( )
∑F
i
= 0 ⇒ ∑ σ i dA = 0 → ∫ σdA = 0 A
' ( )* + . !"# $% . , ,-. ,12 y + ,-. /0 σ M = − ∫ (σdA) y
. 3 $% ,-. ""0 4# /0 5 6 ( 0 6 %7"8
: ! 3 9! : 3 /1; < = + /1; < 9- % ( % 1> = %6 . @ (0 3 3 " @' 0 6 9 !( 6 ( >14 : ."; (
Copyright by:www.Afshinsalari.com
A
ε u = − y tan θ ⇒ δ u = − y ???
e ε = Lim u = ∆x → 0 ∆x
∆x − y tan θ θ y = − y Lim = − y Lim P = − Lim ∆x P ∆x → 0 ∆x → 0 ∆x ∆x → 0 ∆x
ε=
−y P
: # $ %&' ( )' ' * +, ε=
σ E
⇒
−y σ −E = ⇒σ =( )y P E P E
∫ σdA = 0 ⇒ ∫ (− P ) ydA = 0 : 0 B % A
−
A
E ydA = 0 → ∫ ydA = 0 ' 2!# C8 D + E"F B % P ∫A
y=
∑Ay ∑A
i i i
Copyright by:www.Afshinsalari.com
."; ( 9 # - C :0%
G
M = ∫(
M =
E 2 y dA P ∫A
M =−
σ =−
−E 2 1 ) y dA = − ∫ Ey 2 dA P P
σ y
Mc I
I
⇒
⇒
M =
EI P
σ =−
⇒
R {
ا
=
1 M = P EI
My I
. 0 # 6 ( < ."; ( %.0*: C
) . H , I 1#:0 /"(
σ max = −
M max =
MC I
wl 2 1 × 52 = = 3.125 t.m = 3.125 × 105 8 8
kg.cm
. , ' ( ."; ( ( 9 K2 %)
Copyright by:www.Afshinsalari.com
M
"; (
∫ ydA = 0 A
σ max =
I=
bh3 30(50) 2 = = 3.125 × 105 12 12
C=
h 50 = = 25 2 2
3.125 × 105 × 25 ⇒ σ max = 25 3.125 × 105
cm4
→ σ max = ±25
kg cm 2
σ a = 1400 M = σ a S xx ⇒
kg cm 2
kg cm 2
< 4 /"( %
wl 2 εσ S 8 × 1400 × 81.9 = σ a S x ⇒ w = a2 x = 8 l 900 2
w = 5.73
σ a = 1400
kg cm kg cm 2
= .573 , w =1
ton m ton m
(N
, lmax = ?
1
1
wl 2 8σ .S 2 8 × 1400 × 81.9 2 M = σ a .S x ⇒ = σ a .S x → l = a x = ⇒ l = 303 cm 8 10 w
σa =
M M wl 2 10(400) 2 →S = = = ⇒ S x = 142.86cm3 Sx σ a 8σ a 8 × 1400 INP
160
117
INP
180
161
(
cm3 cm3
(@
Copyright by:www.Afshinsalari.com
O
wl 10 × 400 V 2 % /"( τ = ⇒ τ max = 2 = ⇒ AV h.tv 14 × 0.5
: ) . 3( I (L ) 3 6 %.0* . , σ a = 50
kg cm 2
0 < 4 /"( % . ) . H
σa = − l=
Mc Wl 2c =− I eI
8 × 3.125 × 105 × 50 10 × 25
⇒
⇒
l2 = −
8Iσ a wc
lmax = 707 cm
:) . σ =?
Copyright by:www.Afshinsalari.com
P
M max =
."; ( ∫ ydA = 0
→y=
wl 2 200 × 2 2 = = 100 kg.m 8 8
∑Ay ∑A i
i
i
A
I = ∫ y 2 dA = ∑ I oi + ∑ Ai d ?? =
=
30 × 5 × 2.5 × +3 × (40 − 5) × 22.5 = 10.73 cm 30 × 5 + 3 × 35
30 × 53 3 × 353 2 + 30 × 5(10.73 − 2.5) + + 3 × 35( 22.5 − 90.73) 2 12 12
= 35737 cm 4
σ =
− MC 100 × 100 × 10.73 =− ⇒ ري I 35737
σ =−
100 × 100 × (−40 − 10.73) ⇒ آ 35737
σ = −30.02
σ = 14.19
kg cm 2
kg cm 2
:) . A = 18.2cm 2 I 4 3 S= I xx = 573 cm → S xx = 81.9 cm C 4 3 I yy = 25.2 cm → S yy = 107 cm
σ max = ? (Q8
5+ 0
Copyright by:www.Afshinsalari.com
R
σ =
M wl 2 M × (400) 2 = = ⇒ σ = 2442 S 8S xx 8 × 81.9
τ max = 250.6
kg cm 2
kg cm 2
: / % 0-. @ %0V) U S8% ‘ 0 ‘ 91> S3T < # 6 ' ! % -1 . , W ( @13 #:4( S3T + 6 8X %3T -3 6 < !# ' ! % % -2 . #+T , %Y 1F+
[0 %6 < 9 * ' % /"( \ % % %7"8 ' :16 +% 3 %Y ,( % ZG . "0 %-F 1F 6 3 F P σ p = − A σ ′ = ± MY N I
σt = −
Copyright by:www.Afshinsalari.com
P MY ± A I
]
σ
A
= −
2000 18.2
1 × 10 5 × −
573
14 2
= −1331
Kg cm
4
,
σB =
− 2000 18.2
10 5 × +
14 2
573
= +1111
kg cm
: #:1( H, I 318T+ ,12 %6 /"( P=10 ton < :Q8 H 2( \ B < !# P=Pu I < (^ H,I 'K 90 )B %
_( P=1.2Pu < (N
ES =2.1×106 Eall=7×105
σall=800 σs =2400
kg cm2 kg cm2 kg cm2 kg cm2
δ = ? + σ all = 500 "0 $% % ( P = Fs + Fall Fl F l ∆S = ∆Pl → S = all → Es AS Es AS
FS + Fal = 10 ton ⇒ F = 1.44 F all S
(Q8
Fall = 4.1ton F = 5.9 ton S
(^ }?
2( [ "#[8T Fall = σ a Al = 800 × 25 = 2000 = 20ton
Copyright by:www.Afshinsalari.com
`
2( Fu = σ s . AS = 2400 × 12 = 28.8 ton ≤ 1.44 × 20 = 25.8 s
." 2( a8 b# +%6 Pu = 20 + 28.8 = 48.8ton
(N P = 1.2 × 48.8 = 58.56ton
(, 58.5b>48.8 ;%I)., ,# S3 9! %
_( F = 500 × 25 = 12.5ton Fas = 28.8 > 1.44 × 12.5 = 18ton
( Pu = 12.5 + 18 = 30.5ton P2 = 1.2 Pu = 1.2 × 30.5 = 36.6ton Fs 2 = 36.6 − 12.5 = 24.1ton FL 24100 × 200 δ = = ⇒ δ = 0.19cm AE 2.1 × 106 × 12
Copyright by:www.Afshinsalari.com
($ ! " #)
c
12 3-
42 ' 5 6 7
N ; ,8 * - F( 91> 0 +% 3 [X( /1;< ; ,8 * C :0% 0 p +% 3 , ) = :0% < N ; +% 3 .91> ., :0% < : 1; %7"8 @+d= "0 %Y e%> M=P. e σ =
P M .y ± A I
: , %% e%> 3 %6 /"( σ =
P P.e y + A I
. 9 * /"( ' % % + 2 < σ =
P P.e y + =0 A I
⇒
y=
−I Ae
, % 'T /"( 0 , ; 8 =
Copyright by:www.Afshinsalari.com
Z %#< 0 +% 3 b# P 0 = 0 6 ' 3 8 = # " ,d> ."; # /6 0 e ,#:0 % < N+%; % . % Z ."; . b#:3 C :0% ."; \ # /#: e% + 6; + C :0% < 6 < !# + P :0% < N ; 0 +% 3 %Y 3 0 = . ,% 6; f 6 )* ' :16 /1; 33 % e%> 6 )* 1; 6%7"8 6 /# 13 ez , ey P %Y 3 f DKg % . f # . "6; ,P.ey P.ez %% h (%( > z , y : , %% z, y f DKg e%> < 3 "#T % 1> /"( σ =
P P.ez P.e y + + A Iy Iz
:) . C 88 %6 , @ 9 !( B 3 88 + ' iF ABC ^ . d = 27.3 cm F ; % + I = 8820 cm 4
Kg8 + K , A = 103.9 cm 2
H = 1.8, L = 2.4m P = 1350kg $% ^ + 0 6 /"( %.0*
. "0 5
Copyright by:www.Afshinsalari.com
A
:9*
M B = 1620kgm
' ( AB = H 2 + L2 = 1.8 2 + 2.4 2 = 3m cos α =
H 1.8 = = 0.6 AB 3
, sin α = 0.8
P 2
A < X 1;%7"8 M = R A sin αx = ( )(0.8) x = 0.4 Px = 540 x . B 3 1;%7"8%.0* ⇒ M B = 540(3) = 1620kgm
, %%+ , Y AB)B%% +% 3 ⇒ P = R A cos α = B ^ + 0 S"( %.0* σ =
P My P cos α M B y + =− + A I 2A I
B 3 ( /"( %.0* (σ c )max
(σ c )max
=−
P cos α 2
P cos α =− − 2A
(1350)(0.6) (162000)(27.3) − = 254.6 (2)(103.4) (2)(8820)
− P cos α , %% B 3 K( ( 0 /"( %.0* (σ t ) = + 2A
d MB( ) 2 I
kg cm 2
d MB( ) 2 = 246.8 I
kg cm 2
:) .
/"( %.0* . , @ QD3 mm 9! % b# C . "0 ^ 2* p %Y ,( @ bI0 + 0 @
Copyright by:www.Afshinsalari.com
G
%% y < z 1> /"( % /1; ,( y )* # : , σ=
P σ= + a (a ) 2
P Mz + A I
pa z 2p z 4 = 2 (1 + 12 ) a 3 1 a (a )( 3 ) a 12
a 0 /"( %.0* 4
: , %% + z = (σ t ) max = σ ( z = a4 ) =
8P a2
a 4
: , %% + z = − /"( %.0* a 4p (σ c ) max = σ ( z = − ) = − 2 4 a
Copyright by:www.Afshinsalari.com
M
:) . : < "( -> # f Dg "0 5 %#< 9! I K26 I Z = 27346 cm 4 , I y = 1544 cm 4
e1 = −
e2 = −
A = 94.84 cm 4
Iz 27346 = = 13.96cn Ay (94.84)(20.65) Iy Az
=
1544 = 1.81cm (94.84)(9)
2e2 6 7 81 } . 3.62 + 27.92 <8 b# : K26 #% "
2e
Copyright by:www.Afshinsalari.com
O
:) . @ K; :#%0 ; S73 % @ e%> 0 # " C8 D < * # "0 + # % q k ;. γ =1.8 t/m3
# " jDg '<+. ,
, 1 .5t/m2 %% # 5 'T %.0* + "0 %
_( ; # l ( 0 H "0 ^ 2* # 5 1 " + 1#:0 6 /"(. F L=1m
) # < K12
'( ,12 # mmm "0 [ ,% %a3 @%B @% ( b# fD . % / 3 K( SK3 0 i; '<+ %Y ,( @%B % ( # e%> @% k ; + . , 6; /"( #%K # 5
σ =
P M ± A S
Q1 + Q2 %% @ F ,12 '<+ : P
Q1 = 12 h(b − a ) Lγ = 12 (4.5)(2 − 0.8)(1)(1.8) = 4.86 T = c1 Q2 = haLγ = (4.5)(0.8)(1)(1.8) = 6.48 T = c2 P = Q1 + Q2 = 4.86 + 6.48 = 11.34 T
Copyright by:www.Afshinsalari.com
P
0 , Z )* k ; "#T%+ Q2 + Q1 6 '<+ %7"8 l14 %% M 1; %7"8 ."0 -> # 5 e%> C :0%< M = Q1 (a +
b−a b b a q h h − ) − Q2 ( − ) + max ( ) = (4.86)(0.2) − (6.48)(0.6) + 16 (1.5)(4.5) 2 = 2.15 T .M 3 2 2 2 2 3 −P M Lb 2 # S = + A = bl = 2m 2 'I σ = ± A 6 6
σ =−
11.34 2.15 ± = −5.67 ± 3.21 t / m 2 2 0.62
. B 3 1 " /"(+ A 3 1#:0 /"( 1#:0 /"( :
σ max = −5.67 − 3.21 = −8.88
1 " /"( : σ min = −5.67 + 3.21 = −2.46
t m2
t m2
: ) . 6 /"( #<(
=( ,2. , @ @ ' 3 .. "K b# <%K b# f - . @ @ ' 3 <%( ^T C 0 K+ B-A K jDg '<+. # 0 $% :4 % ( b# fD n 0 % 1> ,SF % ( "S5 . , h=! %K % ( 3 0 AO
Copyright by:www.Afshinsalari.com
R
H = V = 12 γh × h × 1 1 H = V = ( )(2.7)(10) (2.7)(1) = 36.4 KN 2 1 W = P = (1.8)(3)(1) 25 = 67.5 kn 2
M 0 = H (0.9) − w(0.3) = 36.4)(0.9) − (67.5)(0.3) = 12.5 KN .m
σ =
− w MC 67.5 12.5 × .9 + =− + = −37.5 + 23.2 = −14.3 KN / m 2 ري 1.82 A I 1.8 × 1 12
σA = −
w MC − = −37.5 − 23.2 = −60.7 KN / m2 ري A I
:) . 0 M ,;"!# @%K2 b# 91( % 100∗150 mm I % ( b# ^ 2* 3 6 o+ 1; /"( %.0* . % @ K %KG 3 6 ( 3 . ( "0 %a3 p% % ( '<+ <) . "0
=( ."; ( 9 ' 16 %+ "0
Copyright by:www.Afshinsalari.com
]
M =
WL 4 × 3 = = 1.5 KN .m 8 8
IZ =
1 (100)(150)3 = 2.81 × 107 12
σ A = +3.47 + 3 = 6.47
cos 30 } 3 M Z = M cosα = 1.5( ) = 1.3 KN .m 2
1 (150)(100)3 = 1.25 × 107 mm 4 12 M z y M Y Z 1.3 × 106 σ =± ± = IZ Iy
Iy =
N mm 2
آ
σ B = +3.47 − 3 = 0.47
N mm 2
آ
σ c = −3.47 − 3 = −6.47
N mm 2
ري
σ ِ = −3.47 + 3 = −0.47
N mm 2
آ
:) . . "0 - C,B,A bI0 ,# S3 q:F %YX 1#:0 6 /"( ( % - 3 # S"( [ 1()
Copyright by:www.Afshinsalari.com
`
(32 7 3- 6 )32 7 - 809
:F ( ""0 %Y .. q:F < AB C + # 0 # 6 /"(
=( , ^ () . .3 1 ) =( bI0
F1 = 3 cos α
F2 = 2 cos α F3 = 2 sin α
F4 = 1sin α
→+
∑ Fx(Fn) = 0 N = F1 cos α − F2 sin α − F3 cos α + F4 sin α ⇒ N = 1.29 N
∑ Fs = 0
S = F1 sin α + F2 cos α − F3 sin α − F4 cos α ⇒ S = 2.12 N
Copyright by:www.Afshinsalari.com
Ac
σ X = 1.29 N
∑F X′=0
τ x = 2.12 N
N = F1 cos θ − F2 sin θ − F3 cos θ − F4 sin θ = 0
σ x′ dA = σ x cos 2 θ dA + τxy dA cos θ sin θ + τxy dA sin θ cos θ + σ y dA sin 2 θ
"! p* dA %B < σ x′ = σ x
(1 + cos 2θ ) (1 − cos 2θ ) + τxy sin 2θ +σ y 2 2
%7# r b# < "( 9#-( σ x′ =
σ x +σ y
τ x′y′ = − σ y′ =
2
+
σ x −σ y 2
σx +σ y 2
−
σ x −σ y 2
cos 2θ + τ xy sin 2θ
sin 2θ + τ xy cos 2θ
σ x −σ y 2
cos 2θ − τ xy sin 2θ
Copyright by:www.Afshinsalari.com
(1) (A) (G)
A
.#T , (G) r + 6 % θ = 90 + θ , θ ο F () r ."0 W ,SF o , 9- 3 ' 16 σ x′ , σ y′ ,τx ′y ′ σ x′ + σ y′ = σ x + σ y = σ 1 + σ 2 = , Y
(1 + 3) ⇒
(:') ( min, Max ) -
. 1#:0 σ x′ \ θ I q< σ x′ =
σ x +σ y 2
+
σ x −σ y 2
cos 2θ + τ xy sin 2θ
6 /"( 6 % % + 2 9 * 4 K3 + #% 7 sK θ ,-23 ()r < % ."#T , ( min, Max ) σ x −σ y dσ x′ =− 2 sin θ + 2τ xy cos 2θ = 0 dθ 2
2θ1′
τ xy tan 2θ = (σ x − σ y ) 2
2θ1′′ = 180 + 2θ1′
θ ′ = θ ⇒ .3 pdK; 90 0 %7#!# 1 " + 1#:0 /"( θ ′′ = 90 + θ ′ 1 1
.(31> 6% S"( f ) ."# 6 /"( 1 " + 1#:0 S"(
Copyright by:www.Afshinsalari.com
AA
:' 3-
(PRINCIPAP) σ x′ = σ 1
Max
σ y′ = σ 2
Min
???? A =
(σ x − σ y ) 2 2
+ τ 2 xy
(σ x − σ y ) 2
cos 2θ = (
σ x −σ y 2
sin 2θ =
(II) ) 2 + τ xy 2
τ xy σ x −σ y
2
2
(I)
+ τx 2 y
.# (3) + (1) II + I o+ 7# F (σ )
max x′ min
= σ1
σ2 =
σx +σ y 2
σ x −σ y ± 2
2
+ τ xy 2
. "0 @ K #< K3 #+< %
3- ;2'0< τ x′y′ = −
σ x −σ y 2
sin 2θ + τ xy cos 2θ
(2)
. 6% % + 2 sK + #% 7 sK \ θ ,-23 (2) < %
dτ x′y′ dθ
=0⇒
(σ x − σ y ) tan 2θ = −
Copyright by:www.Afshinsalari.com
2
τ xy
=−
σ x −σ y 2τ xy
AG
F tu + 2 S"( f 9* #+%.0* % /"( f #+< .
WD %.0* % S"( τ
max min
σ x−σ = ± 2
2
y
+ τ xy 2
(3)
: 3%% ""0 91> %.0* % 6 /"( f + 0 1 6 /"( σ′ =
σ x +σ y 2
!"# %7 6; @%16 /"( b# 16 % /"( %.0* #% " σ x +σ y = 0
\ 6 % (G) σ y , σ x 14 2 43
ا
%
ي
: @ 73T % + 2 τ xy \ 6 % (3) 6 /"( % τ max =
σ1 − σ 2 2
. % % /"( % % 'T (σ 2 , σ 1 ) S"( 0 0=−
0=−
σ x −σ y 2
σ x −σ y 2
sin 2θ + τ xy cos 2θ
tan 2θ + τ xy → tan 2θ =
τ xy → σ x −σ y 2
Copyright by:www.Afshinsalari.com
AM
., % 'T % S"( 0
., K% % 60KN 0 +% 3 %Y ,( \850mm2 C () . . "0 5 ,-23 30 0 r#+< + % + 1> /"((Q8 ., I % /"( 1#:0 (^
θ = 120 = 90 + 30 ⇒ 2θ = 240
(Q8 (9* 'T # @ '+ F 30 0 \ f DKg @ 7K ,-23 "#7% ., θ = 30 0 σx =
70.6 }
σ x′ =
}0
σ x +σ y 2
P 60 × 10 3 = = 70.6 A 850mm 2
70.6 }
+
N ← ( /"() # /"( 6x ,SF mm 2
}0
σ x −σ y 2
cos 2θ + τ xy sin 2{θ = 17.65 1> { 240ο
Copyright by:www.Afshinsalari.com
0
AO
70.6 }
τ x′y′ = −
σ x −σ y
τ max
τ max =
}0
2
}0
sin 2{θ + τ xy cos 2{θ = 30.6 N 240ο
σ x −σ y = 2
70.6 = 33.3 2
240ο
mm 2
(%)
2
+ τ xy {0
N
(^
mm 2
.#+T , 6 /"( + f SF () .
σx =σy = 0
.# % /"( o+ 3% %% σ y وσ x 4"#
}0
σ 1 ,σ 2 =
tan 2θ =
σ x +σ y 2
τ xy }
}0
0
}0
σ x +σ y ± 2
= ∞ = tan 90 0
σ x −σ y 2
Copyright by:www.Afshinsalari.com
σ 1 = τ xy 2 + τ xy 2 ⇒ σ 1 , σ 2 = ±τ xy → σ = −τ xy 2
2θ ′ = 90 → θ ′ = 45 0 1 1 2θ ″ = 270 0 → θ ″ = 135 0 1 { 1 180+ 90
AP
σ x′ =
σ x +σ y 2
+
σ x −σ y 2
cos 2θ + τ xy sin 2{θ
2× 45ο
σ x′= τ xy sin 90 = +τ xy
.#+T , θ = 60 0 /"( () .
σ x = −30
σ x′ =
σx +σ y 2
+
σ x −σ y 2
cos 2θ + τ xy sin 2θ
σ y = +20
τ xy = −10
σ x′ =
− 30 + 20 − 30 − 20 N + cos120 − 10 sin 120 = −1.16 2 2 mm
θ = 60
Copyright by:www.Afshinsalari.com
AR
- =8'
R = τ max
σ x −σ y = OM = ON ′ ⇒ R = 2
2
+ τ xy 2
σ 1 = σ ave + R → آ σ 2 = σ ave − R → σ x ≠ 0 τ max K+ σ x′ = σ ave =
Copyright by:www.Afshinsalari.com
σx +σ y 2
A]
- 0> ?<
σ 1 > σ 2 > σ 3 : %
Copyright by:www.Afshinsalari.com
A`
9! @ @ ' 3 "( ,8 * % () . #< 2 @%# (Q8 "0 5 6 /"( (^ #+T , v% /"( + %.0* % /"( (N /"( 0 @# 9! F(
6x K 0 , ,1 F+ % (,-.), 0 6 %> pd; C q:F '+ 9# 1( ,1 F+ ' 16 % %YX % /"( %#<+ , p%B + ( σ x ,−τ xy ) f DKg x 4 K3 (,-.) ,> % %
σ y′ = −10
σ x = 50 X
Y
− τ xy = −40
Copyright by:www.Afshinsalari.com
τ xy′ = 40
Gc
σ ave =
σ x +σ y 2
σ x −σ y R = 2 R = 50 N
=
50 − 10 N = 20 2 mm 2
2
50 − (−10) 2 + τ xy 2 = 2
+ 40 2 ⇒
mm 2
R = 30 2 + 40 2 ⇒ R = 50
σ 1 = σ max = σ ave + R = 20 + 50 = 70
N mm 2
σ 2 = σ min = σ ave − R = 20 − 50 = −30
N mm 2
40 → θ = 26.6 0 30 2θ = 53.13 tan 2θ =
τ max = R = 50
N 1#:0 % /"( mm 2
σ ′ = σ ave = 20
Copyright by:www.Afshinsalari.com
N /"( mm 2
G
, ^ %#< 9! @ @ ' 3 /"( ,8 * % () . 6 /"( + f (Q8 q:F % %YX /"( 6 8X (^ pd; \@ @ C q:F '+ < , F 300 1 ,> 6 %> .#T
σ ave =
σx +σ y
Copyright by:www.Afshinsalari.com
2
=
100 + 60 = 80 N mm 2 2
GA
CF = OF − OC = 100 − 80 = 20
N mm 2
R = (CF ) 2 + ( FX ) 2 = (20) 2 + (48) 2 = 52
tan 2θ =
− 48 = 2.4 → 2θ 1 = −67.4 0 20
N mm 2
, θ1 = −33.7 0
σ max = OA = OC + CA = 80 + 52 = 132
N mm 2
σ min = OB = OC − BC = 80 − 52 = 28
N mm 2
σ x′ = ok = OC − KC = 80 − (52) cos 52.6 = 48.4
N mm 2
σ y′ = ol = OC + CL = 80 + (52) cos 52.6 = 111.6
N mm 2
φ = 180 − 60 − 67.4 = 52.6 0 τ x′y′ = k x′ = 52 sin 52.6 0 = 41.3
Copyright by:www.Afshinsalari.com
N mm 2
GG
. "0 + /"( ,8 * % @%# () . . "0
=( θ = 20 0 % 0 %D"> lde + τ θ′ , σ θ′ ,τ θ , σ θ 6 /"(
σ x = −840 σ y = 280 θ = 20 0 → 2θ = 40 0 σ ave =
σx +σ y 2
=
280 − 840 kg = −280 2 2 cm
R = 840 − 280 = 560
kg cm 2
Copyright by:www.Afshinsalari.com
GM
τ θ′ = R sin 40 = 560 × sin 40 = 354.46
kg cm 2
σ ave + R = σ max σθ =
σx +σ y
+
2
σ x −σ y 2
cos 2θ + τ xy sin 2θ
σ ave − R = σ min σθ =
τθ = −
kg − 840 + 280 − 840 − 280 cos 40 = −708.98 2 + 2 2 cm
σ x −σ y 2
sin 2θ + τ xy cos 2θ =
σ θ′ = σ θ ′′ =
σ x +σ y 2
−
σ x −σ y 2
− 840 − 280 sin 40 = +359.96 2
cos 2θ + τ xy sin 2θ
− 840 + 280 − 840 − 280 − cos 40 = 148.98 2 2
:[%( ' # 5 . "0 - @%# = ,8 * 6 /"( () . (σ 3 = 0) 6 % % + 2 %3T K3 σ 3 K+
Copyright by:www.Afshinsalari.com
GO
σ ave =
50 + 30 = 40 2
X =
R = (10 2 ) + 20 2 = 22.36 ≅ 22..4
N mm 2
Y=
50 − 20
30 20
σ 1 = σ ave + R = 40 + 22.4 = 62.4 σ 2 = σ ave − R = 40 − 22.4 = 17.6
=8' @7 < 9! F( ( θ a") 6 + 6 /"( ( Q8 . @%0 '+ 45 0 @<3 0 %D"> + 6 /"( (^ 1#:0 % S"( (N . 6 ' 3 @%0 5 '+ % "> 6 9! + w# K3
Copyright by:www.Afshinsalari.com
GP
σ x = 1120 σ y 420 τ xy = 280
2τ xy
Q8 )
2 × 280 tan 2θ = = = 0.8 σ x − σ y 1120 − 420
Copyright by:www.Afshinsalari.com
2θ = 38.65 0 0 θ 1 = 19 .32 = 19 .20′ θ 2 = 90 + 19.32 = 109 0.20′
GR
اﻝ
2 σ +σ y σ x −σ y σ , σ = x + τ xy 2 ± 1 2 2 2 1218.21 kg 2 ← σ1 1120 + 420 1120 − 420 cm 2 2 σ σ = ± + = , 280 1 2 2 2 321.79 kg 2 ← σ 2 cm
max σ x min
σy
1120 + 420 1120 − 420 kg + cos90 { + 280 sin 90 = 1050 ) بσ θ = 2 2 cm 2 2θ }90 τ = σ x − σ y sin 2θ − τ cos2θ = 350 kg xy θ 2 cm 2 ب ′ 1120 + 420 1120 − 420 cos 270 + 280 sin 270 = 440 + σ θ = 2 2 θ = 90 + 45 = 135 ⇒ 1120 − 420 τ θ′ = sin 270 − 280 cos 270 = −350 2 2θ = 270
2θ = 38.56 0 = 38 0.33′ 2 × 280 جtan 2θ = = = 0.8 → σ x − σ y 1120 − 420 2θ = π + 38.56 = 128.65 = 123 0.40 → θ = 64 0.20′ 2 2τ xy
# + σθ =
τθ =
σ x +σ y
+
2
σ x −σ y
τ max =
2
2
cos 2θ + τ xy sin 2θ = 770 kg
sin 2θ − τ xy cos 2θ = 448 kg
σ1 − σ 2 2
σ x −σ y
=
cm 2
cm 2
1218.21 − 321.79 = 448.21 kg 2 = 44.8 N cm mm 3 2
Copyright by:www.Afshinsalari.com
G]
2θ = −51.34 = π − (51.34) = 128.65 → θ = 64.32 0 1120 − 420 − 1 tan 2θ = − = → 2 × 280 0.8 ο 2θ = 128.65 + 180 → θ = 154.32
% .% % h S6 !( x 210 c f%* F : b#() . ^ 2* pq 9# % + 1> 6 /"( # /#: 930 c f%* F . "0
'T > 4( h#%e +
α = 11.7 × 10 −6 c −1
: (%* v 2-3 h#%e . "0 $% E = 2.1 × 10 6 kg
Copyright by:www.Afshinsalari.com
cm 2
G`
K2 p%B + 'I 8+ %0 5 )B #< δ = lα∆T @<3
PL AEδ ⇒P= AE L
θ = 30 0 ⇒ 2θ = 60 0
σX
P = = A
AEδ
L = Eδ = E ( Lα∆T ) = Eα∆T A L L
or ε = δ l ⇒ σ = E. ε{ = Eα∆T ε =α∆T
εX = 0 =
or
σX E
+ α∆Τ ⇒ σ x = − Eα∆Τ
σ x = Eα∆T = −(2.1 × 10 6 )(11.7 × 10 −6 )(93 0 − 210 ) = −1769 kg }0
1> /"( σ x′ = σ x′ =
σ x +σ y 2
cm 2
= 176.9 N
mm 2
}0
+
σ x −σ y 2
cos2{θ + τ xy sin 2θ 60ο
− 1769 1769 + cos 60 = −1326.75 kg 2 = −132.67 N cm mm 2 2 2
"( τ x′y′ =
}0 −σ x −σ y
2
}0 + 1769 sin 2{θ + τ xy cos 2θ = sin 60 0 = 766 kg 2 = +76.6 N cm mm 2 2 60
i θ = 30 + 90 9- y2 θ = 30 4"#
: ) .
Copyright by:www.Afshinsalari.com
Mc
6 /"( ,SF + . 3 b# + + 6 /"( ,SF+ "0
=( : 3
dA %% AB C ,* 2.3 F+ % /"(AB C +
:#T , ( /"() σ 1 ( 2#3 s K OAB%D"> ) =( 8 =
(
)
F1 dA = 2(2 p)dA cos 60 0 + 2 3 p dA cos 30 0 ⇒ σ 1 = 5 p1
dA %mmm% :mmm 3CB+ OACmmm ,* 2mmm Emmm5 ldmmme + 2mmmK OABzmmm. 'mmmI .3 F+ % /"( OH.
K ) =( 8 =
σ2
3 3 1 + 3 pdA = 0 ⇒ σ 2 = P dA − 2 PdA 2 2 2
9!m %D"> + 6 /"(+ " + 6 + #% " ., @ {g %#<
Copyright by:www.Afshinsalari.com
M
+ m% /"( . @ 0 15t +% 3 @%# C () . . "0 ^ 2* % ."0 <+ 4( 600 kg
τ=
VQ = It
cm 2
< # -3 } < b# | 6
R2 R ×4 2 3 = 600 → V × 4 = 600 4 R 3πR 2 π × 2R 4
V ×π
%m 50KN m m +% 3 ,( 25mm e+ % b# () . 300 m#+< m +%m 3 %Y o; ,-23 0 + % + 1> S"(. . "0 5 6 9 !( σ = −20 Mpa τ = −94.6
. % 9! s C /"( %D"> "0
=( %6 @%# < @ K (Q8 6 + S"( ., @%0 '+ 450 @<3 0 + S"((^ .1#:0 % 6 /"( (~
Copyright by:www.Afshinsalari.com
MA
σ θ = 770 % 0 % σ θ + c @%# :0% (9* σ θ = 770
% C A l = + C :0% @%# E . A
3 9 τ θ = −230
C A = 448kg / cm 2
σ 2 = 770 − 448 = 322, σ 1 = 770 + 448 = 1218 S"( %6 @%# % ZQ8
190,200 + x #+< #% " 2θ = 38 0 ,40′ #+< + θ = 19 0 ,20′ + 90 0 = 109 0 20′
Dm3 m %6 + , @%0 '+ 450 @<3 0 + 6 /"( (^ . {g 2θ = 90 0. D m3 f DmKg < .m m 90 ο − 38 0 40′ = 510 20′ %% σ θ + CD o; #+< :m 3 D ′ m3 m6 /"m(.m"#T Em , τ θ = 350 kg
cm 2
.(N 9! "3 ) . τ θ = 350
, σ θ = 1050 kg
kg cm 2
cm 2
, σ θ ′ = 440
S"( kg cm 2
9! "3 ) @
=( E ′, E v 3 B% + 1#:0 % 6 /"( (~ .(
Copyright by:www.Afshinsalari.com
MG
: A
> 4( " h + "0 +% 5 k6 '3 < % ( @ 0 "K26 W K+ %#< o+ :K!3 . bI0 ; % (
-6' – C- 7 -6' – 2 B'7 > 4( "" 9! % _( ."; ( ( % ( 3 QKg 6 ( :y
Copyright by:www.Afshinsalari.com
MM
/1; % ( < = b# 9! % _(
y
∆u = − y∆θ K% %a3 p%B y ,-. ,SF % x
8+ )B @"6 ' 3 ∆s )B #% " 13 3%0 3 | 6 ,( ab C D′C ′ + A′B′ + F 6 (
∆u
lim ∆s ∆S → 0
= − y lim ∆S → 0
du =ε ds
∆θ ∆s
#
du dθ = −y ds ds
% .";< y 0 % ( < ( ; /3%0 ' 16 ρ∆θ %B< ∆s = ∆θ = ∆ s p
du ds = dθ − y ds σ
ds
}ρ }E ∆θ dθ 1 −ε = = =k= lim ds p y ∆S → 0 ∆s
(q "3 l = E!>) ( 5 0):K my I
}
M
1
*ρ
=−
σ Ey
M
→*
1
ρ
=−
M → EI
d 2v M =− 2 EI dx
Copyright by:www.Afshinsalari.com
M
1
*ρ
=
d 2V dx 2
MO
*σ = −
εy ρ
<+ @mT , {8 ; /1; < 3 6 9! %
_( < @ K o : o+ :K!3 m6 9!m %m
_( '%m0 %a"% ., @#% %a"% S3T i% < 3 6 9! %
_( # S3T 0 F+ 6 # ".K 8+ , /g ,# e %.0 i%< 3 .,% %a3 % 6 9! %
_(
DE ' A /2< 'F8 >
1
ρ
=
d 2v dx 2 dv 1 + 12dx3
2
3
= 2
v ′′
[1 + (v′) ]
3 2 2
⇒
1
ρ
≈
d 2v * dx 2
:q "3 . ,-. 6y ,1 'T %=( 0 , ,-. K+ "" b#
. $% ,-. p%B V % ) . % $> m # v ,d> % %
d 2v M =− 2 dx EI
Copyright by:www.Afshinsalari.com
MP
d 2v M =− 2 dx EI
→
M = − EI
d 2v = − EI dx 2
% V = − EI
} v′′
" !م
dm = −V dx
d 3v = − EIv′′ dx 3
(@%K2 )+% 3 q = − EI
d 4v = − EIv ′′′′ dx 4
B8' % @ !( Z v ( 0) = 0 x = 0 θ = dv = 0 dx
" م #ﺵ
(!Kn Z D)@ @ !(ZA @ !( 9 x = 0 " م → V (0) = 0 # h x = 0 → M = 0
: K #< 6 h % ( > 4( "" 0 (
Copyright by:www.Afshinsalari.com
MR
tan θ = V ′
k=
1
ρ
=
θ = Arc tan v ′
,
dθ d ( Arc tan v ′) dx = ds dx ds ds dv = 1 + ( ) 2 dx dx
ds 2 = dx 2 + dv 2 1
2
[
= 1 + (V ′) 2
d v ′′ ( Arc tan v ′) = dx 1 + (v ′) 2 (1), (2) ⇒ K =
1
ρ
=
dθ = ds
]
1
2
( 2)
v ′′
[1 + (v′) ]
3 2 2
(3)
, q = 0 :0%1K %
% @ K %< f > 4( U 6%( 923% f = 4" ) * :6
v = > 4( "" ' %
_(
dv = v′ = > 4( "" h dx " !م } d 2v M = EI 2 = EI v′′ = /1; dx
θ=
d 3v = EIv′′ = i% dx 3 d 4v q = EI 4 = EIv′′′′ = dx
V = EI
Copyright by:www.Afshinsalari.com
M]
) . + EI , Y 1; Kg + L @%B % ( b# 4( "" r
=( ,2
v(0) = 0 <% o#% θ (0) = 0
1; %7"8 EI h EI EI
M ( L) = + M 1 ← x = L <% v% V ( L) = 0
d 2v = M = M1 dx 2
dv = M 1 x + c3 → EIv′(0) = C3 = 0 dx
dv = M 1 x → EIv = 1 M 1 x 2 + c4 + c3 x 2 dx EIV (0) = C 4 = 0 ⇒ v = M 1 x
2
2 EI
,1 > 4( "" ' ! %
_( 06 ' 3 @T , 4 K3 ,-. ,d> . ' # +
M1L + 2 4( h .6 X=L v #%K : EI
.
Copyright by:www.Afshinsalari.com
M`
) . m"# 13 91* + "0 ; %3T ,3+ + %K 12 ( T 91* % x 1= /"m( m 50cm( mT m; m; %+ % 91* '%0 ; +20mm ( T ! ( E st = 2.1 × 10 5 N
mm 2
13 - #T F ( T 0 1#:0
3 #%( y = 10mm
σ=
− yE P
> 4( "" $% 0 6 ' 3 9- (1) 8 = (3) 8 = 2# :K!3 . *+ 2# ( V ′ )2 '13 %3 p% ) = ,g(
: ) . E I %m ( 1; "" ., $+% 5 p%B ,;"!# @%K2 ,( @ % ( b# % ( > 4( ""
=( , ^ ., , Y 'T 3 6 )B [ 1( (.
ϖ =0 q=0
f 'T -3 :0%1K % ( b# % )
[+ F 9 23%# 8 = < @ K (Q8 [ SI F 9 23%# 8 = < @ K :^
Copyright by:www.Afshinsalari.com
Oc
RA + BB = −ω0 L ↵− ∑ M
A
⇒ −ω0 L L + RB( L) = 0 2
=O
EI
ω οLx ω 0 x 2 d 2v = M = − 2 2 dx 2
EI
dv ω 0 Lx 2 ω 0 x 3 = − + C3 dx 4 6
EIV =
( A)
ω 0 Lx 3 12
−
ω0 x 4 24
RB = wο
L 2
}0 + C3 x + C 4
6 % C3 A x =0 } v(0) # EIv(0) = 0 ⇒ C4 = 0
EIv( L) = 0 ⇒ C 3 = −
ω 0 L3 24
+ ω0 x 4 + ω0 L4 − ω0 3 + C3 x = +c L⇒ v = ( Lx − 2 L3x + x 4 ) ( B ) 3 24 24 24 EI at x = L / 2 ⇒ vmax = Copyright by:www.Afshinsalari.com
5w0 L4 384 EI
O
SI F 923% 8 = < @ K 9* ^) EL
d 4v d 3v = q = −ω 0 → EL 3 = −ω 0 x + C1 dx 4 dx EL
d 2v ω0 x 2 + c x + c = − 1 2 2 dx 2
, EIv′′(0) = 0, M (0) = 0 , or , or ELv′′( L) = 0 = M ( L) = 0
<% i+
=−
ω 0 L2
2
+ C1 L ⇒ C1 =
ω0L
⇒ C2 = 0
2
B # ' % 6 x = L 2 ' ! %
_( %.0* :#T , ' !%
_( %.0* Q8 ,8 * s y2 8 -3 v max =
5ω 0 L4
384 EI
DE ' G >
:) . . "0 5 %#<
% b# + % %2!# % ( S"0+
Copyright by:www.Afshinsalari.com
OA
@%K2 q : EI (1) V = EI
d ′′v = −ω 0 dx ′′
d 3v = −ω0 x + C1 dx 3
(2) ."; %7"8 M = EI (3) h θ : EI
d 2v ω x2 + C x + C =− 0 1 2 2 2 dx
dv ω x 3 + C1 x 3 + C x + C =− 0 2 3 2 2 dx
(4)[% %
_( v : EIv = − ω0 x 24 + C1 x 6 + C2 x 2 + C3 x + C4 ⇓ 4
3
2
v = 0 ⇒ C 4 = 0 x = 0 dv θ = dx = 0 ⇒ C3 = 0
4 ω 0 L4 L3 L2 + C1 + C2 =0 v = 0 ⇒ − 24 6 2 X = L 2 ω 0 L2 M = 0 − ⇒ 2 + C1 L + C 2 = 0
)S4 A 8 = A : C1 =
5WL 8
+ C2 =
− WL2 8
V = dv ω = v′ = θ = 0 dx EI
ω0 x 4
5 Lx 3 L2 x + − − [% %
_( 8 = EI 24 8 × 6 16
x 3 5 Lx 2 L2 − − + 16 8 6
x2 x1 = α 5 Lx L2 v′ = 0 → x + − = x = β 16 8 6 2
" %7# + ,-. !# ^FA , )- 9 ,-. ^F
x = o ⇒
M ( 0) = M A = −
i% V = + wo − x + V ( L) = Rb =
L2ω0 8
5ω 0 L 5L → V (0) = − Ra = 8 8
3ω0 L 8
Copyright by:www.Afshinsalari.com
OG
. "0 5 q ,;"!# @%K2 %Y ,( @ % ( b# > 4( "" ., % 3 6 o+ 4# "" h M =
qLx qx 2 − 2 2
I @ !( < x 1; %7"8
d 2v − M qLx qx 2 dv qlx 2 qx 3 ′ ′ = ⇒ EI V = − ⇒ EI = − ± + C1 EI 2 2 dx 4 6 dx 2 V′ = 0
(x = L 2 ⇒ ) درV ′(12 ) = 0 ⇒ C ( A)
1
. 6 %A 8 = C1 EIv ′ = .#% )%7 K3 A< EIV =
=−
( A)
qL3 24
− qLx 2 qx 3 qL3 ± + 4 6 24
− qLx 3 qx 3 qL3 x ± + + c2 12 24 24
V = (0) = 0 ⇒ C 2 = 0 ⇒ % ( > 4( "" 8 = V =
v =0
x =0
qx (− L3 ± X 3 µ 2LX 2 ) ( B) 24 EI
m B m8 = x = 1 2 ' %m m+ m - % ( 3 6 o+ ( δ ) 1#:0 ' ! %
_( #T , δ = Vmax
EI
5qL4 = 384 EI
d 3v = qx + C1 dx 3
Copyright by:www.Afshinsalari.com
d 4v EI = 4 = q %7# #%B dx EIv′′ =
qx 2 + C1 x + C {2 2 0
OM
" % % ( SK3 + 1; 6%7"8 + 6 ' !%
_( EIv′ =
qx 3 x2 + c1 + c2 x + c3 6 2
⇒ v ( 0) = v ( L ) = 0 v (0) = v(l ) = 0
EIv = ⇒
c1 =
qx 4 x3 x2 + c1 + c2 + c3 x + c4 { 24 6 2 0
− ql 2
EIv = −
,
c2 = 0
,
c3 =
ql 3 24
c4 = 0
qx 4 ql 3 x qlx 3 + + +0 24 24 12
:) . @%K2 ,( 0 @%B % ( 1#:0 h + 1#:0 ' ! %
_( + > 4( "" .#+T , ,;"!#
− q( L − x) 2 M = 2 V = q ( L − x) 6 7v′′8 2 d 2v EI ( 2 ) = M = −q ( L − x) 2 dx
}v′ 3 qL3 dv EI ( ) = M = −q ( L − x) + c1 , % %% h @ !( V ′(0) = 0 ⇒ C1 = 6 dx 6
Copyright by:www.Afshinsalari.com
OO
qx (3L2 − 3Lx + x 2 ) → 6 EI qx 2 v= (6 L2 − 4 Lx + x 2 ) + C2 24 EI
(A) v′ = ( B)
EIv =
q (l − x) 4 + C1 x + C2 24
&'دﻝ → v = v(0) = 0 @ !( 9 * v: ⇒ c 2 = 0
qx 2 (6l 2 − 4l x + x 2 ) 24 EI
X=L "#:7# F 0 % (
_( #T , (B)
δ = v( L) =
qL4 8 EI
( A)
θ = v′( L) =
qL3 6 EI
(. 9 'F8 > @7 EI
d 4v d 3v = q → EI = qx + C1 dx 4 dx 3
(k )
:%#< f * v% % x =L % +% 3 'I d 3v = 0 ⇒ C1 = − qL → 6 "3 + 6 % K 8 = dx 3
Copyright by:www.Afshinsalari.com
OP
() . "0 91( q0 %.0* f .. 0 @ % ( ' !%
_( "" 8 = "0
=( ) = , #+% 3 .. "#T% L
qoL
B F 2 2 B @ !( <
∑M RA =
q0 L 6
B
= 0 → R A ( L) =
+
⇒ ∑ Fy ↑ = 0
RB = q0 L
EI =
d 2v =M dx 2
M ( x) =
R A + RB =
2
− q0 L
6
= q0 L
q0 L q L ⇒ RB = 0 2 3
3
q0 L q L q 1 x x x − ( x)( )(q 0 )( ) = 0 x − 0 x 3 2 2 L 3 6 6L
EI
q d 2 v q0 L = x = 0 x3 2 6 6L dx
EI
dv q 0 L 2 q 0 4 = x − x + C1 dx 12 24 L
EIv =
qo L L ( ) 3 2
q 0 l 3 q0 5 x − x + c1 x + c2 36 120l
Copyright by:www.Afshinsalari.com
OR
q0 L q x = →y= 0 y x L − qοL qx x x x+ ο × × +M =0 6 L 2 3
* o#% v(0) = 0
(1),
v( L) = 0
( 2)
(1) ⇒ C2 = 0 q0 L4 q0 L5 − + C1 L = 0 36 120 L q0 x (−3 x 4 + 10 L2 x 2 + 7 L4 ) v= 360 EIL
( 2) ⇒
: C1 =
7 q0 L3 360
[ SI -(% 9 23%# 8 = < @ K [+ #%B
EI
q x q d 4v =q= 0 = 0 x 4 l l dx
EI
d 3v q0l 2 = x + C1 2l dx 3
EI
d 2 v q0 3 = x + C1 X + C 2 dx 2 6l
EI
dv q0 4 1 = x + C1 x 2 + C2 x + C3 2 dx 24l
EIV =
()
}0 }0 q0 5 q0 l x + C1 x 3 + 1 C 2 x 2 + C 3 x + C 4 2 120l 6
* o#% v(0) = 0 v′′(0) = 0
3 →
C4 = 0
1 → C2 = 0
Copyright by:www.Afshinsalari.com
(A) (G)
O]
q0 L4 q0 L4 7 − + C3 L = 0 → C3 = q0 L3 120 6 × 6 360 2 q0 L qL 1 v′′( L) = 0 → + C1L → C1 = 0 6 6 3 v ( L) = 0 →
(G) %# "#:7# F ⇒ V =
q0 x (3 x 4 − 10 L2 x 2 + 7 L4 ) 360 EIL
:) .
=( M ο :0%1K %7"8 b# %Y ,( 0 @ % ( ' ! %
_( "" 8 = . "0
←+
∑M A = 0
→ RB ( L) + M ο = 0 − Mο L M → RA + RB = 0 → RA = ο L M ο = − RB L
+
∑ Fy ↑ = 0
→ RB =
0≤ x≤a ⇒ M = RA x =
a≤x≤L
Copyright by:www.Afshinsalari.com
Mο x L
Mο L x M = M( x −1) L
0≤ x ≤a 0≤ x ≤ L
O`
⇒ M = RA x − M ο =
Mο x x − M ο = M ο ( − 1) L L
13 v2 + v1 h (%( CB + AC SK12 ' ! %
_( "" 8 = EI EI
M d 2v =M = οx 2 L dx
0≤ x≤a
d 2v x = M = M ο ( − 1) 2 L dx
a≤x≤L
}v1′ dv M 0≤ x≤a EI 1 = ο x 2 + C1 2L dx v2′ } EI dv 2 = M ο ( 1 x 2 − L ) + C a≤x≤L x 2 dx L 2
M0 3 EIV1 = L x + C1 x + C 3 M 1 1 EIV2 = 0 ( x 3 − Lx 2 ) + C 2 x + C 4 L 6 2
0≤ x≤a
a≤x≤L
:* o#% 1 → C3 = 0 v1 (0) = 0
v2 (l ) = 0
( 2)
v1 (a ) = v2 (a )
(3)
M M ′ v1 (a ) = v2 (a ) → (4) ⇒ 0 a 2 + C1 = 0 ( 1 a 2 − La ) + C2 2 2L L C1 = C 2 + M 0 a
Copyright by:www.Afshinsalari.com
(5)
Pc
( 2) ⇒
M 0 −1 3 1 3 ( L + L ) + C 2 L + C 4 = 0 ⇒ C 4 = −C 2 L + 1 M 0 L2 2 6 3 L (3) ⇒
( 6)
M0 3 M a + C1a = 0 ( 1 a 3 − 1 La 2 ) + C 2 a + C 4 6 2 6L L
C1 a = − 1 M 0 a 2 + C 2 a + C 4 2
(7 )
4 K3 7 ( 5 o+ 9* < C1 = −
M0 (3a 2 + 2 L2 − 6 La ) 6L
C2 = −
M0 (3a 2 + 2 L2 ) 6L
C4 =
M 0a2 2
v1 =
M0x (6aL − 3a 2 − 2 L2 − x 2 ) 6 LEI
v2 =
M 0 x 1 2 1 3 3a 2 + 2 L2 a2 L x+ Lx − x − LEI 2 6 6 2
0≤x≤a
a≤x≤L
() 9! % Q8 g C 3 ' ! %
_( 0 ,8 * + % ( 3 6 o+ , M0 %7"8 0 K+ . ( a = 1 2 ) (A)9! , 6g3 ' ! %
_( c 3
Copyright by:www.Afshinsalari.com
P
:) . P ,( i
_( "" 8 = . "0 - : 3
_( .#+T ,
}v′′ d 2v EL 2 = M = − p ( L − x) dx }v′ dv θ : EI = − P ( Lx − 1 2 x 2 ) + C1 dx }0 }0 EIV = − P ( Lx 2 − 1 x 3 ) + C1 x + C 2 2 3
* o#% V ( 0) = 0 ⇒ V ′(0) = 0 V =
δ = V ( L) =
⇒
C2 = 0 C1 = 0
Px 2 ( x − 3L ) 6 EI
pL2 − pL3 ( L − 3L ) = 6 EI 3EI PL2
θ = V ( L) = − p( L( L) − 1 2 L2 ) = − PL2 + P 2 L2 = − 2 EI
Copyright by:www.Afshinsalari.com
PA
:) . + % 9# !n @ !( A 3 0 ABC% ( AB ,12 ' ! %
_( "" % ( ' ! %
_( 9 23%# 8 = < @ K - .. ,( BC ,12 ., I i+ 40 AB 3 6 ' ! %
_( 1#:0 . "0
=(
∑ MA = 0 ⇒ LR ∑F
y
B
=
qL L qL ( L + ) : RB = 4 3 3
= 0 ⇒ R A cos 60 0 − RB +
EIv′′ = − M = − RA cos 600 x = −
qL qL = 0 : RA = 4 6
qL x 12
0≤ x≤L
qL 2 x + C1 24 qL 3 EIv = − x + C1 x + C2 72 EIv′ = −
v(0) = 0 (1)
Copyright by:www.Afshinsalari.com
v( L) = 0
( 2)
(1) ⇒ C 2 = 0
PG
(2) ⇒ − EIv =
qL4 + C1 L = 0 72
: C1 =
qLx 2 (L − x2 ) 72
qL3 72
(3)
. 6 % % + 2 v sK 1#:0 ' ! %
_( 9
=( % V′ =
ql ( L2 − 3x 2 ) = 0 72 EI
:x =
L
3
.#T , 1#:0 ' ! %
_( (3) 8 = x = vmax =
L
3
"#:7# F
qL4 108 3EI
. [ SI -(% 9 23%# 8 = < @ K y2 # 9* %7# #%B EI
d 4v = −q = 0 dx 4
d 3v EI 3 = C1 dx
EIv′ = 1 C1 x 2 + C2 x + C3 2
EIv′′ = C1 x + C2 EIv = 1 C1 x 3 + 1 C2 x 2 + C3 x + C4 → C4 = 0 6 2
:* o#% C2 =0
v′′(0) = v (l ) = 0
} v′′ (0) = 0
qL qL L EIv′′( L) = − M B = − = C1 L ⇒ C1 = 12 4 3
' !%
_( "" 8 = 43T <+ % )%7K3 , Y SI W * v% SI < @ K #T , (3) 8 =
Copyright by:www.Afshinsalari.com
PM
HF 7 % ' '6 7' #' Pcr =
π 2 EI L2
=
π 2 EAr 2 L2
#:7# F )% %3T %K10 [0 %6 "0 ^ 2* + %6 I y + I x I - % :I σ cr @ 3 3% /"( \ 3% v% /"( "0 σ cr =
Pcr π 2 EAr 2 = A AL2
r=
σ cr =
I ;%I l = A
π 2E L r
2
"# 'K %n h#%e
%n h#%e 9 1> /"( 13 E = 2 × 10 5
Copyright by:www.Afshinsalari.com
N mm 2
L ,-23 r
PO
+% 42' 5
:0% P 9#-( %
σ max =
P Mc + A I
M max = PVmax + Pe = P(Vmax + e)
σ max =
P (Vmax + e)c 1+ A r2
Vmax = e(sec
P L Vmax = e sec( ) − 1 EI 2
P=
Pcr FS
π 2
P − 1) Pcr
FS =
Pcr P
P ec P L ) σ max = 1 + 2 sec( A r EI 2 π P P ec σ 1 + 2 sec max = A r 2 Pcr P 1 = Pcr F .S
:) . @ 9 !( 3 @ 9DK %7#!# # 6 0 9!I + < 3K ( %K# ) I x = 863.28 cm 4 + A = 22.94 cm 2 B < b# %6 C . ,
Copyright by:www.Afshinsalari.com
PP
. ( %K =e ) I y = 71.09 cm 4 , I 'K 3% 36ocm 'T )B + @ 'K S6 !( E = 2.1 × 10 6
Kg cm 2
I x = I x′ = 2 I X = 2(863.28)1726.56 cm 4
[
] [
]
I Y ′ = 2 I y + Ad 2 = 2 71.09 + 22.94(5 2 ) = 1289.18 cm 4 I min = 1289.18
Le = L = 360 cm
@ @ !( % + p cr =
p all =
π 2 EI min Le
2
=
(3.14) 2 × 2.1 × 10 6 × 1289.18 = 206171 Kg (360) 2
Pcr = 82.4 2.5
Copyright by:www.Afshinsalari.com
TON
PR
S6 !( + , $+% 2.5m )+ 50 × 100 C I 'K b# : ) . . , @ $% @ 'T p%B + . σ y = 44 × 10 6
N N , E = 13 × 10 9 2 % 2 m m
'K %n h#%e Z 'K 3% ZA ' F /"( 3% /"( ,-23 ZG . # 13 91( 2.5 ' " 1B h#%e 3( 'K 0 < 4 %.0*ZM
1 2 hb 12
r=
I A
r=
1 hb 2 b2 b b 50 12 = = = = mm hb 12 12 2 3 2 3
I Y = I min =
%n h#%e =
2) Pcr =
π 2 EA Lc r
2
=
Copyright by:www.Afshinsalari.com
LC 2.5 × 10 3 = = 173.2 50 r 2 3
π 2 (13 × 10 9 )(0.1 × 0.05)m 2 (173.2) 2
= 2138.50 N
P]
Pcr 21385 6 N 2 σ cr = A = (0.1 × 0.05) = 4.277 × 10 m 3) σ 4.277 × 10 6 cr = = 0.0972 44 × 10 6 σ y
4) Pall = Pmax =
σ cr = 9.7% σ y
Pcr 21385 = = 8.56 kN FS 2.5
/3 10 6 $% % 'I % 13 % /3 10 ,+ | 6 /0 ,( > . % % ; F ' 0 %Y K
N N % %K A 'K b#:) . \ E = 0.125 × 10 5 2 mm mm 2
/"() σ all = 12
:'K = K , 6=2.5 + (< 4 ( 3 0 100 (Q8 . "0 91( ( 3 0 200 (^ P = 100
F .S =
Pcr =
L = 2m
KN
π 2 EI L2
π 2 EI L2
→ Pcr = 2.5(100) = 250 KN
→I =
Pcr L2 (250 × 10 3 )(2 × 10 3 ) 2 = = 8106 × 10 3 mm 4 π 2E π 2 (0.125 × 10 5 )
Copyright by:www.Afshinsalari.com
P`
I=
1 4 a 12
→
1 4 a = 8106. × 10 3 → a = 99.3mm ≅ 100mm 12
P 100 × 10 3 N N σ = = = 10 < 12 2 A 100 × 100 mm mm 2 'K /"( )%K"0 3 σ = P = 12 = 100 × 10 → a = 91.3m A A = a2
1 &()
. "0 ^ gK3 %KI0a : K!3 *= ., )- 9 * 8 , < 4 /"( < %K!I0 @T , /"( 'I ^) P = 200 KN
Pcr = 2.5(200) = 500 KN
I=
Pcr L2 (500 × 10 3 )(2 × 10 3 ) = = 16210 × 10 3 mm 4 2 2 5 π E π (0.125 × 10 )
I=
1 4 1 a ⇒ a 4 = 76210 × 10 3 → a = 118.1mm 12 12
, < 4 /"( < %K : /"( 'I σ=
A=
P 200 × 10 = = 14 .34 A = a (118 .1) 2 3
P
σ all
=
N mm 2
200 × 10 3 = 16667 mm 2 12
13 )- 9 @T ,m @<3 % # 'K m Cmmmm + . 13
=( 'T ,+
a 2 = 16667 ⇒ a = 129 .1 mm
. h " 130*130mm b#
Copyright by:www.Afshinsalari.com
Rc
@ K; \ @ @ f Dg B 3 b# < %K 2.45 ) AB 'K : ) . . , % B% /"(+ < 4 \ A ' " 1B h#%e %8+ < @ K ( Q8 . "0 ^ 2* W 'K % %K ` ,#:0% < N+%; @T , Q8 ,12 0 < 4 "0 $% (^ @ 8( %.0* /"( + 'K ' ! %
_( \ f # % + 'K . "0 5 'K
A = 2284mm 2
I = 3.33 × 10 6 mm 4
r = 38.18mm
c = 50mm
π 2 EI
σ all =
^)
Le
2
=
π 2 (2.1 × 10 5 )(3.33 × 10 6 ) (4900) 2
Pall 143.75 × 10 3 = = 62.44 A 2284
π
2
:0% < N ; Vmax = e sec(
Copyright by:www.Afshinsalari.com
= 287456 N = 287.5 KN
N mm 2
π P ) − 1 = 19 sec × 0.707 − 1 Pcr 2
R
Vmax = 19(2.252 − 1) = 23.79
σm =
π P ec 1 + 2 sec( A r 2
σ m = 155.64
π P 143.75 × 10 3 19 × 50 ) = sec( ) 1 + 2 Pcr 2284 2 2 (38.18)
N mm 2
:) . o#% $% . !( ,0%* 9 % n S6 !( % D SK3 + !# \H %0 6; 4# /3 10 ∆t f%* F e I > 4( K )T @# . "0 $% α (%* v 2-3 h#%e ∆L = Lα∆Τ =
FL AE
: F = AEα∆Τ
( F = Pcr ) . Pcr 3% %% F "0 3 10 K+ Pcr =
π 2 EI L2
= F = AEα∆Τ ⇒ ∆Τ =
π 2I AαL2
:) . +% !"# $% , @ 9 !( ' 2!# E"F + b# + < ABC 5 %; P # %K '( θ #+< I ,( . % f 'T > /3 10 %Y 5%* Kg# (0 < θ <
Copyright by:www.Afshinsalari.com
π 2
) H %0 + 5%; %
RA
. ""0 3 10 ' :16 BC,AB + 0 6; 1#:0 K+ P FAB = (Pcr ) AB =
π 2 EI = P cos θ ( L cos β ) 2
FCB = ( Pcr )CB =
π 2 EI = P sin θ ( L sin β ) 2
: 4 K3 + %B '%0 2( < tan θ = cot 2 β
Copyright by:www.Afshinsalari.com
⇒ θ = Arc tan(cot 2 β )
RG
:) . S6 !( SK3 + 2.5 × 5 cm = + 9 K2 % 'K b# %8+ )% 'T % 0 'K L )B #%( @ (0 . , b# ,( + @ H , I W 3% % . "0 $% E = 2.1 × 10 6
Kg cm 2
σ PL = 2100
Kg h "( * cm 2
H 6; I 'T 3% /"( 120cm )B 'K % – ^ σ Pl 6 % σ cr F
'K 3% /"( σ cr =
π 2 EI L2 = = Aσ Pe
Pcr π 2 EI = A AL2
1 × 5 × 2.5 3 ) 12 = 5140.42 (2.5 × 5)(2100)
π 2 (2.1 × 10 6 )(
L = 71.71 cm
@ K %8+ )% < L = 120cm > 71.70 'I
^)
σ cr
6 4Iاق-ﺡ 7 48 1 π 2 (2.1 × 10 6 )( × 5 × 2.5) Pcr π 2 EI kg N 12 = 750 = 75 = = = 2 2 2 A mm AL 2.5 × 5 × 120 cm
Copyright by:www.Afshinsalari.com
RM
:) . "0 ^ 2* BC > '%0 3 10 z> 0 P 3% 9! F( ( 9D B,C)
→+
∑M
A
⇒
Pcr = FBC
PL − FBC cos 45 L = 0 2
⇒
FBC =
Pcr 2
=
→ FBC =
π 2 EI ( 2 L) 2
P 2 : Pcr =
π 2 EI 2 L2
:) . I p 3% . % f 'T > /3 10 %Y @< Kg# +% !"# $% . $% β=30. #+< .
Copyright by:www.Afshinsalari.com
RO
. ""0 3 10 6 > %6 0 ,g# 6; +% /3 10 %Y K+ : @<
FAD = FCD : # ' ( ,-23 P = FBD + 2 FCD cos β (1) ( Pcr ) AD = ( Pcr ) CD =
1) ⇒ Pcr =
π 2 EI 2
L
π 2 EI Le = 0.7 L
} L ( e )2 cos β
+2
π 2 EI L 2 ( ) cos β
=
20.19 EI π 2 EI ( Pcr ) BD = L 2 L2 ( ) cos β
cos β = 36.1
EI L2
:) . P=4050kg :0% < N ; ,( 1.80m )B + 5cm × 5cm =+ % 3K $% . 2.5m %% + % 6% < !# K e :0% < N+%; @% . #
'T /"( %.0* @ S6 !( SK3 + 'K !"# . E = 2.1 × 10 6
Kg > 4( h#%e cm 2
mmmm P +% 3 %Y mm3 E "0 mmm $%mmm 6; fm X mmmmm )mmmmm* 'mmmmmK /1; e = EO = 2.5cm ,%
x )* ABC z. + K %% + x )* % + K
Copyright by:www.Afshinsalari.com
RP
3
AC (OB) I x = 2( I ABC ) x = 2 =2 12
5 2
)3
12
= 52.08 cm 4
P M max P Pe KL + = + sec A S A S 2
σ max =
S=
5 2(
Ix OB
=
52.08 = 14.73 cm 3 5 2
K=
σ max =
P = EI x
4050 6.04 = 6 (2.1 × 10 )(52..08) 1000
4050 4050 × 2.5 6.04 × 180 Kg + sec = 162 + 805.13 = 967.13 5×5 14.73 2000 cm 2
:) . EI 'mmmmmmK + % ( ."; , - H "0 3 10 CD 'K P I ,( 9 9! . , %% + %6 )B + 'K % + F +% 3 K mmmm "0 mmmmm
=mmmm( CD 3% %% 'T Emmmmmmmmm . 6 mmm %mmm CD 'mmmK
Copyright by:www.Afshinsalari.com
RR
C 3 6 ' ! %
_( < v% "0 %a3 p% 'K 9! %
_( < % . K3 %#< fD
δ =δ′
δ ′, δ
δ =δ′⇒
5 PL4 δ = 384 EI
,
δ′=
FL3 48 EI
5 PL4 FL3 5 PL = ⇒F= 384 EI 48 EI 8
. #T , Pcr "=# P 3% 6 % + 2 ( Pcr ) cd F +% 3 % ) * 5 PL π 2 EI = 8 (0.7 ???)2
:
Pcr = 32.3
EI L3
:) . . , @ 9 !( I 9* 3 + K + L ) ' 2!# > < W 9! 5 %; . "0 5 'T > < !# /3 10 %Y 5 %; Kg# +% z> 0 Pcr 3%
Copyright by:www.Afshinsalari.com
R]
P P 1 → F1 cos 30 = : F1 = ∑ F y = 0 2 3 P P 1 ∑ Fx = 0 → F2 cos 60 = : F1 = 2 3 3
P 2 → F3 = F1 = ري ∑ Fy = 0 3 P 2 ∑ Fx = 0 → F4 = ( F1 + F3 ) cos 60 = 3
.
P 3
ري
آ
آ
S3T 16 +% 3 + " ,( ,CD.BC,AB 6>
+% K+ 5%; + " 3% 6> S3T %6 , %% : 3 > # )B 'I . % F1 = F4 =
Pcr 3
=
π 2 EI L2
π 2 EI
3% %% S3T ; +% 3 0 :#
L2 :
Pcr =
3π 2 EI L2
:) . z> 0
3% " I 9* 3 + K 716 9#V 9! 5%; > . "0 5 'T > < b# /3 10 HHHHH 5%; Kg# +%
Copyright by:www.Afshinsalari.com
R`
1 ∑ Fy = 0 → F2 cos 45 = P : F2 = 2 P 1 → F1 = F2 cos 45 = P ∑ Fx = 0 2 ∑ Fx = 0 → F3 cos 45 = P : 2 → F4 cos 45 = P ∑ Fy = 0
ري
آ
F3 = 2 P
ري
آ
S3T 16 +% 3+ " ,(
AE,BE,CE,DE 6mmm> #% "
; K+ 5%;. ""0 3 10 6 %6 , ' 2!# : 3 S3T )B 'I." 2 P .%
π 2 EI (
F 2 = F3 = 2 Pcr =
L 2
)
π 2 EI (
L 2
3% %% S3T ; +% 3 0 :#%
2
)2
: Pcr =
2π 2 EI L2
:) . b# %Y ,( + % BE,AD,AC 6 'K + % 9! s W '< - 2F +" fD 6 'K . 0.1W + 2 ( # 8:8< < 3 ) +% 3 : @< ( 3( I W '<+ %.0* . @ @ ' 3 = 8 ; ( H :#%3 +% /3 10 @#5 %Y . 2.1 × 10 6
kg > 4( h#%e 6 'K E"F cm 2
H"K26 # 5 S3K #T ,+
=+ /3 10
= %a3<
Copyright by:www.Afshinsalari.com
]c
o S3T % + " D SK3 + 6 'K 'I + →
∑M + →
∑F
x
A
= 0 ⇒ FAC cos 60 − 0.1w − 4 FBE = 0 → FBE = 0.495 N
= 0 ⇒ FAC cos 60 − 0.1w = 0 → FAC = 0.2 w
+
↑ ∑ Fy = 0 ⇒ FAC cos 30 + FAD + FBE − w = 0
;
FAD = 0.33 w
, !1 /3 10 FBE>FAD + ' 2!# 'K %6 0 # F( "0 ^ 2* 'K + # < b# %6 /3 10 #% " . 6 AC # BE S3K . ,% 6; f ( Q =e ) Z )* 6 'K # /3 10 \ IZ =
12(8) 3 − 9(5) 3 = 418.25 cm 4 12
( Pcr ) BE =
π 2 EI Z L2
=
42.81 t > 0.495 w
Copyright by:www.Afshinsalari.com
π 2 (2.1 × 10 6 )(418.25) (450) 2 ⇒ w = 86.81 t
= 42.81 t
]
( Pcr ) AC =
π 2 EI Z L 2 ( ) cos 30
=
32.11 t > 0.2 w
π 2 (2.1 × 10 6 )(418.25) (450
⇒
)2 cos 30
= 32.11t
w =< 160.55 t
%K10 86.48ton < # w :#%3 +% /3 10 @#5 %Y : @< !"# % #% " . %0 6; 3 10 BE 'K % 86.48t %% 3 "I
Copyright by:www.Afshinsalari.com