pbïšbî‹ÜaZò†b¾a p@Ë@l@‘2@óåÜaZõín¾a
ò‹Ñïå‚@óibïä
‘ì‹«@‹Ð
†bîŒ@æi@׊b@óîíäbq
2HZŒb−fia@ò‡à
Zßìÿa@æî‹ánÜa
sin ( x )
x2 −1 x +1 lim 3 ، lim Arc tan Arc tan 2 :ﺃﺤﺴﺏ ﺍﻝﻨﻬﺎﻴﺎﺕ ﺍﻝﺘﺎﻝﻴﺔ ، xlim x →0 →+∞ x − 1 + 1 x x + 1 − 1 x →1+ . lim
x →+∞
(
3
x 3 −1− x
)
ZðäbrÜa@æî‹ánÜa
f ( x ) = 3 x + 1 + x ; x ∈ [ 0, +∞[ π : ﺍﻝﻤﻌﺭﻓﺔ ﺒﻤﺎﻴﻠﻲf ﻨﻌﺘﺒﺭ ﺍﻝﺩﺍﻝﺔ ﺍﻝﻌﺩﺩﻴﺔ 2 f x x x = 1 + tan ; ∈ ( ) ( ) − 2 , 0 . ﻓﻲ ﺍﻝﺼﻔﺭf ﺃﺩﺭﺱ ﺍﺘﺼﺎل ﺍﻝﺩﺍﻝﺔ-1 . lim + f ( x ) ﻭlim f ( x ) ﺃﺤﺴﺏ-2 x →−
.ﻴﺠﺏ ﺘﺤﺩﻴﺩﻩ
x →+∞
π
2
π π J ﻨﺤﻭ ﻤﺠﺎل − , 0 ﺘﻘﺎﺒل ﻤﻥ − , 0 ﻋﻠﻰ ﺍﻝﻤﺠﺎلf ﻗﺼﻭﺭ ﺍﻝﺩﺍﻝﺔg ﺒﻴﻥ ﺃﻥ-3 2 2 . J ﻤﻥ
x ﻝﻜلg −1 ( x ) ﺤﺩﺩ-4 ZsÜbrÜa@æî‹ánÜa
u0 = 0 : ( اu n )
ا un2 = 8 + ; ∀ ∈ ℕ u n n +1 3 . 0 ≤ u n ≺ 2 3; ∀n ∈ ℕ :
أن-1 . " أ! ر# $ ا%& '( )*ا+ (u n ) أن-2
(v n )
ا-3 $)#( هv n )
أن ا:أ
.v n = 12 − u n : ا 2
.ول.)ه ا0! و$ $)دا أ2 . n 6)
u n " # $ ا%& n 6) v n 450 أ:ب . lim (u n ) 450 أ:ج
.S n = u 0 + u + ⋅ ⋅ ⋅ + u 2
2 1
[email protected]
n →+∞ 2 n −1 :ع9:ا
n 6) 450 أ:د