Math For Engineering Sumary

  • Uploaded by: Mr. Kaison Nasawat
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Math For Engineering Sumary as PDF for free.

More details

  • Words: 8,815
  • Pages: 21


81,76 7KLVKDQGERRNXVHVWKHPHWULFV\VWHPRIXQLWV8OWLPDWHO\WKH)(H[DPLQDWLRQZLOOEHHQWLUHO\PHWULF+RZHYHUFXUUHQWO\VRPH RIWKHSUREOHPVXVHERWKPHWULFDQG86&XVWRPDU\6\VWHP 86&6 ,QWKH86&6V\VWHPRIXQLWVERWKIRUFHDQGPDVVDUH FDOOHGSRXQGV7KHUHIRUHRQHPXVWGLVWLQJXLVKWKHSRXQGIRUFH OEI IURPWKHSRXQGPDVV OEP  7KHSRXQGIRUFHLVWKDWIRUFHZKLFKDFFHOHUDWHVRQHSRXQGPDVVDWIWV7KXVOEI OEPIWV7KHH[SUHVVLRQ OEPIW OEIV LVGHVLJQDWHGDVJFDQGLVXVHGWRUHVROYHH[SUHVVLRQVLQYROYLQJERWKPDVVDQGIRUFHH[SUHVVHGDVSRXQGV )RULQVWDQFHLQZULWLQJ1HZWRQ VVHFRQGODZWKHHTXDWLRQZRXOGEHZULWWHQDV) PDJFZKHUH)LVLQOEIPLQOEPDQGDLV LQIWV 6LPLODUH[SUHVVLRQVH[LVWIRURWKHUTXDQWLWLHV.LQHWLF(QHUJ\.( PYJFZLWK.(LQ IWOEI 3RWHQWLDO(QHUJ\3( PJKJF ZLWK3(LQ IWOEI  )OXLG3UHVVXUHS ρJKJFZLWKSLQ OEIIW 6SHFLILF:HLJKW6: ρJJFLQ OEIIW 6KHDU6WUHVVτ  μJF GYG\  ZLWK VKHDU VWUHVV LQ OEIIW  ,Q DOO WKHVH H[DPSOHV JF VKRXOG EH UHJDUGHG DV D XQLW FRQYHUVLRQ IDFWRU ,W LV IUHTXHQWO\QRWZULWWHQH[SOLFLWO\LQHQJLQHHULQJHTXDWLRQV+RZHYHULWVXVHLVUHTXLUHGWRSURGXFHDFRQVLVWHQWVHWRIXQLWV 1RWHWKDWWKHFRQYHUVLRQIDFWRUJF>OEPIW OEIV @VKRXOGQRWEHFRQIXVHGZLWKWKHORFDODFFHOHUDWLRQRIJUDYLW\JZKLFKKDV GLIIHUHQWXQLWV PV DQGPD\EHHLWKHULWVVWDQGDUGYDOXH PV RUVRPHRWKHUORFDOYDOXH ,IWKHSUREOHPLVSUHVHQWHGLQ86&6XQLWVLWPD\EHQHFHVVDU\WRXVHWKHFRQVWDQWJFLQWKHHTXDWLRQWRKDYHDFRQVLVWHQWVHWRI XQLWV  0XOWLSOH

0(75,&35(),;(6 3UHIL[

± ± ± ± ± ± ± ±        

DWWR IHPWR SLFR QDQR PLFUR PLOOL FHQWL GHFL GHND KHFWR NLOR PHJD JLJD WHUD SHWD H[D

&20021/<86('(48,9$/(176

6\PERO D I S Q

μ P F G GD K N 0 * 7 3 (

JDOORQRIZDWHUZHLJKV FXELFIRRWRIZDWHUZHLJKV FXELFLQFKRIPHUFXU\ZHLJKV

OEI OEI OEI

7KHPDVVRIRQHFXELFPHWHURIZDWHULV NLORJUDPV  7(03(5$785(&219(56,216 ž)  ž&  ž&  ž)±  ž5 ž) . ž&

)81'$0(17$/&2167$176 4XDQWLW\  6\PERO 9DOXH HOHFWURQFKDUJH  H ×− )DUDGD\FRQVWDQW    JDVFRQVWDQW PHWULF 5  JDVFRQVWDQW PHWULF 5  JDVFRQVWDQW 86&6 5    5  JUDYLWDWLRQQHZWRQLDQFRQVWDQW  * ×± JUDYLWDWLRQQHZWRQLDQFRQVWDQW  * ×± JUDYLW\DFFHOHUDWLRQ VWDQGDUG  PHWULF J  JUDYLW\DFFHOHUDWLRQ VWDQGDUG  86&6 J   PRODUYROXPH LGHDOJDV 7 .S N3D 9P VSHHGRIOLJKWLQYDFXXP  F  

8QLWV & FRXORPEV  FRXORPEV PRO  - NPROÂ.  N3DÂP NPROÂ.  IWOEI OEPROHž5  /DWPPROH. P NJÂV  1ÂPNJ PV IWV /NPRO PV



0XOWLSO\

DFUH DPSHUHKU $KU  nQJVWU|P c  DWPRVSKHUH DWP  DWPVWG DWPVWG DWPVWG DWPVWG  EDU EDUUHOV±RLO %WX %WX %WX %WXKU %WXKU %WXKU  FDORULH JFDO  FDO FDO FDOVHF FHQWLPHWHU FP  FP FHQWLSRLVH F3  FHQWLVWRNHV F6W  FXELFIHHWVHFRQG FIV 

 

FXELFIRRW IW  FXELFPHWHUV P  HOHFWURQYROW H9   IRRW IW  IW IWSRXQG IWOEI  IWOEI IWOEI IWOEI IWOEIVHF  JDOORQ 86/LT  JDOORQ 86/LT  JDOORQVRIZDWHU

 

JDPPD γΓ  JDXVV JUDP J   KHFWDUH KHFWDUH KRUVHSRZHU KS  KS KS KS KSKU KSKU KSKU KSKU  LQFK LQ  LQRI+J LQRI+J LQRI+2 LQRI+2

&219(56,21)$&7256

%\

7R2EWDLQ

×±     ×  ×   ×±  ×±    ×± ×±   ×±   ×± 

×±    ±

×  ×±   ×±     ×± ×± ×±  ×       × ×       

VTXDUHIHHW IW  FRXORPE &  PHWHU P  FPPHUFXU\ +J  LQPHUFXU\ +J  OEILQDEV SVLD  IWZDWHU SDVFDO 3D   3D JDOORQV±RLO MRXOH -  NLORZDWWKU N:K  IWOEI KRUVHSRZHU KS  ZDWW :  IWOEIVHF  %WX KSKU MRXOH -  ZDWW :  IRRW IW  LQFK LQ  SDVFDOÂVHF 3DÂV  PVHF PV  PLOOLRQJDOORQVGD\ PJG  JDOORQ /LWHUV MRXOH -   FP PHWHU P  %WX NLORZDWWKU N:K  FDORULH JFDO  MRXOH -  KRUVHSRZHU KS   OLWHU /  IW SRXQGVRIZDWHU WHVOD 7  7 SRXQG OEP   VTXDUHPHWHUV P  DFUHV %WXPLQ ZDWW :  IWOEI PLQ IWOEI VHF %WX IWOEI MRXOH -  N:K  FHQWLPHWHU FP  DWP LQRI+2 OEILQ SVL  DWP

0XOWLSO\

%\

MRXOH -  - - -V  NLORJUDP NJ  NJI NLORPHWHU NP  NPKU NLORSDVFDO N3D  NLORZDWW N:  N: N: N:KRXU N:K  N:K N:K NLS .  .  OLWHU /  / / /VHFRQG /V  /V  PHWHU P  P

×±              

PVHFRQG PV  PLOH VWDWXWH  PLOH VWDWXWH  PLOHKRXU PSK  PSK PPRI+J PPRI+2  QHZWRQ 1  1ÂP 1ÂP  SDVFDO 3D  3D 3DÂVHF 3DÂV  SRXQG OEPDYGS  OEI OEIIW OEILQ SVL  SVL SVL SVL  UDGLDQ  VWRNHV  WKHUP  ZDWW :  : : ZHEHUP :EP   

    



×      ±     

×± ×±      ×±           π  ×±  ×   ×±    

7R2EWDLQ

%WX IWOEI QHZWRQÂP 1ÂP  ZDWW :   SRXQG OEP  QHZWRQ 1  IHHW IW  PSK OEILQ SVL  KRUVHSRZHU KS  %WXKU IWOEI VHF %WX KSKU MRXOH -  OEI QHZWRQ 1   LQ JDO 86/LT  P IWPLQ FIP  JDO 86 PLQ JSP   IHHW IW  \DUG IHHWPLQ IWPLQ  IHHW IW  NLORPHWHU NP  IWPLQ ISP  NPK DWP DWP  OEI IWOEI MRXOH -   DWPRVSKHUH DWP  QHZWRQP 1P  SRLVH 3  NLORJUDP NJ  1 1ÂP DWP IWRI+2 LQRI+J 3D  GHJUHH  PV  %WX  %WXKU KRUVHSRZHU KS  MRXOHVHF -V  JDXVV  



0$7+(0$7,&6 &DVH(OOLSVH •

675$,*+7/,1( 7KHJHQHUDOIRUPRIWKHHTXDWLRQLV $[%\& 



7KHVWDQGDUGIRUPRIWKHHTXDWLRQLV



\ P[E



ZKLFKLVDOVRNQRZQDVWKHVORSHLQWHUFHSWIRUP



7KHSRLQWVORSHIRUPLV

\±\ P [±[ 



P  \±\  [±[ 



*LYHQWZRSRLQWVVORSH

7KHDQJOHEHWZHHQOLQHVZLWKVORSHVPDQGPLV

([ − K) + ( \ − N )

α DUFWDQ> P±P  PÂP @



7ZROLQHVDUHSHUSHQGLFXODULI

D

P ±P

G=

=  &HQWHU DW (K  N )

(

)

H =  − E D = F  D

(FFHQWULFLW\

( \ − \ ) + ([ − [ ) 



E = D  − H  )RFXV (± DH )

48$'5$7,&(48$7,21 D[E[F  5RRWV =

E

LV WKH VWDQGDUG IRUP RI WKH HTXDWLRQ :KHQ K = N = 

7KHGLVWDQFHEHWZHHQWZRSRLQWVLV 

H

'LUHFWUL[ [ = ± D  H

&DVH+\SHUEROD



− E ± E − DF  D

H!

•  

&21,&6(&7,216 













 







([ − K ) − ( \ − N )



D



E

=  &HQWHU DW (K  N )

LV WKH VWDQGDUG IRUP RI WKH HTXDWLRQ :KHQ K = N = 

H HFFHQWULFLW\ FRVθ FRVφ  >1RWH ;′ DQG <′ LQ WKH IROORZLQJ FDVHV DUH WUDQVODWHG D[HV@

(FFHQWULFLW\

&DVH3DUDEROD • 

E = D H  − 

H 

(

)

H =  + E D = F  D



)RFXV (± DH  ) 'LUHFWUL[ [ = ± D  H





     \±N  S [±K &HQWHUDW KN  LV WKH VWDQGDUG IRUP RI WKH HTXDWLRQ :KHQ K  N   )RFXV S  'LUHFWUL[[ ±S 

©%ULQN5:$)LUVW
0$7+(0$7,&6 FRQWLQXHG 

&DVH&LUFOH H  [±K  \±N  U

K ±DN ±E 

&HQWHUDW KN 

U = D  + E − F 

LVWKHJHQHUDOIRUPRIWKHHTXDWLRQZLWKUDGLXV

([ − K ) + ( \ − N )

U=

,IDE±FLVSRVLWLYHDFLUFOHFHQWHU ±D±E  ,IDE±FHTXDOV]HURDSRLQWDW ±D±E 



,IDE±FLVQHJDWLYHORFXVLVLPDJLQDU\

• 

48$'5,&685)$&( 63+(5(  7KHJHQHUDOIRUPRIWKHHTXDWLRQLV



[±K  \±N  ]±P  U

 

ZLWKFHQWHUDW KNP 



,Q D WKUHHGLPHQVLRQDO VSDFH WKH GLVWDQFH EHWZHHQ WZR SRLQWVLV

 

([ − [ ) + ( \  − \ ) + (]  − ] )

G=

/HQJWKRIWKHWDQJHQWIURPDSRLQW8VLQJWKHJHQHUDOIRUP RIWKHHTXDWLRQRIDFLUFOHWKHOHQJWKRIWKHWDQJHQWLVIRXQG IURP



/2*$5,7+06 7KHORJDULWKPRI[WRWKH%DVHELVGHILQHGE\

W  [′±K  \′±N ±U

ORJE [  FZKHUH

EF [

6SHFLDOGHILQLWLRQVIRUE HRUE DUH

E\ VXEVWLWXWLQJ WKH FRRUGLQDWHV RI D SRLQW 3 [′\′  DQG WKH FRRUGLQDWHVRIWKHFHQWHURIWKHFLUFOHLQWRWKHHTXDWLRQDQG FRPSXWLQJ

OQ[%DVH

H

ORJ[%DVH 



7RFKDQJHIURPRQH%DVHWRDQRWKHU

•

ORJE[  ORJD[  ORJDE 



HJOQ[  ORJ[  ORJH   ORJ[ 



,GHQWLWLHV  ORJEEQ

 

F

  

Q

ORJ[ 

FORJ[[F DQWLORJ FORJ[ 

ORJ[\

ORJ[ORJ\

ORJEE

ORJ 

ORJ[\ ORJ[±ORJ\

&RQLF6HFWLRQ(TXDWLRQ 7KHJHQHUDOIRUPRIWKHFRQLFVHFWLRQHTXDWLRQLV

 • %ULQN 5: $ )LUVW
$[%[\&\'[(\)  ZKHUHQRWERWK$DQG&DUH]HUR 

,I% ±$&DQHOOLSVHLVGHILQHG ,I%±$&!DK\SHUERODLVGHILQHG ,I%±$& WKHFRQLFLVDSDUDEROD ,I$ &DQG% DFLUFOHLVGHILQHG ,I$ % & DVWUDLJKWOLQHLVGHILQHG [\D[E\F  LV WKH QRUPDO IRUP RI WKH FRQLF VHFWLRQ HTXDWLRQ LI WKDW FRQLF VHFWLRQ KDV D SULQFLSDO D[LV SDUDOOHO WR D FRRUGLQDWH D[LV



0$7+(0$7,&6 FRQWLQXHG 

75,*2120(75< 7ULJRQRPHWULFIXQFWLRQVDUHGHILQHGXVLQJDULJKWWULDQJOH

VLQαVLQβ FRVαFRVβ

VLQθ \UFRVθ [U

VLQαFRVβ   >VLQ αβ VLQ α±β @ VLQαVLQβ VLQ  αβ FRV  α±β 

WDQθ \[FRWθ [\

  >FRV α±β ±FRV αβ @   >FRV α±β FRV αβ @

VLQα±VLQβ FRV  αβ VLQ  α±β  FRVαFRVβ FRV  αβ FRV  α±β 

FVFθ U\VHFθ U[ 

FRVα±FRVβ ±VLQ  αβ VLQ  α±β 

 



&203/(;180%(56

D E F = =  VLQ $ VLQ % VLQ &



/DZRI6LQHV



/DZRI&RVLQHV



D EF±EFFRV$



E DF±DFFRV%



F DE±DEFRV&

'HILQLWLRQL  −   DLE  FLG   DF L EG  DLE ± FLG   D±F L E±G  DLE FLG   DF±EG L DGEF 

,GHQWLWLHV

D + LE (D + LE )(F − LG ) (DF + EG ) + L(EF − DG )  = = F + LG (F + LG )(F − LG ) F + G 

FVFθ VLQθ

DLE  D±LE  D

VHFθ FRVθ

DLE ± D±LE  LE

WDQθ VLQθFRVθ

DLE D±LE  DE

FRWθ WDQθ VLQ θFRV θ 

3RODU&RRUGLQDWHV [ UFRVθ\ UVLQθθ DUFWDQ \[ 

WDQθ VHFθ

U ⏐[L\⏐  [  + \  









FRW θ FVF θ

[L\ U FRVθLVLQθ  UHLθ

VLQ αβ  VLQαFRVβFRVαVLQβ

>U FRVθLVLQθ @>U FRVθLVLQθ @ 

FRV αβ  FRVαFRVβ±VLQαVLQβ VLQα FRVα



UU>FRV θθ LVLQ θθ @



VLQαFRVα

Q





[L\ 



FRV α±VLQ α ±VLQ α FRV α±

UQ FRVQθLVLQQθ 



WDQα

 WDQα  ±WDQ α 

FRWα

 FRWα±  FRWα 

U (FRV θ + L VLQ θ ) U =  [FRV(θ − θ  ) + L VLQ (θ − θ  )]  U (FRV θ  + L VLQ θ  ) U

WDQ αβ   WDQαWDQβ  ±WDQαWDQβ 

(XOHU V,GHQWLW\ HLθ FRVθLVLQθ

FRW αβ   FRWαFRWβ±  FRWαFRWβ  VLQ α±β  VLQαFRVβ±FRVαVLQβ

H−Lθ FRVθ±LVLQθ

FRV α±β  FRVαFRVβVLQαVLQβ

FRV θ =

WDQ α±β   WDQα±WDQβ  WDQαWDQβ  FRW α±β   FRWαFRWβ  FRWβ±FRWα  VLQ α   ±

( − FRV α )  

FRV α   ±

( + FRV α )  

WDQ α   ±

( − FRV α ) ( + FRV α ) 

FRW α   ±

( + FRV α ) ( − FRV α ) 

>U FRVθLVLQθ @Q

HLθ + H −Lθ HLθ − H −Lθ  VLQ θ =   L

5RRWV ,INLVDQ\SRVLWLYHLQWHJHUDQ\FRPSOH[QXPEHU RWKHUWKDQ ]HUR KDVNGLVWLQFWURRWV7KHNURRWVRIU FRVθLVLQθ  FDQEHIRXQGE\VXEVWLWXWLQJVXFFHVVLYHO\Q … N± LQWKHIRUPXOD é æθ æθ o ö o öù ÷ + L VLQ ç + Q ÷ú  Z = N U êFRVçç + Q çN N ÷ø N ÷øûú è ëê è N



 

0$7+(0$7,&6 FRQWLQXHG 

)RUDWKLUGRUGHUGHWHUPLQDQW

0$75,&(6 $PDWUL[LVDQRUGHUHGUHFWDQJXODUDUUD\RIQXPEHUVZLWKP URZV DQG Q FROXPQV 7KH HOHPHQW DLM UHIHUV WR URZ L DQG FROXPQM

D D D E E E = DE F + D E F + DEF − DE F − DEF − DEF F F F

0XOWLSOLFDWLRQ ,I $  DLN  LV DQ P × Q PDWUL[ DQG %  ENM  LV DQ Q × V PDWUL[WKHPDWUL[SURGXFW$%LVDQP×VPDWUL[ æQ ö & = FL M = ç å DLO EOM ÷  è O = ø ZKHUHQLVWKHFRPPRQLQWHJHUUHSUHVHQWLQJWKHQXPEHURI FROXPQVRI$DQGWKHQXPEHURIURZVRI% ODQGN  …Q 

 9(&7256 

( )

j

  

$GGLWLRQ ,I$  DLM DQG%  ELM DUHWZRPDWULFHVRIWKHVDPHVL]H P×QWKHVXP$%LVWKHP×QPDWUL[&  FLM ZKHUH FLM DLMELM

k



i

 

,GHQWLW\ 7KHPDWUL[,  DLM LVDVTXDUHQ×QLGHQWLW\PDWUL[ZKHUH DLL IRUL …QDQGDLM IRUL≠ ≠M



7UDQVSRVH 7KHPDWUL[%LVWKHWUDQVSRVHRIWKHPDWUL[$LIHDFKHQWU\ EMLLQ%LVWKHVDPHDVWKHHQWU\DLMLQ$DQGFRQYHUVHO\,Q HTXDWLRQIRUPWKHWUDQVSRVHLV% $7



   $ D[LD\MD]N

$GGLWLRQDQGVXEWUDFWLRQ

,QYHUVH 7KHLQYHUVH%RIDVTXDUHQ×QPDWUL[$LV DGM ( $) % = $ − =  ZKHUH  $

$%  D[E[ L D\E\ M D]E] N $±%  D[±E[ L D\±E\ M D]±E] N

7KH GRW SURGXFW LV D VFDODU SURGXFW DQG UHSUHVHQWV WKH SURMHFWLRQRI%RQWR$WLPHV⏐$⏐,WLVJLYHQE\

DGM $   DGMRLQWRI$ REWDLQHGE\UHSODFLQJ$7HOHPHQWV ZLWKWKHLUFRIDFWRUVVHH'(7(50,1$176 DQG



⏐$⏐  GHWHUPLQDQWRI$

$Â%

D[E[D\E\D]E]



⏐$⏐⏐%⏐FRVθ %Â$

7KH FURVV SURGXFW LV D YHFWRU SURGXFW RI PDJQLWXGH ⏐%⏐⏐$⏐ VLQ θ ZKLFK LV SHUSHQGLFXODU WR WKH SODQH FRQWDLQLQJ$DQG%7KHSURGXFWLV

'(7(50,1$176 $GHWHUPLQDQWRIRUGHUQFRQVLVWVRIQQXPEHUVFDOOHGWKH HOHPHQWV RI WKH GHWHUPLQDQW DUUDQJHG LQ Q URZV DQG Q FROXPQV DQG HQFORVHG E\ WZR YHUWLFDO OLQHV ,Q DQ\ GHWHUPLQDQW WKH PLQRU RI D JLYHQ HOHPHQW LV WKH GHWHUPLQDQWWKDWUHPDLQVDIWHUDOORIWKHHOHPHQWVDUHVWUXFN RXWWKDWOLHLQWKHVDPHURZDQGLQWKHVDPHFROXPQDVWKH JLYHQ HOHPHQW &RQVLGHU DQ HOHPHQW ZKLFK OLHV LQ WKH KWK FROXPQDQGWKHNWKURZ7KHFRIDFWRURIWKLVHOHPHQWLVWKH YDOXHRIWKHPLQRURIWKHHOHPHQW LIKNLVHYHQ DQGLWLV WKHQHJDWLYHRIWKHYDOXHRIWKHPLQRURIWKHHOHPHQW LIK NLVRGG  ,IQLVJUHDWHUWKDQWKHYDOXHRIDGHWHUPLQDQWRIRUGHUQ LV WKH VXP RI WKH Q SURGXFWV IRUPHG E\ PXOWLSO\LQJ HDFK HOHPHQWRIVRPHVSHFLILHGURZ RUFROXPQ E\LWVFRIDFWRU 7KLV VXP LV FDOOHG WKH H[SDQVLRQ RI WKH GHWHUPLQDQW >DFFRUGLQJ WR WKH HOHPHQWV RI WKH VSHFLILHG URZ RU FROXPQ @)RUDVHFRQGRUGHUGHWHUPLQDQW D D = DE − DE  E E

L

M N

$ × % = D [ D \ D ] = −% × $  E[ E \ E]

      7KHVHQVHRI$×%LVGHWHUPLQHGE\WKHULJKWKDQGUXOH $×% ⏐$⏐⏐%⏐QVLQθZKHUH Q XQLWYHFWRUSHUSHQGLFXODUWRWKHSODQHRI$DQG% 

0$7+(0$7,&6 FRQWLQXHG 

*UDGLHQW'LYHUJHQFHDQG&XUO

*HRPHWULF3URJUHVVLRQ 7R GHWHUPLQH ZKHWKHU D JLYHQ ILQLWH VHTXHQFH LV D JHRPHWULFSURJUHVVLRQ *3 GLYLGHHDFKQXPEHUDIWHUWKH ILUVWE\WKHSUHFHGLQJQXPEHU,IWKHTXRWLHQWVDUHHTXDOWKH VHULHVLVJHRPHWULF

æ ∂ ∂ ∂ ö ∇φ = çç L + M + N ÷÷φ ∂ [ \ ∂ ∂ ] ø è æ ∂ ∂ ∂ ö ∇ ⋅ 9 = çç L + M + N ÷÷ ⋅ 9 L + 9 M + 9N ∂\ ∂] ø è ∂[

(

)

æ ∂ ∂ ∂ ö ∇ × 9 = çç L + M + N ÷÷ × 9 L + 9 M + 9N ∂\ ∂] ø è ∂[

(



 7KHILUVWWHUPLVD  7KHFRPPRQUDWLRLVU

)

 7KHQXPEHURIWHUPVLVQ  7KHODVWRUQWKWHUPLVO

7KH/DSODFLDQRIDVFDODUIXQFWLRQφLV ∇ φ =

 7KHVXPRIQWHUPVLV6

∂ φ ∂ φ ∂ φ + +  ∂[  ∂\  ∂] 

O DUQ− ≠ 6 D ±UQ  ±U U≠

,GHQWLWLHV $Â% %Â$$Â %&  $Â%$Â&

6  D±UO  ±U U≠ ≠ OLPLW 6 Q = D ( − U ) U <  

$Â$ ⏐$⏐

Q →∞

LÂL MÂM NÂN 

$*3FRQYHUJHVLI⏐U⏐DQGLWGLYHUJHVLI⏐U⏐≥ ≥

LÂM MÂN NÂL 

3URSHUWLHVRI6HULHV

,I $Â% WKHQHLWKHU $  % RU $LVSHUSHQGLFXODU WR%

Q

å F = QF F = FRQVWDQW

L =

$×% ±%×$

Q

Q

$× %&   $×%  $×& 

L =

L =

%& ×$  %×$  &×$ 

Q

Q

Q

Q

L =

L =

L =

L =

å F[L = F å [L å ([L + \L − ]L ) = å [L + å \L − å ]L

L×L M×M N×N 

Q

[ =

N×L  M ±L×N

 $SRZHUVHULHVLQ[RULQ[±DZKLFKLVFRQYHUJHQWLQ WKH LQWHUYDO ±  [   RU ±  [ ± D    GHILQHV D IXQFWLRQ RI [ ZKLFK LV FRQWLQXRXV IRU DOO YDOXHV RI [ ZLWKLQWKHLQWHUYDODQGLVVDLGWRUHSUHVHQWWKHIXQFWLRQ LQWKDWLQWHUYDO

,I$×% WKHQHLWKHU$ % RU$LVSDUDOOHOWR% ∇  φ = ∇ ⋅ (∇ φ) = (∇ ⋅ ∇ )φ ∇ ⋅ (∇ × $ ) = 



 $SRZHUVHULHVPD\EHGLIIHUHQWLDWHGWHUPE\WHUPDQG WKH UHVXOWLQJ VHULHV KDV WKH VDPH LQWHUYDO RI FRQYHUJHQFH DV WKH RULJLQDO VHULHV H[FHSW SRVVLEO\ DW WKHHQGSRLQWVRIWKHLQWHUYDO 

∇ × (∇ × $) = ∇ (∇ ⋅ $) − ∇  $

352*5(66,216$1'6(5,(6

 $ SRZHU VHULHV PD\ EH LQWHJUDWHG WHUP E\ WHUP SURYLGHGWKHOLPLWVRILQWHJUDWLRQDUHZLWKLQWKHLQWHUYDO RIFRQYHUJHQFHRIWKHVHULHV

$ULWKPHWLF3URJUHVVLRQ 7RGHWHUPLQHZKHWKHUDJLYHQILQLWHVHTXHQFHRIQXPEHUVLV DQ DULWKPHWLF SURJUHVVLRQ VXEWUDFW HDFK QXPEHU IURP WKH IROORZLQJQXPEHU,IWKHGLIIHUHQFHVDUHHTXDOWKHVHULHVLV DULWKPHWLF

 7ZR SRZHU VHULHV PD\ EH DGGHG VXEWUDFWHG RU PXOWLSOLHG DQG WKH UHVXOWLQJ VHULHV LQ HDFK FDVH LV FRQYHUJHQWDWOHDVWLQWKHLQWHUYDOFRPPRQWRWKHWZR VHULHV

 7KHILUVWWHUPLVD

 8VLQJWKHSURFHVVRIORQJGLYLVLRQ DVIRUSRO\QRPLDOV  WZRSRZHUVHULHVPD\EHGLYLGHGRQHE\WKHRWKHU

 7KHFRPPRQGLIIHUHQFHLVG  7KHQXPEHURIWHUPVLVQ  7KHODVWRUQWKWHUPLVO  7KHVXPRIQWHUPVLV6 O

 D Q± G

6

 Q DO  Q>D Q± G@

)

 å[= Q+Q 

L×M  N ±M×LM×N L ±N×M

∇ × ∇φ = 

(





0$7+(0$7,&6 FRQWLQXHG 

7D\ORU V6HULHV

′′ I ′(D ) I ([ ) = I (D ) + ([ − D ) + I (D ) ([ − D )   +K+

I

(Q )

(D ) ([ − D )Q + K

3URSHUW\  /DZ RI &RPSRXQG RU -RLQW 3UREDELOLW\ ,IQHLWKHU3 $ QRU3 % LV]HUR

3 $%  3 $ 3 %_$  3 % 3 $|% ZKHUH



3 %|$  WKHSUREDELOLW\WKDW%RFFXUVJLYHQWKHIDFWWKDW$ KDVRFFXUUHGDQG

Q

LVFDOOHG7D\ORU VVHULHVDQGWKHIXQFWLRQI [ LVVDLGWREH H[SDQGHGDERXWWKHSRLQWDLQD7D\ORU VVHULHV

3 $|%  WKHSUREDELOLW\WKDW$RFFXUVJLYHQWKHIDFWWKDW% KDVRFFXUUHG

,ID WKH7D\ORU VVHULHVHTXDWLRQEHFRPHVD0DFODXULQ V VHULHV

,IHLWKHU3 $ RU3 % LV]HURWKHQ3 $%   3UREDELOLW\)XQFWLRQV $UDQGRPYDULDEOH[KDVDSUREDELOLW\DVVRFLDWHGZLWKHDFK RI LWV YDOXHV 7KH SUREDELOLW\ LV WHUPHG D GLVFUHWH SUREDELOLW\LI[FDQDVVXPHRQO\WKHGLVFUHWHYDOXHV

352%$%,/,7<$1'67$7,67,&6 3HUPXWDWLRQVDQG&RPELQDWLRQV $ SHUPXWDWLRQ LV D SDUWLFXODU VHTXHQFH RI D JLYHQ VHW RI REMHFWV$FRPELQDWLRQLVWKHVHWLWVHOIZLWKRXWUHIHUHQFHWR RUGHU

[ ;;…;L…;1 7KH GLVFUHWH SUREDELOLW\ RI WKH HYHQW ;  [L RFFXUULQJ LV GHILQHGDV3 ;L 

 7KH QXPEHU RI GLIIHUHQW SHUPXWDWLRQV RI Q GLVWLQFW REMHFWVWDNHQUDWDWLPHLV 3 (Q  U ) =

3UREDELOLW\'HQVLW\)XQFWLRQV ,I[LVFRQWLQXRXVWKHQWKHSUREDELOLW\GHQVLW\IXQFWLRQI [  LVGHILQHGVRWKDW

Q  (Q − U ) 

 ò[[ I ( [ )G[ WKHSUREDELOLW\WKDW[OLHVEHWZHHQ[DQG[ 7KHSUREDELOLW\LVGHWHUPLQHGE\GHILQLQJWKHHTXDWLRQIRU I [ DQGLQWHJUDWLQJEHWZHHQWKHYDOXHVRI[UHTXLUHG 

 7KH QXPEHU RI GLIIHUHQW FRPELQDWLRQV RI Q GLVWLQFW REMHFWVWDNHQUDWDWLPHLV & (Q  U ) =



3(Q  U ) Q  = U [U(Q − U )]

3UREDELOLW\'LVWULEXWLRQ)XQFWLRQV 7KH SUREDELOLW\ GLVWULEXWLRQ IXQFWLRQ ) ;Q  RI WKH GLVFUHWH SUREDELOLW\IXQFWLRQ3 ;L LVGHILQHGE\

 7KH QXPEHU RI GLIIHUHQW SHUPXWDWLRQV RI Q REMHFWV WDNHQ Q DW D WLPH JLYHQ WKDW QL DUH RI W\SH L ZKHUHL …NDQGΣQL QLV 3 (Q Q  Q K QN ) =

Q

) ( ; Q ) = å 3 ( ; N ) = 3( ; L ≤ ; Q )  N =

Q  QQ KQ N 

:KHQ[LVFRQWLQXRXVWKHSUREDELOLW\GLVWULEXWLRQIXQFWLRQ ) [ LVGHILQHGE\

/DZVRI3UREDELOLW\ 3URSHUW\*HQHUDO&KDUDFWHURI3UREDELOLW\

) ([ ) = ò−[∞ I (W )GW 

ZKLFKLPSOLHVWKDW) D LVWKHSUREDELOLW\WKDW[≤ ≤D

7KHSUREDELOLW\3 ( RIDQHYHQW(LVDUHDOQXPEHULQWKH UDQJHRIWR7KHSUREDELOLW\RIDQLPSRVVLEOHHYHQWLV DQGWKDWRIDQHYHQWFHUWDLQWRRFFXULV

7KHH[SHFWHGYDOXHJ [ RIDQ\IXQFWLRQLVGHILQHGDV

({J ([ )} = ò −[∞ J (W ) I (W )GW 

3URSHUW\/DZRI7RWDO3UREDELOLW\

3 $%  3 $ 3 % ±3 $% ZKHUH 3 $% 

 WKHSUREDELOLW\WKDWHLWKHU$RU%RFFXUDORQH RUWKDWERWKRFFXUWRJHWKHU

3 $ 

 WKHSUREDELOLW\WKDW$RFFXUV

3 % 

 WKHSUREDELOLW\WKDW%RFFXUVDQG

3 $% 

 WKH SUREDELOLW\ WKDW ERWK $ DQG % RFFXU VLPXOWDQHRXVO\

%LQRPLDO'LVWULEXWLRQ 3 [  LV WKH SUREDELOLW\ WKDW [ ZLOO RFFXU LQ Q WULDOV ,I S  SUREDELOLW\RIVXFFHVVDQGT SUREDELOLW\RIIDLOXUH ±S WKHQ 3 ([ ) = & (Q  [ ) S [ T Q − [ =

[

Q S [ T Q − [ ZKHUH [ (Q − [ ) 

…Q

& Q[  WKHQXPEHURIFRPELQDWLRQVDQG QS



SDUDPHWHUV

0$7+(0$7,&6 FRQWLQXHG 

7KHVWDQGDUGGHYLDWLRQRIDSRSXODWLRQLV

1RUPDO'LVWULEXWLRQ *DXVVLDQ'LVWULEXWLRQ  7KLVLVDXQLPRGDOGLVWULEXWLRQWKHPRGHEHLQJ [  μZLWK WZR SRLQWV RI LQIOHFWLRQ HDFK ORFDWHG DW D GLVWDQFH σ WR HLWKHU VLGH RI WKH PRGH  7KH DYHUDJHV RI Q REVHUYDWLRQV WHQG WR EHFRPH QRUPDOO\ GLVWULEXWHG DV Q LQFUHDVHV 7KH YDULDWH [ LV VDLG WR EH QRUPDOO\ GLVWULEXWHG LI LWV GHQVLW\ IXQFWLRQI [ LVJLYHQE\DQH[SUHVVLRQRIWKHIRUP I ([ ) =



H − ( [ −μ )



σ 

σ π μ WKHSRSXODWLRQPHDQ

σ=

Q

L =



H

é  ùQ V= ê úå ;L − ; ë Q − û L =

(

7KHJHRPHWULFPHDQ  Q ;  ;  ;  K ; Q 

 ZKHUH − ∞ ≤ [ ≤ ∞  

7KHPHGLDQLVGHILQHGDVWKHYDOXHRIWKHPLGGOHLWHPZKHQ WKHGDWDDUHUDQNRUGHUHGDQGWKHQXPEHURILWHPVLVRGG 7KH PHGLDQ LV WKH DYHUDJH RI WKH PLGGOH WZR LWHPV ZKHQ WKHUDQNRUGHUHGGDWDFRQVLVWVRIDQHYHQQXPEHURILWHPV 7KH PRGH RI D VHW RI GDWD LV WKH YDOXH WKDW RFFXUV ZLWK JUHDWHVWIUHTXHQF\

W'LVWULEXWLRQ 7KHYDULDWHWLVGHILQHGDVWKHTXRWLHQWRIWZRLQGHSHQGHQW YDULDWHV [ DQG U ZKHUH [ LV XQLW QRUPDO DQG U LV WKH URRW PHDQ VTXDUH RI Q RWKHU LQGHSHQGHQW XQLW QRUPDO YDULDWHV WKDW LV W [U7KHIROORZLQJLVWKHWGLVWULEXWLRQZLWKQGHJUHHVRI IUHHGRP

'LVSHUVLRQ0HDQ0HGLDQDQG0RGH9DOXHV ,I ; ; … ;Q UHSUHVHQW WKH YDOXHV RI Q LWHPV RU REVHUYDWLRQV WKH DULWKPHWLF PHDQ RI WKHVH LWHPV RU REVHUYDWLRQVGHQRWHGLVGHILQHGDV ; Q

; = ( Q )( ;  + ;  + K + ; Q ) = ( Q )å ; L 

I (W ) =

L =

; →μIRUVXIILFLHQWO\ODUJHYDOXHVRIQ

; Z   WKHZHLJKWHGDULWKPHWLFPHDQ

σ  = (  1 )>( ;  − μ ) + ( ;  − μ ) + K + ( ; 1 − μ ) @ 

)(

Q +) 



α = òW∞α Q I (W )GW 

$WDEOHVKRZLQJSUREDELOLW\DQGGHQVLW\IXQFWLRQVLV LQFOXGHG RQ SDJH  LQ WKH ,1'8675,$/ (1*,1((5,1*6(&7,21RIWKLVKDQGERRN

7KH YDULDQFHRIWKHREVHUYDWLRQVLVWKH DULWKPHWLFPHDQRI WKH VTXDUHG GHYLDWLRQV IURP WKH SRSXODWLRQ PHDQ ,Q V\PEROV;;…;QUHSUHVHQWWKHYDOXHVRIWKHQVDPSOH REVHUYDWLRQVRIDSRSXODWLRQRIVL]H1,IμLVWKHDULWKPHWLF PHDQRIWKHSRSXODWLRQWKH SRSXODWLRQYDULDQFHLVGHILQHG E\ 1

Γ(Q ) Qπ  + W Q

W−αQ ±WαQ7KHIXQFWLRQIRUαIROORZV

 WKHYDOXHVRIWKHREVHUYDWLRQVWREHDYHUDJHGDQG  WKHZHLJKWDSSOLHGWRWKH;LYDOXH

= (  1 )å ( ; L − μ )

(





$WDEOHDWWKHHQGRIWKLVVHFWLRQJLYHVWKHYDOXHVRIWαQIRU YDOXHVRIαDQGQ1RWHWKDWLQYLHZRIWKHV\PPHWU\RIWKH WGLVWULEXWLRQ

å ZL ; L ZKHUH å ZL



Γ [(Q + )] 

ZKHUH±∞≤W≤ ≤∞

7KHZHLJKWHGDULWKPHWLFPHDQLV



( Q)å ; L 

7KHURRWPHDQVTXDUHYDOXH 

) [  WKHDUHDXQGHUWKHFXUYHIURP±∞WR[ 5 [  WKHDUHDXQGHUWKHFXUYHIURP[WR∞DQG : [  WKHDUHDXQGHUWKHFXUYHEHWZHHQ±[DQG[

;L ZL

) 

7KHFRHIILFLHQWRIYDULDWLRQ &9 V ; 

$ XQLW QRUPDO GLVWULEXWLRQ WDEOH LV LQFOXGHG DW WKH HQG RI WKLV VHFWLRQ ,Q WKH WDEOH WKH IROORZLQJ QRWDWLRQV DUH XWLOL]HG

;Z =



)

7KHVDPSOHVWDQGDUGGHYLDWLRQLV

ZKHUH

:KHQ μ   DQG σ  σ   WKH GLVWULEXWLRQ LV FDOOHG D VWDQGDUGL]HGRUXQLWQRUPDOGLVWULEXWLRQ7KHQ I ([ ) =

(

V  = [ (Q − )]å ; L − ;

±∞≤[≤∞

− [ 



7KHVDPSOHYDULDQFHLV

σ WKHVWDQGDUGGHYLDWLRQRIWKHSRSXODWLRQDQG



( 1 )å ( ; L − μ )





L =



0$7+(0$7,&6 FRQWLQXHG 

*$00$)81&7,21 Γ (Q ) = òR∞ W Q −H −W GW  Q >  

&21),'(1&(,17(59$/6 &RQILGHQFH,QWHUYDOIRUWKH0HDQμRID1RUPDO 'LVWULEXWLRQ

D  6WDQGDUGGHYLDWLRQσLVNQRZQ ; − =α 

σ Q

σ

≤ μ ≤ ; + =α 

Q



 E 6WDQGDUGGHYLDWLRQσLVQRWNQRZQ ; − Wα 

V Q

≤ μ ≤ ; + Wα 

V Q



ZKHUH W α  FRUUHVSRQGVWRQ±GHJUHHVRIIUHHGRP &RQILGHQFH,QWHUYDOIRUWKH'LIIHUHQFH%HWZHHQ7ZR 0HDQVμDQGμ D  6WDQGDUGGHYLDWLRQVσDQGσNQRZQ ; − ;  − =α 

σ σ  σ σ + ≤ μ − μ  ≤ ;  − ;  + = α   +  Q Q Q Q

 E  6WDQGDUGGHYLDWLRQVσDQGσDUHQRWNQRZQ

;  − ;  − Wα



æ   çç + è Q Q 

[

]

ö ÷÷ (Q − )6  + (Q  − )6  ø ≤ μ − μ  ≤ ;  − ;  − W α Q + Q  − 

ZKHUH W α  FRUUHVSRQGVWRQQ±GHJUHHVRIIUHHGRP  





æ   çç + è Q Q 

[

]

ö ÷÷ (Q − )6  + (Q  − )6  ø  Q + Q  − 

0$7+(0$7,&6 FRQWLQXHG 

81,71250$/',675,%87,217$%/( 











I [ 

) [ 

5 [ 

5 [ 

: [ 

    [                                                                    )UDFWLOHV            

                                          

                                    

                                          

                                    

                                          



                                    

                                          

                                    

                                          

                                    

0$7+(0$7,&6 FRQWLQXHG 

W',675,%87,217$%/(          9$/8(62)WαQ

α

Q                                   

                             LQI

α                                    

                             

α                                    

                             

α                                    

                             





α                                    

                             

Q

α                                    

                             

                                  

                             LQI



                                  

                                 ∞

GI

'HQRPLQDWRU





                                                                     



                                  



                                         



                                            

)RUDSDUWLFXODUFRPELQDWLRQRI QXPHUDWRUDQGGHQRPLQDWRUGHJUHHV RIIUHHGRPHQWU\UHSUHVHQWVWKH FULWLFDOYDOXHVRI)FRUUHVSRQGLQJ WRDVSHFLILHGXSSHUWDLODUHD α   

                                                                    

                                                                    

                                                                     

                                                                    

                                                                                                              







                                                                    



1XPHUDWRUGI

                                                                   



&5,7,&$/9$/8(62)7+()',675,%87,21±7$%/(

                                                                    



                                                                     

                                                                    

                                                                    

                                                                     

                                                                     

                                         

∞

0$7+(0$7,&6 FRQWLQXHG 

0$7+(0$7,&6 FRQWLQXHG 

&XUYDWXUHLQ5HFWDQJXODU&RRUGLQDWHV \ ′′ .=   + ( \ ′)  

',))(5(17,$/&$/&8/86 7KH'HULYDWLYH )RUDQ\IXQFWLRQ\ I [  WKHGHULYDWLYH

[

'[\ G\G[ \′

\ ′ = OLPLW [(Δ\ ) (Δ[ )] Δ[ → 

= OLPLW {[ I ([ + Δ[ ) − I ([ )] (Δ[ )}

:KHQ LW PD\ EH HDVLHU WR GLIIHUHQWLDWH WKH IXQFWLRQ ZLWK UHVSHFWWR\UDWKHUWKDQ[WKHQRWDWLRQ[′ZLOOEHXVHGIRUWKH GHULYDWLYH



[′ G[G\

Δ[ →

\′ WKHVORSHRIWKHFXUYHI [ 

.=

7HVWIRUD0D[LPXP \ I [ LVDPD[LPXPIRU [

5=

DLII′ D  DQGI″ D !

7HVWIRUD3RLQWRI,QIOHFWLRQ \ I [ KDVDSRLQWRILQIOHFWLRQDW[ D LI

I″ D  DQG

LI

I″ [ FKDQJHVVLJQDV[LQFUHDVHVWKURXJK

− [′′

[

 + ([′)

]

 



7KH5DGLXVRI&XUYDWXUH 7KHUDGLXVRIFXUYDWXUH5DWDQ\SRLQWRQDFXUYHLVGHILQHG DVWKHDEVROXWHYDOXHRIWKHUHFLSURFDORIWKHFXUYDWXUH.DW WKDWSRLQW

DLII′ D  DQGI″ D 

7HVWIRUD0LQLPXP \ I [ LVDPLQLPXPIRU [

]

 .

(. ≠  )

[ + ( \′) ] 5=

 

\ ′′



( \′′ ≠ )

/ +RVSLWDO V5XOH / +{SLWDO V5XOH  ,I WKH IUDFWLRQDO IXQFWLRQ I [ J [  DVVXPHV RQH RI WKH LQGHWHUPLQDWH IRUPV  RU ∞∞ ZKHUH α LV ILQLWH RU LQILQLWH WKHQ

[ D 7KH3DUWLDO'HULYDWLYH ,Q D IXQFWLRQ RI WZR LQGHSHQGHQW YDULDEOHV [ DQG \ D GHULYDWLYHZLWKUHVSHFWWRRQHRIWKHYDULDEOHVPD\EHIRXQG LI WKH RWKHU YDULDEOH LV DVVXPHG WR UHPDLQ FRQVWDQW ,I \ LV NHSWIL[HGWKHIXQFWLRQ

OLPLW I ([ ) J ([ )  [ →α

LVHTXDOWRWKHILUVWRIWKHH[SUHVVLRQV

] I [\ 

OLPLW [ →α

EHFRPHV D IXQFWLRQ RI WKH VLQJOH YDULDEOH [ DQG LWV GHULYDWLYH LI LW H[LVWV  FDQ EH IRXQG 7KLV GHULYDWLYH LV FDOOHG WKH SDUWLDO GHULYDWLYH RI ] ZLWK UHVSHFW WR [ 7KH SDUWLDOGHULYDWLYHZLWKUHVSHFWWR[LVGHQRWHGDVIROORZV

I ′([ ) I ′′([ ) I ′′′([ )   OLPLW  OLPLW J ′([ ) [→α J ′′([ ) [ →α J ′′′([ )

ZKLFK LV QRW LQGHWHUPLQDWH SURYLGHG VXFK ILUVW LQGLFDWHG OLPLWH[LVWV

∂] ∂I ([  \ )  = ∂[ ∂[

,17(*5$/&$/&8/86 7KHGHILQLWHLQWHJUDOLVGHILQHGDV Q

OLPLW å I ([L )Δ[L = òDE I ([ )G[ 

7KH&XUYDWXUHRI$Q\&XUYH

Q → ∞ L =

♦ 

$OVR Δ[L →  IRU DOO L  



$WDEOHRIGHULYDWLYHVDQGLQWHJUDOVLVDYDLODEOHRQSDJH 7KHLQWHJUDOHTXDWLRQVFDQEHXVHGDORQJZLWKWKHIROORZLQJ PHWKRGVRILQWHJUDWLRQ

 

$,QWHJUDWLRQE\3DUWV LQWHJUDOHTXDWLRQ 



%,QWHJUDWLRQE\6XEVWLWXWLRQDQG

7KH FXUYDWXUH . RI D FXUYH DW 3 LV WKH OLPLW RI LWV DYHUDJH FXUYDWXUH IRU WKH DUF 34 DV 4 DSSURDFKHV 3 7KLV LV DOVR H[SUHVVHGDVWKHFXUYDWXUHRIDFXUYHDWDJLYHQSRLQWLVWKH UDWHRIFKDQJH RI LWV LQFOLQDWLRQ ZLWK UHVSHFW WR LWV DUF OHQJWK Δ α Gα  . = OLPLW = ΔV → ΔV GV

&6HSDUDWLRQRI5DWLRQDO)UDFWLRQVLQWR3DUWLDO)UDFWLRQV  ♦:DGH7KRPDV/&DOFXOXV&RS\ULJKW‹E\*LQQ &RPSDQ\'LDJUDPUHSULQWHGE\SHUPLVVLRQ RI6LPRQ 6FKXVWHU3XEOLVKHUV



0$7+(0$7,&6 FRQWLQXHG 

'(5,9$7,9(6$1',1'(),1,7(,17(*5$/6 ,QWKHVHIRUPXODVXYDQGZUHSUHVHQWIXQFWLRQVRI[$OVRDFDQGQUHSUHVHQWFRQVWDQWV$OODUJXPHQWVRIWKHWULJRQRPHWULF IXQFWLRQV DUH LQ UDGLDQV $ FRQVWDQW RI LQWHJUDWLRQ VKRXOG EH DGGHG WR WKH LQWHJUDOV 7R DYRLG WHUPLQRORJ\ GLIILFXOW\ WKH IROORZLQJGHILQLWLRQVDUHIROORZHGDUFVLQX VLQ±X VLQX ± VLQX  GFG[   òGI [  I [   G[G[   òG[ [  G FX G[ FGXG[  òDI [ G[ DòI [ G[  G XY±Z G[ GXG[GYG[±GZG[  ò>X [ ±Y [ @G[ òX [ G[±òY [ G[  G XY G[ XGYG[YGXG[ [ P+  ò [ P G[ = (P ≠ −)   G XYZ G[ XYGZG[XZGYG[YZGXG[ P + G (X Y ) Y GX G[ − X GY G[  òX [ GY [  X [ Y [ ±òY [ GX [  =   G[ Y G[   ò = OQ D[ + E   G XQ G[ QXQ±GXG[ D[ + E D  G>I X @G[ ^G>I X @GX`GXG[ G[ = [  ò  GXG[  G[GX  [ G (ORJ D X )  GX   = (ORJ D H ) D[ [  ò  D  G[    G[ X G[ OQ D G (OQX )  GX   =  òVLQ[G[ ±FRV[ G[ X G[  òFRV[G[ VLQ[         

( )

G DX GX = (OQD )D X  G[ G[ G HX G[ HXGXG[ G XY G[ YXY±GXG[ OQX XYGYG[ G VLQX G[ FRVXGXG[ G FRVX G[ ±VLQXGXG[ G WDQX G[ VHFXGXG[ G FRWX G[ ±FVFXGXG[ G VHFX G[ VHFXWDQXGXG[ G FVFX G[ ±FVFXFRWXGXG[

(

)

(

)



G VLQ −X  GX = G[  − X  G[



G FRV −X =− G[



(

−

 − X

(− π  ≤ VLQ



)

(− π  < WDQ

G WDQ X  GX = G[  + X  G[

(

)

(

)

G FRW −X  GX  =− G[  + X  G[

G VHF −X  GX = G[  X X  −  G[

( ≤ VHF

(

−

( ≤ FRV

GX G[

−

( < FRW

)(

[ VLQ  [  −   [ VLQ  [  ò FRV  [G[ = +     ò[VLQ[G[ VLQ[±[FRV[  ò[FRV[G[ FRV[[VLQ[  òVLQ[FRV[G[  VLQ[  FRV(D − E )[ FRV(D + E )[ −  ò VLQ D[ FRV E[ G[ = − (D − E ) (D + E )  òWDQ[G[ ±OQ⏐FRV[⏐ OQ⏐VHF[⏐  òFRW[G[ ±OQ⏐FVF[⏐ OQ⏐VLQ[⏐  òWDQ[G[ WDQ[±[  òFRW[G[ ±FRW[±[  òHD[G[  D HD[  ò[HD[G[  HD[D D[±   òOQ[G[ [>OQ [ ±@ G[  [ = WDQ −  ò   D D D +[

 ò VLQ  [G[ =

)

X≤π  

−

−

−

)

X≤π 

X<π 

)

)

( < FVF

−

)(

X ≤ π  − π < FVF −X ≤ − π 

)

[! 

(D ≠ ) 

(DF − E





>

)

 D[ + E − E  − DF G[ = OQ  E D[ + E[ + F E  − DF D[ + E + E  − DF ò

)

G FVF −X GX  =−  G[  X X −  G[

)

≠ E 

æ Dö  G[ ÷ = WDQ − ç [ (D >  F > )   ç F÷ D[ + F DF è ø  D[ + E G[ = WDQ − ò   D[ + E[ + F DF − E DF − E  D 

)

X < π  − π ≤ VHF X < − π 



 ò

X<π 

−

(D

(E



F ò



G[ D[  + E[ + F

=−

  D[ + E

(E







− DF > 

− DF = 

)

)

0$7+(0$7,&6 FRQWLQXHG 

0(1685$7,212)$5($6$1'92/80(6 &LUFXODU6HJPHQW

1RPHQFODWXUH

$ WRWDOVXUIDFHDUHD

♦

3 SHULPHWHU



9 YROXPH



3DUDEROD















  



$ >U φ±VLQφ @



φ VU ^DUFFRV> U±G U@`





&LUFXODU6HFWRU



♦

















(OOLSVH



♦







  



$ φU VU



φ VU

6SKHUH



♦





A = πab



(



)

3DSSUR[ = π D  + E  



é + (   ) λ + (   ×   ) λ ù ê ú    3 = π(D + E )ê+ (   ×   ×   ) λ + (   ×   ×   ×   ) λ ú  ê ú ê+ (  ×  ×  ×  ×  ) λ + K ú      ëê ûú



ZKHUH



9 πU πG

λ  D±E  DE 



$ πU πG



 

 

 

  



♦ *LHFN .  *LHFN 5 (QJLQHHULQJ )RUPXODV WK (G &RS\ULJKW ©  E\ *LHFN 3XEOLVKLQJ 'LDJUDPVUHSULQWHGE\SHUPLVVLRQRI.XUW*LHFN



0$7+(0$7,&6 FRQWLQXHG 

0(1685$7,212)$5($6$1'92/80(6 3DUDOOHORJUDP

5LJKW&LUFXODU&RQH



♦



















3  DE 

 

G = D  + E  − DE(FRVφ) G  = D + E + DE(FRVφ) G

+

G 

(









= D +E

)

9  πUK  

$ VLGHDUHDEDVHDUHD = π U æç U + U  + K  ö÷  è ø

$ = DK = DE(VLQφ)

$[$E [K

,ID EWKHSDUDOOHORJUDPLVDUKRPEXV 

5HJXODU3RO\JRQ QHTXDOVLGHV 

5LJKW&LUFXODU&\OLQGHU

♦

♦





















 

φ πQ



é π (Q − ) ù æ ö θ=ê = π ç − ÷  ú ë Q û è Qø



3 QV



V U>WDQ φ @



$  QVU 

 

π G K   $ = VLGH DUHD + HQG DUHDV = πU (K + U )

9 = πU  K =

 3DUDERORLGRI5HYROXWLRQ





3ULVPRLG



♦























 

9=





π G K  



9  K $$$ 

♦ *LHFN .  5 *LHFN (QJLQHHULQJ )RUPXODV WK (G &RS\ULJKW   E\ *LHFN 3XEOLVKLQJ 'LDJUDPVUHSULQWHGE\SHUPLVVLRQRI.XUW*LHFN







0$7+(0$7,&6 FRQWLQXHG 

&(1752,'6$1'020(1762),1(57,$

I [  $ $Hα[ $VLQω[$FRVω[

7KHORFDWLRQRIWKHFHQWURLGRIDQDUHDERXQGHGE\WKHD[HV DQGWKHIXQFWLRQ\ I [ FDQEHIRXQGE\LQWHJUDWLRQ [G$ [F = ò $ \G$ \F = ò  $ $ = ò I ([ )G[

,IWKHLQGHSHQGHQWYDULDEOHLVWLPHWWKHQWUDQVLHQWG\QDPLF VROXWLRQVDUHLPSOLHG

)LUVW2UGHU/LQHDU+RPRJHQHRXV'LIIHUHQWLDO (TXDWLRQV:LWK&RQVWDQW&RHIILFLHQWV \′D\ ZKHUHDLVDUHDOFRQVWDQW

G$ = I ([ )G[ = J ( \ )G\

6ROXWLRQ\ &H±DW

7KHILUVWPRPHQWRIDUHDZLWKUHVSHFWWRWKH\D[LVDQGWKH [D[LVUHVSHFWLYHO\DUH

ZKHUH& DFRQVWDQWWKDWVDWLVILHVWKHLQLWLDOFRQGLWLRQV

)LUVW2UGHU/LQHDU1RQKRPRJHQHRXV'LIIHUHQWLDO (TXDWLRQV G\ ì $ W < ü τ + \ = .[ (W ) [(W ) = í ý GW î % W > þ  \ ( ) = .$

0\ ò[G$ [F$ 0[ ò\G$ \F$ ZKHQ HLWKHU [± RU \± LV RI ILQLWH GLPHQVLRQV WKHQ ò [G$ RU ò\G$UHIHUWRWKHFHQWURLG[RU\RIG$LQWKHVHLQWHJUDOV7KH PRPHQWRILQHUWLD VHFRQGPRPHQWRIDUHD ZLWKUHVSHFWWR WKH\D[LVDQGWKH[D[LVUHVSHFWLYHO\DUH

τLVWKHWLPHFRQVWDQW .LVWKHJDLQ

,\ ò[G$

7KHVROXWLRQLV

,[ ò\G$

æ æ − W öö \ (W ) = .$ + (.% − .$)çç − H[Sç ÷ ÷÷ RU è τ øø è  é .% − .$ ù W = OQ ê ú τ ë .% − \ û

7KHPRPHQWRILQHUWLDWDNHQZLWKUHVSHFWWRDQD[LVSDVVLQJ WKURXJK WKH DUHD V FHQWURLG LV WKH FHQWURLGDO PRPHQW RI LQHUWLD7KHSDUDOOHOD[LVWKHRUHPIRUWKHPRPHQWRILQHUWLD ZLWKUHVSHFWWRDQRWKHUD[LVSDUDOOHOZLWKDQGORFDWHGGXQLWV IURPWKHFHQWURLGDOD[LVLVH[SUHVVHGE\

6HFRQG2UGHU/LQHDU+RPRJHQHRXV'LIIHUHQWLDO (TXDWLRQVZLWK&RQVWDQW&RHIILFLHQWV $QHTXDWLRQRIWKHIRUP

,SDUDOOHOD[LV ,F$G ,QDSODQH- òUG$ ,[,\ 9DOXHV IRU VWDQGDUG VKDSHV DUH SUHVHQWHG LQ D WDEOH LQ WKH '<1$0,&6VHFWLRQ

\″D\′E\  FDQ EH VROYHG E\ WKH PHWKRG RI XQGHWHUPLQHG FRHIILFLHQWV ZKHUHDVROXWLRQRIWKHIRUP\ &HU[LVVRXJKW6XEVWLWXWLRQ RIWKLVVROXWLRQJLYHV

',))(5(17,$/(48$7,216 $FRPPRQFODVVRIRUGLQDU\OLQHDUGLIIHUHQWLDOHTXDWLRQVLV EQ

UDUE &HU[ 

G \ ([ ) G\ ([ ) + K + E + E \ ([ ) = I ([ )  G[ G[ Q Q

DQG VLQFH &HU[ FDQQRW EH ]HUR WKH FKDUDFWHULVWLF HTXDWLRQ PXVWYDQLVKRU

ZKHUHEQ…EL…EEDUHFRQVWDQWV

UDUE 

:KHQWKHHTXDWLRQLVDKRPRJHQHRXVGLIIHUHQWLDOHTXDWLRQ I [  WKHVROXWLRQLV  \K ([ ) = &H UL [ + & H U [ + K + &L H UL [ + K + &Q H UQ [ ZKHUHUQLVWKHQWKGLVWLQFWURRWRIWKHFKDUDFWHULVWLF SRO\QRPLDO3 [ ZLWK Q

7KHURRWVRIWKHFKDUDFWHULVWLFHTXDWLRQDUH U  − D ± D  − E DQG FDQ EH UHDO DQG GLVWLQFW IRU D ! E UHDO DQG HTXDO IRU D EDQGFRPSOH[IRUDE ,ID!EWKHVROXWLRQLVRIWKHIRUP RYHUGDPSHG 

Q±

3 U  EQU EQ−U …EUE ,IWKHURRWU UWKHQ & H

\S [  % %Hα[α≠ ≠UQ %VLQω[%FRVω[

U [

\ = &H U [ + &  H U [ 

U [

LVUHSODFHGZLWK & [H 

,ID EWKHVROXWLRQLVRIWKHIRUP FULWLFDOO\GDPSHG 

+LJKHURUGHUVRIPXOWLSOLFLW\LPSO\KLJKHUSRZHUVRI[7KH FRPSOHWHVROXWLRQIRUWKHGLIIHUHQWLDOHTXDWLRQLV

\ = (& + &  [ )H U [ 

,IDEWKHVROXWLRQLVRIWKHIRUP XQGHUGDPSHG 

\ [  \K [ \S [ 

\ Hα[ &FRVβ[&VLQβ[ ZKHUH α ±D

ZKHUH\S [ LVDQ\VROXWLRQZLWKI [ SUHVHQW,II [ KDV H UQ [  WHUPV WKHQ UHVRQDQFH LV PDQLIHVWHG )XUWKHUPRUH VSHFLILF I [ IRUPVUHVXOWLQVSHFLILF\S [ IRUPVVRPHRIZKLFKDUH

β  E − D   

0$7+(0$7,&6 FRQWLQXHG 

6RPH PDWKHPDWLFDO OLEHUWLHV DUH UHTXLUHG WR REWDLQ WKH VHFRQG DQG IRXUWK IRUP 2WKHU )RXULHU WUDQVIRUPV DUH GHULYDEOHIURPWKH/DSODFHWUDQVIRUPE\UHSODFLQJVZLWKMω SURYLGHG I W  W

)285,(56(5,(6 (YHU\ IXQFWLRQ ) W  ZKLFK KDV WKH SHULRG τ  πω DQG VDWLVILHVFHUWDLQFRQWLQXLW\FRQGLWLRQVFDQEHUHSUHVHQWHGE\ DVHULHVSOXVDFRQVWDQW ∞

) (W ) = D  + å [DQ FRV (Qω W ) + EQ VLQ (Qω W )] 

∞ ò I (W ) GW < ∞ 

Q =

7KHDERYHHTXDWLRQKROGVLI) W KDVDFRQWLQXRXVGHULYDWLYH )′ W  IRU DOO W 0XOWLSO\ ERWK VLGHV RI WKH HTXDWLRQ E\ FRV PωWDQGLQWHJUDWHIURPWRτ

/$3/$&(75$16)2506 7KHXQLODWHUDO/DSODFHWUDQVIRUPSDLU

τ τ ò ) W FRV Pω W GW = ò D  FRV Pω W GW

) (V ) = ò ∞ I (W ) H − VW GW

τ τ ò ) W FRV Pω W GW = ò D  FRV Pω W GW

I (W ) =



+ å >DQ òτ FRV Pω W FRV Pω W GW



UHSUHVHQWV D SRZHUIXO WRRO IRU WKH WUDQVLHQW DQG IUHTXHQF\ UHVSRQVH RI OLQHDU WLPH LQYDULDQW V\VWHPV 6RPH XVHIXO /DSODFH WUDQVIRUP SDLUV DUH >1RWH 7KH ODVW WZR WUDQVIRUPV UHSUHVHQW WKH )LQDO 9DOXH 7KHRUHP )97  DQG ,QLWLDO 9DOXH7KHRUHP ,97 UHVSHFWLYHO\ ,WLVDVVXPHGWKDWWKH OLPLWVH[LVW@

Q =

+ EQ òτ VLQ Pω W FRV Pω W GW @

7HUPE\WHUP LQWHJUDWLRQ RI WKH VHULHV FDQ EH MXVWLILHG LI ) W LVFRQWLQXRXV7KHFRHIILFLHQWVDUH DQ = ( τ)òτ ) W FRV Qω W GW DQG EQ = ( τ)

τ ò ) W

VLQ Qω W GW  ZKHUH

τ πω7KHFRQVWDQWVDQEQDUHWKH)RXULHUFRHIILFLHQWVRI ) W  IRU WKH LQWHUYDO  WR τ DQG WKH FRUUHVSRQGLQJ VHULHV LV FDOOHGWKH)RXULHUVHULHVRI) W RYHUWKHVDPHLQWHUYDO7KH LQWHJUDOVKDYHWKHVDPHYDOXHRYHUDQ\LQWHUYDORIOHQJWKτ

1

(

Q =

)

)285,(575$16)250 7KH)RXULHUWUDQVIRUPSDLURQHIRUPRIZKLFKLV I (W ) = [ (π)]

∞ ò −∞ )

(ω) H

MωW



δ W 



X W 

πδ ω Mω

W æ τö æ τö X ç W + ÷ − X ç W − ÷ = UUHFW τ è ø è ø

τ

H MωRW



X W 6WHSDWW 

V

W>X W @5DPSDWW 

V

H±αW

 Vα  

 Vα 

H±αWVLQβW

β> Vα β@

H±αWFRVβW

Vα > Vα β@

G Q I (W )  GW Q

V Q ) (V ) − å V Q − P −

W ò I (τ )Gτ 

V ) V 

W ò [(W − τ )K W Gτ 

+ V ; V 

I W±τ 

H±τV) V 

OLPLW I (W ) 

OLPLW V) (V ) 

OLPLW I (W ) 

OLPLW V) (V ) 

W →

FDQEHXVHGWRFKDUDFWHUL]HDEURDGFODVVRIVLJQDOPRGHOVLQ WHUPV RI WKHLU IUHTXHQF\ RU VSHFWUDO FRQWHQW 6RPH XVHIXO WUDQVIRUPSDLUVDUH

) ω 

δ W ,PSXOVHDWW 

W →∞



I W 

) V 

WH

DQGWKH506YDOXHLVWKHQGHILQHGWREHWKHVTXDUHURRWRI WKLVTXDQWLW\RU)1

) (ω) = ò −∞∞ I (W ) H − MωW GW

I W 

±αW

,I D )RXULHU VHULHV UHSUHVHQWLQJ D SHULRGLF IXQFWLRQ LV WUXQFDWHGDIWHUWHUPQ 1WKHPHDQVTXDUHYDOXH)1RIWKH WUXQFDWHG VHULHV LV JLYHQ E\ WKH 3DUVHYDO UHODWLRQ 7KLV UHODWLRQ VD\V WKDW WKH PHDQ VTXDUH YDOXH LV WKH VXP RI WKH PHDQVTXDUHYDOXHVRIWKH)RXULHUFRPSRQHQWVRU )1 = (D  ) + (  ) å D Q + EQ

  σ + L∞ VW ò σ −L∞ ) (V ) H GW πL

Q −

P =

G P I ( )  G PW

V →

V →∞

',))(5(1&((48$7,216 'LIIHUHQFH HTXDWLRQV DUH XVHG WR PRGHO GLVFUHWH V\VWHPV 6\VWHPV ZKLFK FDQ EH GHVFULEHG E\ GLIIHUHQFH HTXDWLRQV LQFOXGHFRPSXWHUSURJUDPYDULDEOHVLWHUDWLYHO\HYDOXDWHGLQ D ORRS VHTXHQWLDO FLUFXLWV FDVK IORZV UHFXUVLYH SURFHVVHV V\VWHPV ZLWK WLPHGHOD\ FRPSRQHQWV HWF $Q\ V\VWHP ZKRVH LQSXW Y W  DQG RXWSXW \ W  DUH GHILQHG RQO\ DW WKH HTXDOO\ VSDFHG LQWHUYDOV W  N7 FDQ EH GHVFULEHG E\ D GLIIHUHQFHHTXDWLRQ

VLQ (ωτ ) ωτ   πδ(ω − ωR )



0$7+(0$7,&6 FRQWLQXHG 

)LUVW2UGHU/LQHDU'LIIHUHQFH(TXDWLRQ

180(5,&$/0(7+2'6

7KHGLIIHUHQFHHTXDWLRQ

1HZWRQ V0HWKRGRI5RRW([WUDFWLRQ *LYHQDSRO\QRPLDO3 [ ZLWKQVLPSOHURRWVDD…DQ ZKHUH

3N 3N− L ±$ UHSUHVHQWVWKHEDODQFH3RIDORDQDIWHUWKHNWKSD\PHQW$,I 3NLVGHILQHGDV\ N WKHPRGHOEHFRPHV

Q

3 ([ ) = ∏ ( [ − DP )

\ N ± L \ N±  ±$

Q

= [ + α [

6HFRQG2UGHU/LQHDU'LIIHUHQFH(TXDWLRQ 7KH)LERQDFFLQXPEHUVHTXHQFHFDQEHJHQHUDWHGE\ ZKHUH \ ±    DQG \ ±    $Q DOWHUQDWH IRUP IRU WKLV PRGHOLVI N  I N I N 

DLM + = DLM −

ZLWKI   DQGI   

( )



7KHLQYHUVHWUDQVIRUPLVJLYHQE\WKHFRQWRXULQWHJUDO

&RQYHUJHQFHLVTXDGUDWLF

K [  K [[…[Q 

 N − ò ) (] )] G]  πL Γ

ILQGDYHFWRU[ ∈5QVXFKWKDW K [ ≤ ≤K [ IRUDOO[

DQG LW UHSUHVHQWV D SRZHUIXO WRRO IRU VROYLQJ OLQHDU VKLIW LQYDULDQWGLIIHUHQFHHTXDWLRQV$OLPLWHGXQLODWHUDOOLVWRI] WUDQVIRUPSDLUVIROORZV>1RWH7KHODVWWZRWUDQVIRUPSDLUV UHSUHVHQW WKH ,QLWLDO 9DOXH 7KHRUHP ,97  DQG WKH )LQDO 9DOXH7KHRUHP )97 UHVSHFWLYHO\@

I N 

) ] 

δ N ,PSXOVHDWN 



X N 6WHSDWN 

 ±]± 

βN

 ±β]± 

\ N± 

]±< ] \ ± 

\ N± 

]±< ] \ ± \ ± ]±

\ N 

]< ] ±]\  

\ N 

]< ] ±]\  ±]\  

å ; (N − P )K(P ) 

+ ] ; ] 

OLPLW I (N ) 

OLPLW ) (] ) 

OLPLW I (N ) 

OLPLW  − ] − ) (] ) 

N →∞

( )



1HZWRQ V0HWKRGRI0LQLPL]DWLRQ *LYHQDVFDODUYDOXHIXQFWLRQ

N =

N →

+ K + αQ

1HZWRQ¶VPHWKRGPD\DOVREHXVHGIRUDQ\IXQFWLRQZLWKD FRQWLQXRXVILUVWGHULYDWLYH

) (] ) = å I (N )] − N 

P =

+ α[

Q−

3([ ) ∂3([ ) ∂[ [ = D M L

ZLWK 3 DLM + ≤ 3 DLM

]7UDQVIRUPV 7KHWUDQVIRUPGHILQLWLRQLV



Q −

DQG 3 DL    $ URRW DL FDQ EH FRPSXWHG E\ WKH LWHUDWLYH DOJRULWKP

\ N  \ N± \ N± 

I (N ) =



P =

1HZWRQ VDOJRULWKPLV −

[ . +

é ∂K ù ê ∂[ ú ê ú ê ∂K ú ê ú ∂[ ú ∂K ê = êK ú  ∂[ ê ú êK ú ê ∂K ú ê ú ê ∂[Q ú ê ú ë û

DQG é ∂ K ê  ê ∂[ ê ∂ K ê ê ∂[ ∂[ ∂ K ê =ê K ∂[  ê K ê ê ∂ K ê ê ∂[ ∂[Q ê ë

] →∞

] →

(

æ  ö ç∂ K ÷ ∂K = [. − ç  ZKHUH ÷ ç ∂[ [ = [ ÷ ∂[ [ = [ . . ø è

)





∂K ∂[ ∂[

K K

∂ K ∂[

K K

K K

K K K K

∂ K K K ∂[  ∂[Q

∂ K ù ú ∂[ ∂[Q ú ∂  K úú ∂[  ∂[Q ú ú K ú ú K ú ú ∂ K ú  ∂[Q ú ú û

0$7+(0$7,&6 FRQWLQXHG 

1XPHULFDO,QWHJUDWLRQ 7KUHHRIWKHPRUHFRPPRQQXPHULFDOLQWHJUDWLRQDOJRULWKPV XVHGWRHYDOXDWHWKHLQWHJUDO E òD

1XPHULFDO6ROXWLRQRI2UGLQDU\'LIIHUHQWLDO (TXDWLRQV (XOHU V$SSUR[LPDWLRQ *LYHQDGLIIHUHQWLDOHTXDWLRQ

I ([ )G[ 

G[GW I [W ZLWK[   [R

DUH

$WVRPHJHQHUDOWLPHNΔW

(XOHU VRU)RUZDUG5HFWDQJXODU5XOH

[> N ΔW@≅[ NΔW ΔWI>[ NΔW NΔW@

Q −

E òD I ([ )G[ ≈ Δ[ å I (D + NΔ[ ) 

ZKLFK FDQ EH XVHG ZLWK VWDUWLQJ FRQGLWLRQ [R WR VROYH UHFXUVLYHO\IRU[ ΔW [ ΔW «[ QΔW 

N =

7UDSH]RLGDO5XOH

7KH PHWKRG FDQ EH H[WHQGHG WR QWK RUGHU GLIIHUHQWLDO HTXDWLRQVE\UHFDVWLQJWKHPDVQILUVWRUGHUHTXDWLRQV

IRUQ  é I (D ) + I (E ) ù E òD I ([ )G[ ≈ Δ[ ê ú  ë û

,QSDUWLFXODUZKHQG[GW I [  

IRUQ! E òD

ZKLFKFDQEHH[SUHVVHGDVWKHUHFXUVLYHHTXDWLRQ

Q − Δ[ é ù I ([ )G[ ≈ I (D ) +  å I (D + NΔ[ ) + I (E )ú  ê  ë N = û

 

6LPSVRQ V5XOH3DUDEROLF5XOH QPXVWEHDQHYHQLQWHJHU  IRUQ  ù æ E − D öé æ D+Eö E ÷ ê I (D ) +  I ç ÷ + I (E )ú  òD I ([ )G[ ≈ ç   è øë è ø û

IRUQ≥ Q − é ù ( ) I D  + å I (D + NΔ[ ) ú ê Δ[ N =    K E ê ú òD I ([ )G[ ≈ Q −  ê + I (D + NΔ[ ) + I (E )ú êë N =å úû  K

ZLWK

[> N ΔW@≅[ NΔW ΔWI>[ NΔW @

Δ[  E±D Q



[N [NΔW G[NGW 

Related Documents


More Documents from ""

Sol Unit02
June 2020 7
June 2020 13
Week 2
June 2020 14
Physicsiunit02_4p
June 2020 5
June 2020 8