Mathematical Formula

  • Uploaded by: Shahrul Nizam
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Mathematical Formula as PDF for free.

More details

  • Words: 2,301
  • Pages: 7
MATHEMATICAL FORMULA Quadratic Formula • The roots of the quadratic equation ax 2 + bx + c = 0 are

x1 , x 2 =

− b ± b 2 − 4ac 2a

Trigonometric Identities 1. sin (− x ) = − sin x 2. cos(− x ) = cos x sin x 3. tan x = cos x 1 4. cot x = tan x 1 5. csc x = sin x 1 6. sec x = cos x 7. sin x ± 90 o = ± cos x 8. cos x ± 90 o = m sin x 9. sin x ± 180 o = − sin x 10. cos x ± 180 o = − cos x 11. cos 2 x + sin 2 x = 1 12. 1 + tan 2 x = sec 2 x 13. cot 2 x + 1 = csc 2 x 14. sin( x ± y ) = sin x cos y ± cos x sin y 15. cos( x ± y ) = cos x cos y m sin x sin y tan x ± tan y 16. tan ( x ± y ) = 1 m tan x tan y 17. sin 2 x = 2 sin x cos x 18. cos 2 x = cos 2 x − sin 2 x = 1 − 2 sin 2 x = 2 cos 2 x − 1 2 tan x 19. tan 2 x = 1 − tan 2 x 1 20. sin 2 x = (1 − cos 2 x ) 2 1 21. cos 2 x = (1 + cos 2 x ) 2 1 22. sin x sin y = [cos( x − y ) − cos( x + y )] 2 1 23. cos x cos y = [cos( x − y ) + cos(x + y )] 2 1 24. sin x cos y = [sin ( x − y ) + sin ( x + y )] 2

( ( ( (

) ) ) )

⎛xm y⎞ ⎛x± y⎞ 25. sin x ± sin y = 2 cos⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛x+ y⎞ ⎛x− y⎞ 26. cos x + cos y = 2 cos⎜ ⎟ cos⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛x+ y⎞ ⎛x− y⎞ 27. cos x − cos y = 2 sin ⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ 28. e ± jx = cos x ± j sin x ; Euler’s Theorem

e jx + e − jx 2 jx e − e − jx 30. sin x = 2j A cos x ± B sin x = R cos( x m θ ) 31. B R = A 2 + B 2 , θ = tan −1 A A cos x ± B sin x = R sin (x ± θ ) 32. A R = A 2 + B 2 , θ = tan −1 B a b b 33. (law of sinus) = = sin A sin B sin C 34. a 2 = b 2 + c 2 − 2bc cos A (law of cosinus) 1 tan ( A − B ) a−b 2 = 35. (law of tangents) 1 a+b tan ( A + B ) 2 29. cos x =

Values of cosine, sine and exponential functions cos nπ = (− 1) sin nπ = 0 cos 2nπ = 1 sin 2nπ = 0 n nπ ⎧⎪(− 1) 2 ; n = even 5. cos =⎨ 2 ⎪⎩ 0 ; n = odd

1. 2. 3. 4.

n

n −1 nπ ⎧⎪(− 1) 2 ; n = odd =⎨ 2 ⎪⎩ 0 ; n = even n 7. e jnπ = (− 1) 8. e j 2 nπ = 1 n ⎧ nπ j ⎪ (− 1) 2 ; n = even 2 9. e =⎨ n −1 ⎪⎩ j (− 1) 2 ; n = odd

6. sin

Hyperbolic Functions 1 x (e − e − x ) 2 1 cosh x = (e x + e − x ) 2 sinh x tanh x = cosh x 1 coth x = tanh x 1 csc hx = sinh x 1 sec hx = cosh x sinh(x ± y ) = sinh x cosh y ± cosh x sinh y cosh( x ± y ) = cosh x cosh y ± sinh x sinh y

1. sinh x = 2. 3. 4. 5. 6. 7. 8.

Differentiation

1. 2. 3.

4. 5. 6. 7. 8. 9. 10. 11. 12.

d (au (x )) = a du (x ) dx dx d ( f (x ))n = n f ′(x ) ( f (x ))n −1 dx d (u (x )v(x )) = u dv(x ) + v du (x ) dx dx dx du ( x ) dv( x ) v −u d ⎛ u (x ) ⎞ dx dx ⎜ ⎟= dx ⎜⎝ v( x ) ⎟⎠ v2 d f (x) ( a ) = a f ( x ) f ′( x ) ln a dx d f (x) (e ) = e f ( x ) f ′(x ) dx d (ln f (x )) = 1 f ′(x ) dx f (x ) d (sin f (x )) = f ′(x ) cos f (x ) dx d (cos f (x )) = − f ′(x ) sin f (x ) dx d (tan f (x )) = f ′(x ) sec 2 f (x ) dx d (csc f (x )) = − f ′(x ) csc f (x ) cot f (x ) dx d (sec f (x )) = f ′(x ) sec f (x ) tan f (x ) dx

d (cot f (x )) = − f ′(x ) csc 2 f (x ) dx d f ′( x ) sin −1 f ( x ) = 14. 2 dx 1 − [ f ( x )]

13.

(

)

d f ′( x ) cos −1 f ( x ) = − 2 dx 1 − [ f ( x )] d f ′(x ) 16. tan −1 f ( x )) = ( 2 dx 1 + [ f ( x )] d f ′( x ) 17. csc −1 f ( x )) = − ( 2 dx f ( x ) [ f ( x )] − 1

(

15.

)

d f ′( x ) sec −1 f ( x ) = 2 dx f ( x ) [ f ( x )] − 1 d f ′( x ) 19. cot −1 f ( x ) = − 2 dx 1 + [ f ( x )]

18.

(

)

(

)

Indefinite Integration

1. 2.

∫ a dx = ax + c ∫ u (x ) dv = u (x )v(x ) − ∫ v(u ) du ; Integration by parts

3.

n ∫ x dx =

4.

∫x

5.

x ∫ a dx =

−1

x n +1 + c , n ≠ −1 n +1

dx = ln x + c ax +c ln a

∫ e dx = e + c 7. ∫ ln x dx = x ln x − x + c 8. ∫ sin x dx = − cos x + c 9. ∫ cos x dx = sin x + c 10. ∫ tan x dx = − ln (cos x ) + c 11. ∫ csc x dx = ln (csc x − cot x ) + c 12. ∫ sec x dx = ln (sec x + tan x ) + c 13. ∫ cot x dx = ln (sin x ) + c 14. ∫ sin x dx =x sin x + 1 − x + c 15. ∫ cos x dx =x cos x − 1 − x + c 1 16. ∫ tan x dx =x tan x − ln (1 + x ) + c 2 6.

x

x

−1

−1

−1

−1

−1

−1

2

2

2

⎛ 1 ⎞ 17. ∫ csc −1 x dx =x csc −1 x + ln⎜⎜ x + x 1 − 2 ⎟⎟ + c x ⎠ ⎝ ⎛ 1 ⎞ 18. ∫ sec −1 x dx =x sec −1 x − ln⎜⎜ x + x 1 − 2 ⎟⎟ + c x ⎠ ⎝ 1 19. ∫ cot −1 x dx =x tan −1 x + ln (1 + x 2 ) + c 2 sin(a − b) x sin(a + b) x 20. ∫ sin ax sin bx dx = − +c , a ≠b 2(a − b) 2(a + b) sin(a − b) x sin(a + b) x + +c , a ≠b 21. ∫ cos ax cos bx dx = 2(a − b) 2(a + b) cos(a − b) x cos(a + b) x − +c , a ≠b 22. ∫ sin ax cos bx dx = − 2(a − b) 2( a + b ) x sin 2ax 23. ∫ sin 2 ax dx = − +c 2 4a x sin 2ax 24. ∫ cos 2 ax dx = + +c 2 4a 25. ∫ x m sin x dx = − x m cos x + m ∫ x m −1 cos x dx

26.

∫x

m

cos x dx = x m sin x − m ∫ x m −1 sin x dx

x m e ax m m −1 ax − ∫ x e dx a a ax ae sin bx − be ax cos bx +c 28. ∫ e ax sin bx dx = a2 + b2 ae ax cos bx + be ax sin bx ax 29. ∫ e cos bx dx = +c a2 + b2 27.

m ax ∫ x e dx =

Definite Integration 2π

1.

∫ sin ax dx = 0 0



2.

∫ cos ax dx = 0 0

π

3.

∫ sin

2

ax dx =

0

π

4.

∫ cos 0

2

ax dx =

π 2

π 2

⎧ 0 ; m≠n ⎪ mx nx dx = sin sin ⎨1 π ; m = n ∫0 ⎪⎩ 2 π ⎧ 0 ; m≠n ⎪ 6. ∫ cos mx cos nx dx = ⎨ 1 0 ⎪⎩ 2 π ; m = n π

5.

⎧ 0 ; m + n = even ⎪ = sin mx cos nx dx ⎨ 2m ∫0 ⎪⎩ m 2 − n 2 ; m + n = odd

π

7.

⎧π ; a>0 ⎪ ∞ ⎪ 2 sin ax 8. ∫ dx = ⎨ 0 ; a = 0 x 0 ⎪ π ; a<0 ⎪− ⎩ 2 ∞

9.

∫a 0

2

a π dx = ; a>0 2 2 +x



10. ∫ e − ax sin bx dx = 0



11. ∫ e − ax cos bx dx = 0

b ; a>0 a + b2 2

a ; a>0 a + b2 2

L’Hopital Rule

If f (0) = h(0) = 0 , then lim f ( x ) lim f ′( x ) = x → 0 h( x ) x → 0 h ′( x )

Limit x

lim ⎛ 1⎞ ⎜1 + ⎟ = 2.7182818284 590452354 x→∞ ⎝ x⎠ lim sin( x) 2. =1 x→0 x

1. e =

Complex Number

z = x + jy z = r/θ z = re jθ

Rectangular form Polar form Exponential form

x = r cos θ , y = r sin θ

r=

x 2 + y 2 , θ = tan −1

y x

Power Series

Taylor Series f (x + a ) = f (a ) + f ′(a )x + Maclaurin’s Series f (x ) = f (0) + f ′(0)x + Binomial Series

(1 + x )n

= 1 + nx +

f ′′(a ) 2 f ′′′(a ) 3 f n (a ) n x + x + ...... x n! 2! 3!

f ′′(0 ) 2 f ′′′(0) 3 f n (0 ) n x + x + ...... x n! 2! 3!

n(n − 1) 2 n(n − 1)(n − 2 ) 3 x + x + ..... 2! 3!

Standard Series 1 3 1 5 1 7 1 9 x + x − x + x 3! 5! 7! 9! 1 1 1 1 cos x = 1 − x 2 + x 4 − x 6 + x 8 2! 4! 6! 8! 2 3 16 5 272 7 7936 9 tan x = x + x + x + x + x 3! 5! 7! 9! 1 1 1 3 2 5 1 2 cot x = − x − x − x − x7 − x9 x 3 45 945 4725 93555 1 1 7 3 31 5 127 73 csc x = + x + x + x + x7 + x9 x 6 360 15120 604800 3421440 1 2 5 4 61 6 277 8 sec x = 1 + x + x + x + x 2 24 720 8064 1 1 1 1 1 1 1 1 ln (1 + x ) = x − x 2 + x 3 − x 4 + x 5 − x 6 + x 7 − x 8 + x 9 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 e x = 1 + x + x 2 + x3 + x 4 + x5 + x6 + x7 + x8 + x9 2! 3! 4! 5! 6! 7! 8! 9!

1. sin x = x − 2. 3. 4. 5. 6. 7. 8.

Related Documents

Mathematical Formula
April 2020 19
Formula
May 2020 45
Formula
April 2020 39
Formula
May 2020 38
Formula
November 2019 47
Formula
November 2019 52

More Documents from "Anonymous 0U9j6BLllB"