Math - Rotational Conics

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Math - Rotational Conics as PDF for free.

More details

  • Words: 377
  • Pages: 3
ROTATIONAL CONICS

Given that:

Therefore, x = r cosθ = r cos(θ-α)

and y = r sinθ and

= r sin(θ-α)

Using the General Addition Formulas1, 2, we have: = x cosα + y sinα = y cosα – x sinα

and

x=

cosα -

sinα

Rotation Transformation

y=

sinα +

cosα

Equations

To get the angle of rotation of the plane in which the xy coefficient disappears, we equate the coefficients of the transformed general equation to zero. We get3: cot2α = A-C B

Almira xD

To know the graph of the tranformed equation beforehand, we make use of the discriminant. Take note that4: 2

- 4Ā = B2 - 4AC

And so, If Ā > 0, then it is an ellipse, with B2 – 4AC < 0 Ā = 0, either Ā=0 or =0, then it is a parabola, with B2 – 4AC = 0 Ā < 0, then it is a hyperbola, with B2 – 4AC > 0

PROVING 1

2

3

= r cos(θ-α)

= r sin(θ-α)

= r (cosθcosα + sinθsinα)

= r (sinθcosα - cosθsinα)

= (r cosθ)(cosα) + (sinθ)(r sinα)

= (r sinθ)(cosα) – (r cosθ)(sinα)

= x cosα + y sinα

= y cosα – x sinα

x = r cosθ

y = r sinθ

= r ( (cosα)(cos(θ-α)) - (sinα)(sin(θ-α)) )

= r ( (sinα)(cos(θ-α)) + (cosα)(sin(θ-α)) )

= (r (cos(θ-α)))(cosα) – (r (sin(θ-α)))(sinα)

= (r (cos(θ-α)))(sinα) + (r (sin(θ-α)))(cosα)

=

=

cosα -

sinα

Ax2 = Acos2α

2

– 2Asinαcosα

Bxy=Bsinαcosα( Cy2 = Csin2α

2

2

-

2

)+

+ 2Csinαcosα

+ Asin2α

2

B(cos2α-sin2α) + Ccos2α

2

sinα +

cosα

0 = B(cos2α - sin2α) + (C-A)(2sinαcosα) = Bcos2α + (C-A)(sin2α) Bcos2α = (A-C)(sin2α) cos2α/sin2α = (A-C)/B cot2α = (A-C)/B

Almira xD

4

From the transformation of general equation (above), Ā = Acos2α + Bsinαcosα + Csin2 α

= Asin2α - Bsinαcosα + Ccos2α

= B(cos2α - sin2α) + (C-A)(2sinαcosα)

Then, B2-4AC

2

- 4Ā

(B(cos2α - sin2α) + (C-A)(2sinαcosα))2 – 4(Acos2α + Bsinαcosα + Csin2α) (Asin2α - Bsinαcosα + Ccos2α) B2cos4α -2B2cos2αsin2α + B2sin4α +4(BC-AB)(sinαcos3α) +4(AB-BC)(sin3αcosα) + 4C2sin2αcos2α -8ACsin2αcos2α +4A2sin2αcos2α -4A2sin2 αcos2α +24B2sin2αcos2α -4C2sin2αcos2α -4AC(sin4α+cos4α) -4(BC-AB)(sinαcos3α) -4(AB-BC)(sin3αcosα) B2cos4α + B2sin4α -8ACsin2αcos2α +2B2sin2 αcos2α -4AC(sin4 α+cos4α) B2(cos4α+sin4α+2sin2αcos2α) – 4AC(2sin2αcos2α+ cos4α+sin4α) (B2-4AC)(cos2α+sin2α)2 (B2-4AC)(1)2 ≡ B2-4AC

Almira xD

Related Documents