pbïšbî‹ÜaZò†b¾a p@Ë@l@‘2@óåÜaZõín¾a
ò‹Ñïå‚@óibïä
‘ì‹«@‹Ð
ðäbîÜa@âbÕÜa@ðic@óîíäbq
2HZŒb−fia@ò‡à
.3
x + 2 + 3 1 − x = 3 3 ، Arc tan2 ( x ) −
π 4
Zßìÿa@æî‹ánÜa
Arc tan ( x ) = 0 : ﺍﻝﻤﻌﺎﺩﻝﺘﻴﻥ ﺍﻝﺘﺎﻝﻴﺘﻴﻥℝ ﺤل ﻓﻲ-1
π 2 4 ﺘﻘﺒل ﻋﻠﻰ ﺍﻷﻗل ﺤﻼ ﻓﻲ ﺍﻝﻤﺠﺎلtan ( x ) + 2 sin ( x ) − 1 = 0 ﺒﻴﻥ ﺃﻥ ﺍﻝﻤﻌﺎﺩﻝﺔ-2
. 0,
ZðäbrÜa@æî‹ánÜa 3
lim
x →+∞
x3 +1 x2 + x − 3 x3 +1 x +1 ، lim ، lim Arc tan 3 :أ ا ت ا x →1 3 x x 2 −1 x →+∞ x +4 x −3 +
. lim
x →3 3
.f
x2 −1 −2
ZsÜbrÜa@æî‹ánÜa
( x ) = x 3 − 6 x 2 + 12 x
− 8 : اf اا اد .+(& , J *ل# '( ℝ "# $%& f " أن-1 . ( x − 2 ) - أ: أ-2 3
. J "#
x $1 f
−1
(x )
/ 0ا:ب
@ZÊia‹Üa@æî‹ánÜa . ℕ "#
u = 2u n − n + 1; ∀n ∈ ℕ n $1v n = u n − n 23 n +1 : ( اu n ) ا u0 = 1 .v 0 ول6 ود ه ا2 00 أ0 ه# (v n ) " أن-1 . n 7 u n / 0 ا89 n 7 v n د: أ-2 . n 7 S n أS n = v 0 + v 1 + ⋅ ⋅ ⋅ + v n 23:ب . n 7 T n أT n = u 1 + u 2 + ⋅ ⋅ ⋅ + u n 23 :ج Z÷àb©a@æî‹ánÜa
u = u 2 + 2; ∀n ∈ ℕ n : ( اu n ) ا n +1 = 2 u 0 . ℕ "# n $1 u n ≥ 2 : " أن-1 2 . ℕ "# n $1 v n = u n 23 -2 .v 0 ول6 و ه ا00(دا أ# # . n 7
(v n ) " أن:أ
u n / 0 ا89 n 7 v n د:ب . n 7 S n أS n = v 1 + ⋅ ⋅ ⋅ + v n 23 :ج
[email protected]