ I Vcell = U oO2 − U oMeOH − η a + η c − m cell κ

Thermodynamic equilibrium potentials of oxygen reduction and methanol oxidation

ηa, ηc and Icell are dependent on

Ohmic drop across the membrane

concentration profile of methanol

1

&

Anode Backing Layer (ABL) B dN MeOH ,z

Differential mass balance Methanol flux (Fick’s Law of Diffusion) Governing Equation

dz

B N MeOH , z = − DB B d 2 c: MeOH ,z

dz Boundary Conditions:

z= : 0 z = zI

Analytical solution

=0

2

B dc MeOH ,z

dz

=0

B cMeOH = cb B cMeOH = c IB = K I c IA

B cMeOH =

K I c IA − cb

δB

z + cb

'

1

&

'

Membrane Layer (M) Differential mass balance

M dN MeOH ,z

dz

Methanol flux (diffusion and electro-osmotic drag ) Governing Equation

M N MeOH , z = − DM

M d 2: cMeOH ,z

dz Boundary Conditions:

Analytical solution

=0

2

M dc MeOH ,z

dz

=0

M A z = z II c M = c = K c MeOH II II II z = z III c M MeOH ≈ 0

M c MeOH = K II c IIA

δB + δA − z +1 δM

I + ξ MeOH cell F Electro-osmosis drag coefficient, number of methanol molecules dragged by hydrogen ion in the membrane

1

&

'

Anode Catalyst Layer (ACL) Differential mass balance

A dN MeOH ,z

dz

r j = MeOH = − M MeOH 6F

Homogenous reaction Volumetric current density (A/cm3)

j = aI 0MeOH , ref

Methanol flux (Fick’s Law of Diffusion) Governing Equation

Boundary Conditions

A kcMeOH

A cMeOH + λeα Aη A F / RT

:

A N MeOH , z = −DA

DA

M d 2 c MeOH ,z

dz 2

=

j 6F

z = zI

A cMeOH = c IA

z = z II

A cMeOH = c IIA

eα Aη A F / RT

A dc MeOH ,z

dz

1

&

'

Anode Catalyst Layer (ACL) A Analytical solution cMeOH =

I cell z 2 + C1z + C2 12 Fδ A D A A A I cell δ B (δ B + δ A ) A (c II − c I )δ B + C2 = c I − δA 12 Fδ A D A A B N MeOH = N MeOH , z ,z A M N MeOH = N MeOH , z ,z

c IIA − c IA I cell (2δ B + δ A ) − C1 = δA 12 Fδ A D A Jump mass balance at interface of ACL

c IA =

c IIA =

z = z II

I cell δ B : I δ ) + δ M D A DB cb − (1 + 6ξ MeOH ) cell B 12 F 6F DB K I (δ A DM K II + δ M D A ) + δ B D A DM K II I I D A DB cb − δ A DB K I (1 + 12ξ MeOH ) cell − δ B D A (1 + 6ξ MeOH ) cell 2F 6F DB K I (δ A DM K II + δ M D A ) + δ B D A DM K II

δ A DM K II ( DB cb −

δM

z = z: I

' Cell current density

I cell =

δ B +δ A

δ B +δ A

δB

δB

j dz =

aI 0MeOH , ref

A kcMeOH

A cMeOH + λeα Aη A F / RT

eα Aη A F / RT dz

Obtain ηa for given value of Icell

Cathode Oxygen reduction

I cell + I leakage =

I 0O, 2ref

co 2 co 2 , ref

M eα cη c F / RT I leakage = 6 FN MeOH ,z

Obtain ηc for given value of Icell

)

+-

# $ # #

$$

'

+

3 #

- $+*$ <+ @# #

*

+# ** ? $ # #

$$

' *

+<+@

$$

' *

+

*

* <+ ** '$ $$ * *- ' @ # - ' * ' ' # +' +$ 1+ + D- ' +- + > 5 ' ' # +' + + * + +1 - # $' +# # - $+ # **< #@ $$ * # + .* ' '< +. *1 ' ' # +' +# + * ' ' +# ** ? 1 ' '<

Related Documents


More Documents from ""