ﻧﻴﺎﺑﺔ ﻛﻠﻤﻴﻢ ﺑﺎﺏ ﺍﻟﺼﺤﺮﺍء ﺛﺎﻧﻮﻳﺔ ﺍﻟﺨﻮﺍﺭﺯﻣﻲ ﻓﺮﺽ ﻣﺤﺮﻭﺱ ﺭﻗﻢ-1-
2ﺑﺎﻙ ﻋﻠﻮﻡ ﺗﺠﺮﻳﺒﻴﺔ ﺫ :ﺍﻟﺰﻏﺪﺍﻧﻲ
ﺍﻟﺘﻤﺮﻳﻦ1 (1ﺍﺣﺴﺐ ﺍﻟﻨﻬﺎﻳﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ:
x3 x2 1 lim x 2x2 7
x x 1 3
3
lim
x
ﺍﻟﺘﻤﺮﻳﻦ2 ﻧﻌﺘﺒﺮ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ (Un) ﺍﻟﻤﻌﺮﻓﺔ ﻛﻤﺎ ﻳﻠﻲ:
3 u 4 10 n
un 1
u0 6 n:
(1ﺃﺣﺴﺐ U1 ﻭU2 (a ) n : Vn=Un-a (2ﻟﺘﻜﻦ) ( Vnﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺑﺤﻴﺚ : ﺃ( ﺣﺪﺩ ﻗﻴﻤﺔ a ﻟﻜﻲ ﺗﻜﻮﻥ ) ( Vnﻣﺘﺘﺎﻟﻴﺔ ﻫﻨﺪﺳﻴﺔ. ﺏ( ﺣﺪﺩ ﺍﻟﺤﺪ ﺍﻷﻭﻝ ﻝ ( Vn) ﻭ ﺃﺳﺎﺳﻬﺎ . ﺝ( ﺃﻋﻂ ﺻﻴﻐﺔ Vn ﺑﺪﻻﻟﺔ n ﺛﻢ ﺍﺳﺘﻨﺘﺞ ﺻﻴﻐﺔ Un ﺑﺪﻻﻟﺔ. n ﺩ( ﺃﺣﺴﺐ ﻧﻬﺎﻳﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ.(Un) Sn=V0+V1+V2+………+Vnﻭ Tn=U0+U1+U2+………+Un (3ﻧﻀﻊ: ﺃ( ﺃﻋﻂ ﺻﻴﻐﺔ Sn ﺑﺪﻻﻟﺔ nﺛﻢ ﺃﺳﺘﻨﺘﺞ ﺻﻴﻐﺔ Tn ﺑﺪﻻﻟﺔ.n
Tn
ﺏ( ﺃﺣﺴﺐ
l i nmﻭ
lim S n n
ﺍﻟﺘﻤﺮﻳﻦ 3 ﻧﻌﺘﺒﺮ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﺪﺩﻳﺔf
1 x x
:
(1ﺑﺮﻫﻦ ﺃﻥ ﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﻳﻒ ﺍﻟﺪﺍﻟﺔ
f
f : x ArcTan
ﻫﻲ D 0 .1 ﺛﻢ ﺃﺣﺴﺐ:
) lim f ( x x0
(2ﺑﻴﻦ ﺃﻥ (3ﺑﻴﻦ ﺃﻥ
f f
ﺗﻨﺎﻗﺼﻴﺔ ﻗﻄﻌﺎ ﻋﻠﻰ. D ﻣﺘﺼﻠﺔ ﻋﻠﻰ. D
-(4ﺃ( ﺑﻴﻦ ﺃﻥ
f
ﺗﻘﺎﺑﻞ ﻣﻦ Dﻧﺤﻮ ﻣﺠﺎﻝ J ﻳﺘﻢ ﺗﺤﺪﻳﺪﻩ. 1
ﺏ( ﺃﺣﺴﺐ
)( y
f ﻟﻜﻞ yﻣﻦ. J http://arabmaths.ift.fr
x 0