MAT 4
materi78.co.nr
Turunan A.
Contoh pengerjaan bentuk U ± V:
PENDAHULUAN Turunan/differensial adalah laju sesaat perubahan fungsi f(x) pada interval x2 dan x1 yang mendekati nol.
Contoh 1: y = x4 – 5x2 – 7, tentukan turunannya!
Laju rata-rata perubahan fungsi
Contoh 2: f(x) = (x – 5)(x + 7), tentukan turunan pertama dan keduanya!
Jika x1 = a, x2 = a + b, dan a adalah domain dari f(x), maka: ∆y ∆x
=
∆y ∆x
f(x2 ) - f(x1 ) x2 - x1 =
f(a+b) - f(a)
=
(a+b) - a
f’’(x) = 2
f(x+b) - f(x)
Contoh 3: f(x) = 3x√x - 7√x - 5x, tentukan f’(x)!
b
3
Jika x1 = a, x2 = a + b, a adalah domain dari f(x), dan nilai b mendekati nol, maka: = lim
∆y
= lim
b→0 ∆x
f(x) = x2 + 2x – 35 f’(x) = 2x + 2
Adalah nilai limit dari laju rata-rata perubahan fungsi f(x) pada interval x2 dan x1 mendekati nol.
dx
y’ = 4x3 – 10x
f’(x) = 2.x2-1 + 2 – 0
Laju sesaat perubahan fungsi (turunan)
dy
y' = 4.x4-1 – 2.5.x2-1 – 0
b→0
f(x2 ) - f(x1) f(a+b) - f(a) = lim x2 - x1 b→0 (a+b) - a
3
f’(x) = 3. . x 2
dx
B.
=
d[f(x)] dx
f(x+b) - f(x) = y’ = f’(x) = lim b b→0
Rumus-rumus turunan fungsi pada beberapa bentuk: Turunan fungsi (f’(x))
2
7
9
2√x
dy dx dx
= 2.2a2.x2-1 – 4.3a.x4-1 + 5 + 0 = 4a2x – 12ax3 + 5
Contoh pengerjaan bentuk U.V:
U = 2x2 V = √2–x = (2-x)
U’ = 4x 1⁄ 2
U’.V + U.V’
y’ = U’V + U.V’
U.V.W
U’.V.W + U.V’.W + U.V.W’
y’ = 4x√2–x + 2x2.
U V Un
U’.V - U.V’ V2 n.Un-1.U’
U∘V = U(V(x))
U’(V(x)).V’(x)
U∘V∘W = U(V(W(x))
U’(V(W(x))).(V(W(x))’
y = f(u)
dy du dy . = du dx dx dy du dv dy . . = du dv dx dx
u = g(v)
TURUNAN FUNGSI ALJABAR Aturan-aturan yang digunakan pada turunan fungsi aljabar: f(x)
1
V’ = . (2-x)– 2
=
U.V
v = h(x)
–5
Contoh 4: y = 2a2x2 – 3ax4 + 5x + a + 7, tentukan turunan y terhadap x!
U’ ± V’
y = f(u)
1⁄ 2
–5
U±V
u = g(x)
C.
1
– 7. . x–
Contoh 1: Turunan pertama dari y = 2x2√2–x adalah?
RUMUS-RUMUS TURUNAN
Fungsi (f(x))
1⁄ 2
f’(x) = √x – 2
dy
dy
1
f(x) = 3x ⁄2 – 7x ⁄2 – 5x
f’(x)
y’ =
1⁄ 2 .(-1)
-1 2√2–x
-1 2√2–x
8x - 4x2 - x2
y’ =
8x - 5x2
√2–x √2–x Contoh 2: f(x) = (3x + 4)(8 – x), tentukan f’(x)! U = 3x + 4
U’ = 3
V=8–x
V’ = -1
f’(x) = U’V + U.V’ f’(x) = (3)(8 – x) + (3x + 4)(-1) f’(x) = 24 – 3x – 3x – 4 f’(x) = 20 – 6x Contoh 3: f(x) = (x – 2)2(3 – x), tentukan turunan kedua dari f(x) dan nilai f’’(1). U = (x – 2)2
U’ = 2(x– 2)(1) = 2x – 4
V=3–x
V’ = -1
k (konstanta)
0
f’(x) = U’V + U.V’
k.x
k
f’(x) = (2x – 4)(3 – x) + (x – 2)2(-1)
k.xn
n.k.xn-1
f’(x) = 6x – 2x2 – 12 + 4x – x2 + 4x – 4
TURUNAN
1
MAT 4
materi78.co.nr f’(x) = –3x2 + 14x – 16
y’ = 3(x – 2)2 = 3(x2 – 4x + 4)
f’’(x) = (2)(-3x2-1) + 14 – 0
y’ = 3x2 – 12x + 12
f’’(x) = -6x + 14
y’’ = 2.3.x2-1 – 12
f’’(1) = -6(1) + 14
f’’(1) = 8
y’’ = 6x – 12
Contoh 4: a = (2b – 4)(b – 1)(3 – b), tentukan U = 2b – 4
U’ = 2
V=b–1
V’ = 1
W=3–b
W’ = -1
da db
da db
Contoh 3: g(x) = (√x – 5)2 + 2√x + 2, nilai g’(x)?
!
1
V = 2√x = 2x
2
g’(x) =
2
= 8b – 2b – 6 + 10b – 2b – 12 – 2b + b – 4 = 19b – 6b2 – 22 U V
U = 3x + 2
3x+2 2x+3
!
1+2x-1 +x-2
=
√x
+0
4√ x
g’(x) = 3
h’(x) = 2(3x + 6)(3)
h’(x) = 18x + 36
Contoh 2: y = √x+√5x–1 , tentukan y’. Kita anggap bahwa: y = √u 1 1 1+x
1 x2 2 1 1+x +x2
1 2 x +2x+1 Contoh pengerjaan bentuk Un: f’(x) =
dy dx
=
dx
D.
.
du dx 1 5 1 5 = . (1+ )= . (1+ ) 2√ u 2√5x+1 2√x+√5x–1 2√5x+1 =
dy
dy du
1 2√x+√5x–1
+
1
5 .( ) 2√x+√5x–1 2√5x+1
2√5x+1+5
=
4√(x+√5x–1)(√5x+1)
TURUNAN FUNGSI TRIGONOMETRI Aturan-aturan yang digunakan pada turunan fungsi trigonometri: f(x)
Contoh 1: y = (1 – 5x)6, maka nilai y’? n-1
u = x + √5x–1
maka,
!
V = 1 + x-1 V’ = -x-2 U’.V - U.V’ f’(x) = 2 V (0)(1+x-1 ) - (1)(-x-2 ) f’(x) = 2 (1+x-1 ) f’(x) =
1
h’(x) = f’(g(x)).g’(x)
U’ = 0
x-2
2√x
+
f’(x) = 2x
V = 2x + 3 V’ = 2 U’.V - U.V’ y’ = 2 V (3)(2x+3) - (3x+2)(2) y’ = 2 (2x+3) 6x + 9 - 6x - 4 5 y’ = y’ = 2 2 4x +12x+9 4x +12x+9 Contoh 2: Tentukan nilai f’(x) dari f(x) =
1
Contoh 1: Jika f(x) = x2 + 4, g(x) = 3x + 6, dan h(x) = f∘g(x), tentukan h’(x)!
U’ = 3
U=1
f’(x)
sin U
cos U. U’
6-1
cos U
-sin U. U’
5
y’ = -30(1 – 5x)
tan U
sec2 U. U’
Contoh 2: y = (x – 2)3, tentukan turunan pertama dan kedua y.
sec U
sec U. tan U. U’
cot U
-cosec2 U. U’
cosec U
cosec U. cot U. U’
y’ = n.U .U’ y’ = 6.(1 – 5x) . (-5)
n-1
y’ = n.U .U’ y’ = 3.(x – 2)3-1. (1)
√x
2
x Contoh pengerjaan bentuk komposisi fungsi dan turunan berantai:
:
Contoh 1: Tentukan y’ dari y =
V’ = 2. .x– ⁄2 =
1 √x - 5 √ x - 4 √ x x - 4√ x + = . = x √x √x √x √x
g’(x) = 1 –
Contoh pengerjaan bentuk
1
1
1 2√x 1
W’ = 0
g’(x) = 2(√x – 5).
2
(2b2 – 2b – 4b + 4)
db
=
g’(x) = n.U .U’ + V’ + W’
= 2(3b – b – 3 + b) + (6b – 2b – 12 + 4b) –
da
1⁄ 2
1⁄ 2
n-1
= 2(b–1)(3–b) + (2b–4)(1)(3–b) + (2b–4)(b–1)(-1)
2
2
W=2
= U’.V.W + U.V’.W + U.V.W’ 2
1
U’ = . x–
U = √x – 5 = x ⁄2 – 5
TURUNAN
2
MAT 4
materi78.co.nr Contoh pengerjaan bentuk U ± V: π
Contoh 1: f(x) = 2.cosx – sin4x + tanx, maka f’( 4 )? f’(x) = –2.sinx – 4.cos4x + sec2x π
π
π
π
f’(4 ) = –2.sin( 4 ) – 4.cos4(4 ) + sec2( 4 ) π
2
f’(4 ) = –2. /2√2 – 4.(–sin(2 )) + (√2)2 π
π
f’(4 ) = –√2 + 4(1) + 2
1 + 2.cosx + cos2 x + x.sinx + sin x 2 (1 + cosx) 2 + x.sinx + 2.cosx f’(x) = 2 (1 + cosx) f’(x) =
π
1
U’.V - U.V’ 2 V (1 + cosx)(1 + cosx) – (x+sinx)(–sinx) f'(x) = 2 (1 + cosx) f’(x) =
f’(4 ) = 6 – √2
Contoh 2: h(x) = cosx + x.sinx – x3 + 5, maka h’(x)? 2
h’(x) = –sinx + (1)(sinx) + (x)(cosx) – 3x + 0 2
h’(x) = –sinx + sinx + x.cosx – 3x
Contoh pengerjaan bentuk Un: π
Contoh 1: Tentukan turunan dari y = sin7(5x2 - 2 )! y’ = n.Un-1.U’
h’(x) = x.cosx – 3x2
π
π
Contoh pengerjaan bentuk U.V:
y’ = 7.sin7-1(5x2 - 2 ).cos(5x2 - 2 ).(2.5x2-1 – 0)
Contoh 1: y = (sinx – cosx)(sinx + cosx), tentukan turunan pertama dan kedua dari y.
y’ = 70x.sin6(5x2 - 2 ).cos(5x2 - 2 ) Contoh 2: f’(x) dari f(x) = sec10(3 – 5x) adalah?
U = sinx – cosx
U’ = cosx + sinx
f’(x) = 10.sec10-1(3 – 5x).sec(3 – 5x).tan(3 – 5x).(-5)
V = sinx + cosx
V’ = cosx – sinx
f’(x) = –50.sec10(3 – 5x).tan(3 – 5x) 1
y’ = U’V + UV’ y’ = (cosx + sinx)(sinx + cosx) + (sinx – cosx)(cosx – sinx) 2
2
2
y’ = sin x + 2.sinx.cosx + cos x – (sin x –
2.sinx.cosx + cos2x)
y’ = 4.sinx.cosx y’ = 2.sin2x
y’’ = 4.cos2x
Contoh 2: Tentukan y’ dari y = 4.sin2x.cos2x ! U = 4.sin2x
U’ = 2.4.sinx.cosx U’ = 8.sinx.cosx = 4.sin2x
V = cos2x
V’ = –2.sin2x
y' = U’V + UV’ y’ = (4.sin2x)(cos2x) + (4.sin2x)(–2.sin2x) y’ = 2.sin4x – 8.sin2x.sin2x U V
Contoh pengerjaan bentuk : Contoh 1: Jika y = U = sinx
sinx
, tentukan nilai y’! 1 - cosx U’ = cosx
V = 1 – cosx V’ = sinx U’.V - U.V’ y’ = 2 V (cosx)(1 – cosx) – (sinx)(sinx) y' = 2 (1 – cosx) 2
y’ =
cosx – cos2 x – sin x (1 – cosx)(1 – cosx)
y’ =
2
–(–cosx+(cos x + sin x)) –(–cosx+1) = (1–cosx)(1–cosx) (1–cosx)(1–cosx) 1 2
y’ =
cosx – 1
Contoh 2: f(x) = U = x + sinx V = 1 + cosx
π
x + sinx
, maka f’(x)?
1 + cosx U’ = 1 + cosx
π
1
Contoh 3: y = 5.cot5x – 3.cot3x + cotx + x, maka turunan pertama dan kedua y adalah? 1
1
y’ = 5.5.cot5-1x.(–cosec2x) – 3.3.cot3-1x.(–cosec2x) + (–cosec2x) + 1 y' = –cot4x.cosec2x – cot2x.cosec2x – cosec2x + 1 y’ = –cot4x.cosec2x – cot2x.cosec2x + cot2x y’ = cot2x(–cot2x.cosec2x – cosec2x + 1) y’ = cot2x(–cot2x.cosec2x + cot2x) y’ = cot4x(–cosec2x + 1) y’ = cot6x y’’ = 6.cot6-1x.(–cosec2x) y = –6.cot5x.cosec2x Contoh pengerjaan bentuk komposisi fungsi dan turunan berantai: Contoh 1: Jika g(x) = x2, dan h(x) = sin4x, maka turunan dari g∘h(x) adalah? g’(x) = 2x
h’(x) = 4.cos4x
(g∘h(x))’ = g’(h(x)).h’(x) = 2(sin4x).4.cos4x = 8.sin4x.cos4x (g∘h(x))’ = 4.sin8x Contoh 2: y =√sin√cos2x, maka y’? y = √u dy
u = sinv
v = √w
w = cos2x
dy du dv dw . . . dx du dv dw dx 1 1 = . cosv. .(–2.sin2x) 2√ u 2√ w 1 1 = .cos√cos2x. .(–2.sin2x) 2√cos2x 2√sin√cos2x
dy dx
=
=
–sin2x (2√sin√cos2x)(√cos2x)
V’ = -sinx
TURUNAN
3
MAT 4
materi78.co.nr Contoh pengerjaan dengan menyederhanakan menggunakan dalil-dalil trigonometri: 3
Contoh 1: y = √
(sin2x+cos2x)
2
sec4x+tan4x
, tentukan y’!
2
2.sin2x.cos2x+sin x+cos x y=√ 1 sin4x + cos4x cos4x 2
3
3
y=√ 3
y=√
(2.sin2x.cos2x+1)(cos4x) 1+sin4x (sin4x+1)(cos4x) 1+sin4x 2
y’ = 3.cos–3 4x.(-sin4x)(4) y’ = 1
1
3
= √cos4x = cos3 4x 4.sin4x 3
3√cos2 4x Contoh 2: f(x) = (sin5x – cos5x)2, maka nilai f’’(x) adalah? f(x) = sin25x – 2.sin5x.cos5x + cos25x f(x) = 1 – sin10x
f’(x) = –10.cos10x f’’(x) = 100.sin10x
Contoh 3: Tentukan turunan pertama dari sin3x – sin2x + sinx persamaan y = ! cos3x – cos2x + cosx (sin3x + sinx) – sin2x 2.sin2x.cosx – sin2x y= = (cos3x + cosx) – cos2x 2.cosx.cosx – cos2x y=
(2cosx - 1).sin2x (2cosx - 1).cos2x
= tan2x
y’ = 2.sec22x
TURUNAN
4
MAT 4
materi78.co.nr
Penerapan Turunan A.
PENDAHULUAN
D.
Turunan dapat digunakan untuk: 1) Perhitungan nilai limit dengan dalil l’Hôpital 2) Menentukan persamaan fungsi kecepatan dan percepatan dari persamaan fungsi posisi 3) Membentuk persamaan garis singgung suatu fungsi kurva 4) Menentukan sifat dan grafik fungsi kurva
PERSAMAAN GARIS SINGGUNG KURVA Persamaan garis singgung suatu kurva f(x) pada sembarang titik dapat dibentuk dengan turunan. Gradien garis singgung m = f’(x) Pada garis ax + by + c = 0 dengan kemiringan α, nilai gradien:
5) Menentukan nilai maksimum dan minimum suatu fungsi kurva
B.
DALIL L’HÔPITAL Nilai limit fungsi dengan bentuk tak tentu ∞ ∞
0 0
dan
m= –
b
= tanα
Gradien dua garis sejajar:
Gradien dua garis tegak lurus:
dapat diselesaikan dengan dalil l’Hôpital: lim
f(x)
x→a g(x)
= lim
m1 = m2
f'(x)
x→a g'(x)
lim
2x3 -5x2 -2x-3 3
x→3 4x
-13x2 +4x-3
= lim
2
6(3)2 -10(3)-2 12(3)2 -26(3)+4
=
11 17
Pada kinematika gerak, terdapat tiga besaran utama, yaitu posisi (s), kecepatan (v), dan percepatan (a). Besaran tersebut dapat dibentuk persamaan yang nilainya berubah terhadap waktu (t). Kecepatan (v) merupakan turunan pertama dari fungsi posisi.
Tentukan persamaan garis singgung pada kurva y = 8 – 5x + x2 di titik: a.
c.
m = f’(x) = –5 + 2x a.
m = –5 + 2(0) = –5 y – 7 = –5(x – 1)
dt
2
=
ds 2
dt
y = –5x + 12
b. berabsis 4: x = 4 m = –5 + 2(4) = 3 y = 8 – 5(4) + (4)2 = 4 c.
Percepatan (a) merupakan turunan pertama fungsi kecepatan dan turunan kedua fungsi posisi.
berordinat 2.
Jawab:
y – 4 = 3(x – 4)
dt
a = v’ = s” =
(1, 7),
b. berabsis 4,
ds
dv
m2
Contoh 1:
-26x+4
PERSAMAAN PADA KINEMATIKA GERAK
v = s’ =
1
y – y1 = m(x – x1)
6x2 -10x-2
x→3 12x
=
m1 = –
Membentuk persamaan garis singgung
Contoh:
C.
a
y = 3x – 8
berordinat 2: y = 2 2 = 8 – 5x + x2 0 = 6 – 5x + x
2
m1 = –5 + 2(2) = –1 m2 = –5 + 2(3) = 1
0 = (x – 2)(x – 3) x=2
y – 2 = –1(x – 2)
y = –x + 4 (pers. 1)
x=3
y – 2 = 1(x – 3)
y = x – 1 (pers. 2)
Contoh:
Contoh 2:
Tentukan kecepatan dan percepatan pada t = 1 s dari fungsi posisi s = 2t2 + 3t - 5!
Tentukan persamaan garis singgung pada kurva y = x3 + 5 yang tegak lurus garis x + 3y = 2!
Jawab:
Jawab:
s’ = 2.2.t(2-1) + 1.3.t(1-1) + 0.1
Gradien garis singgung dapat dihitung:
v = 4t + 3 m/s
m1 = – 3 , m1
v(1) = 4(1) + 3 v(1) = 7 m/s
s’’ = 1.4.t(1-1) + 0.3
a = 4 m/s2 (konstan)
1
m2, maka m2 = 3
Cari titik singgung: m = y’ = 3x2 = 3
TURUNAN
1
MAT 4
materi78.co.nr x2 = 1
y = (1)3 + 5 = 6
x=1
3
x = -1
E.
y = (-1) + 5 = 4
y – 6 = 3(x – 1)
y = 3x + 3 (pers. 1)
y – 4 = 3(x – (–1))
y = 3x + 7 (pers. 2)
Jenis titik stasioner dilihat dari garis bilangan turunan pertama fungsi (f’(x)): 1
3
SIFAT DAN GRAFIK FUNGSI Sifat dan grafik fungsi suatu kurva f(x) dapat ditentukan dengan turunan. Sifat-sifat fungsi pada interval tertentu:
4
2
1) Titik balik maksimum
f’(x) = 0 f’(x) < 0
x
x=a
x rel="nofollow">a
x=a
x>a
x=a
x>a
x=a
x>a
2) Titik balik minimum
f’(x) > 0
Sifat fungsi
x
Syarat
Fungsi naik
f’(x) rel="nofollow"> 0
Fungsi turun
f’(x) < 0
Titik stasioner
f’(x) = 0
Selalu naik
f’(x) > 0
Selalu turun
f’(x) < 0
Tidak pernah naik
f’(x) ≤ 0
Tidak pernah turun
f’(x) ≥ 0
3) Titik belok positif
x
Sketsa grafik dapat dilihat dari:
x
Grafik turunan fungsi (f’(x)) f’(x)
Jenis titik stasioner juga dapat ditentukan dari turunan kedua fungsi (f’’(x)). 1) Jika pada suatu titik f’(x) = 0 dan f’’(x) ≠ 0, maka titik itu adalah titik balik. a.
x=a
x=b x=c
1) Grafik f’(x) di atas sumbu x menunjukkan interval fungsi naik pada f(x),
Titik balik maksimum bila f’’(x) < 0.
b. Titik balik minimum bila f’’(x) rel="nofollow"> 0. 2) Jika pada suatu titik f’(x) = 0 dan f’’(x) = 0, maka titik itu adalah titik belok yang jenisnya diuji dengan turunan pertama fungsi (f’(x)). Contoh 1:
2) Titik pada sumbu x grafik f’(x) menunjukkan titik stasioner pada f(x),
f(x) = 3x4 + 4x3 + 2, tentukan:
3) Grafik f’(x) di bawah sumbu x menunjukkan interval fungsi turun pada f(x).
b. Nilai dan titik stasioner, beserta jenisnya
Garis bilangan turunan pertama fungsi (f’(x))
f'(x) = 12x3 + 12x2 = 0
a.
Interval naik dan turun
Jawab: 0 = 12x2(x + 1) x=0
x=a
x=b
x=0
x = -1
x=c
1) Garis bilangan dan nilai x adalah himpunan penyelesaian turunan fungsi (f’(x)). 2) Tanda +/– dan garis biru menunjukkan sifat fungsi naik, turun, dan titik stasioner pada f(x).
a.
-1 0 Interval naik : x > -1, x ≠ 0 Interval turun : x < -1
TURUNAN
2
MAT 4
materi78.co.nr b. Terdapat dua titik stasioner:
b. Syarat: f’(x) > 0
Balik minimum di x = -1,
f’(x) = 3x2 + 4x + 8
Nilai balik minimum : f(-1) = 12(-1)3 + 12(-1)2
8 x + ) (kuadrat sempurna) 3 3 2 2 20 f’(x) = 3.([x + ] + ) 3 9 2 2 20 f’(x) = 3.(x + ) + (selalu positif), f’(x) > 0 3 3 (ada konstanta), f’(x) ≠ 0 f’(x) = 3.(x2 +
f(-1) = 0 Titik balik minimum : (-1, 0) Belok positif di x = 0, Nilai belok positif : f(0) = 12(0)3 + 12(0)2 f(0) = 0 Titik belok positif : (0, 0)
4
f(x) = (x – 4) , tentukan:
Dari sketsa grafik, dapat dibuat gambar grafik fungsi kurva f(x).
a.
Langkah-langkah menggambar grafik fungsi:
Contoh 2: 2
2
Interval naik dan turun
b. Titik dan nilai stasioner, beserta jenisnya Jawab:
2) Menentukan sketsa grafik dengan garis bilangan.
f'(x) = 2.(x2 – 4).(2x) = 0 0 = 4x(x – 2)(x + 2) x=2
x=0
-2 a.
1) Menentukan titik potong kurva f(x) dengan sumbu y.
x = -2
0
2
Interval naik : -2 < x < 0 V x > 2 Interval turun : x < -2 V 0 < x < 2
3) Menentukan titik stasioner dengan turunan pertama fungsi kurva f(x). f’(x) = 0 4) Menentukan titik belok dengan turunan kedua fungsi kurva f(x).
b. Terdapat tiga titik stasioner: Balik minimum di x = -2, Nilai balik minimum : f(-2) = ((-2)2 – 4)2 f(-2) = 0 Titik balik minimum : (-2, 0) Balik maksimum di x = 0, Nilai belok positif : f(0) = ((0)2 – 4)2 f(0) = 16 Titik belok positif : (0, 16) Balik minimum di x = 2, Nilai balik minimum : f(2) = ((2)2 – 4)2 f(2) = 0 Titik balik minimum : (2, 0) Contoh 3: Tunjukkan bahwa fungsi berikut: a.
f(x) = –x3 + 6x2 – 12x + 8 tidak pernah naik.
b. g(x) = x3 + 2x2 + 8x + 6 selalu naik. Jawab: a.
5) Menentukan titik bantu di sekitar titik stasioner untuk mempertajam grafik. Contoh: Gambarlah grafik dari y = x3 – 3x2 – 9x + 11. Jawab: Titik potong dengan sumbu y (x = 0), y = (0)3 – 3(0)2 – 9(0) + 11 = 11
(0, 11) …(1)
Titik stasioner, y’ = 3x2 – 6x – 9 = 0 0 = x2 – 2x – 3 (x – 3)(x + 1) x=3
y = (3)3 – 3(3)2 – 9(3) + 11 = -16 (3, -16) …(2)
x = -1
3
2
y = (-1) – 3(-1) – 9(-1) + 11 = 16 (-1, 16) …(2)
Titik belok, y’’ = 6x – 6 = 0
Syarat: f’(x) ≤ 0 f’(x) = –3x2 + 12x – 12 f’(x) = –3(x2 – 4x + 4) f’(x) = –3. (x – 2)2
f’’(x) = 0
(selalu negatif), f’(x) < 0 (f’(x) = 0 di x = 2), f’(x) ≤ 0
x=1
y = (1)3 – 3(1)2 – 9(1) + 11 = 0 (1, 0) …(4)
Titik bantu, x
-2
2
4
y
9
-11
-9
TURUNAN
3
MAT 4
materi78.co.nr Maka grafik dapat digambar:
3) Cari suatu persamaan yang dapat menghubungkan variabel-variabel agar dapat dilakukan substitusi sehingga fungsi yang ingin dicari menjadi dalam satu variabel saja.
(-1, 16) (0, 1) (-2, 9)
4) Lakukan langkah-langkah menentukan nilai maksimum dan minimum fungsi. Contoh 1:
(1, 0)
Diketahui jumlah dua bilangan positif adalah 24, tentukan kedua bilangan tersebut dan hasil kali maksimumnya. Jawab:
(4, -9)
Misalkan kedua bilangan adalah a dan b, maka:
(2, -11)
a + b = 24 (3, -16)
F.
NILAI MAKSIMUM DAN MINIMUM
b = 24 – a
HK = a.b HK = a(24 – a) = 24a – a2 HK’ = 24 – 2a = 0
Nilai maksimum dan minimum suatu sfungsi kurva f(x) pada suatu interval dapat ditentukan dengan turunan.
a = 12
Langkah-langkah menentukan nilai maksimum dan minimum fungsi f(x) pada interval a ≤ x ≤ b:
Biaya suatu pekerjaan per hari mengikuti persamaan f(x) = (24 – 2x2) dalam ribu rupiah. Jika pekerjaan tersebut selesai dalam x hari, tentukan biaya pekerjaan minimum!
1) Tentukan nilai titik a dan titik b (f(a) dan f(b)), 2) Tentukan titik-titik dan nilai-nilai stasioner pada interval tersebut,
HK maks = 12.12
b = 24 – 12
b = 12
HK maks = 144
Contoh 2:
Jawab:
3) Tentukan mana nilai terbesar (maksimum) dan nilai terkecil (minimum) dari semua nilai di atas.
Karena persamaan f(x) memenuhi biaya pekerjaan per hari, maka persamaan yang memenuhi biaya pekerjaan x hari adalah:
Contoh:
BP = x(24 – 2x2) = 24x – 2x3
Tentukan nilai maksimum dan minimum f(x) = x 3 – 6x2 – 15x + 20 pada interval 0 ≤ x ≤ 6!
BP’ = 24 – 6x2 = 0
Jawab: f(0) = (0)3 – 6(0)2 – 15(0) + 20
f(0) = 20 …(1)
f(6) = (6)3 – 6(6)2 – 15(6) + 20
f(6) = -70 …(2)
f’(x) = 3x2 – 12x – 15 = 0 0 = x2 – 4x – 5 (x – 5)(x + 1)
x = -2 hari (tidak mungkin)
(2 – x)(2 + x) BP min = 24(2) – 2(2)
x = 2 hari 3
BP min = 32 ribu rupiah (Rp32.000) Contoh 3:
x=5 x = -1 (tidak memenuhi)
f(5) = (5)3 – 6(5)2 – 15(5) + 20
f(5) = -80 …(3)
Maka, pada interval 0 ≤ x ≤ 6, Nilai maks f(x) = 20
0 = 4 – x2
Nilai min f(x) = -80
Nilai maksimum dan minimum dapat diterapkan dalam permasalahan sehari-sehari. Langkah-langkah menyelesaikan permasalahan yang berkaitan dengan nilai maksimum dan minimum:
Perusahaan memproduksi x unit mobil tiap hari dengan biaya produksi P(x) = x2 + 30x + 50 dalam juta rupiah. Jika harga jual tiap unit mobil Rp150.000.000, tentukan keuntungan maksimum perusahaan tersebut setiap harinya! Jawab: keuntungan = harga jual – biaya produksi K = 150x – (x2 + 30x + 50) = –x2 + 120x – 50 K’ = –2x + 120 = 0
x = 60 unit
1) Buat persamaan menggunakan permisalan dengan variabel-variabel (misalnya x dan y).
K maks = –x + 120x – 50
2) Nyatakan fungsi yang ingin dicari nilai maksimum dan minimumnya dalam satu variabel saja.
K maks = 3550 juta rupiah (Rp3.550.000.000)
2
K maks = –(60)2 + 120(60) – 50
TURUNAN
4
MAT 4
materi78.co.nr Contoh 4: Sebuah kerucut tegak dengan jari-jari alasnya 6 cm, tingginya 9 cm, di dalamnya dibuat tabung yang alas dan titik pusatnya berimpit dengan alas dan titik pusat kerucut. Tentukan volume maksimum dari tabung tersebut. Jawab: r
9–t
9–t
6 9 9r = 54 – 6t
r
9
=
6t = 54 – 9r
t
3 2
t=9– r
6 V = πr2t 3 V = πr2(9 – r) = 9πr2 2 9 V’ = 18πr – πr2 = 0 2 9 2 18πr = πr 2 3 t = 9 – (4) 2
3 2
– πr3
V maks = π.(4)2.(3)
Dari garis bilangan, diketahui bahwa nilai maksimum terjadi pada x = 1, maka: p = 8 – 2(1)
p = 6 dm
l = 5 – 2(1)
l = 3 dm
t = (1)
t = 1 dm
Contoh 6: Diketahui sebuah kotak beralas persegi. Jika luas permukaan kotak 192 cm2. Tentukan ukuran kotak agar volumenya maksimum jika, a.
Kotak tidak memiliki tutup,
b. Kotak memiliki tutup. Jawab: Jika kotak beralaskan persegi maka, p=x
t=y
l=x
V = p.l.t = x2y
a.
x2 + 4xy = 192 V = x2.
r = 4 cm
192 – x2 4x
Karton berbentuk persegi panjang dengan ukuran 5 x 8 dm, keempat pojoknya dipotong persegi dengan sisi x dm. Dari bangun yang didapat, dibuat sebuah kotak tanpa tutup. Tentukan ukuran kotak agar volumenya maksimum! Jawab:
1 4
= 48x – x3
x2 = 64
x = –8 (tidak mungkin) x=8 y=
192 – (8)2 4(8)
Misalkan daerah yang diarsir adalah bangun yang didapat, x
b. 2x2 + 4xy = 192 V = x2.
96 – x
5 – 2x
2x
32
=4
y=
96 – x2 2x
1 2
= 48x – x3
3 2
V’ = 48 – x2 = 0 x = –4√2 (tidak mungkin) x = 4√2
l = 5 – 2x t=x
128
V maks = 256 cm3
x2 = 32 p = 8 – 2x
=
V maks = (8)2.4
2
x
4x
3 4
V maks = 48π cm3
x
192 – x2
V’ = 48 – x2 = 0
t = 3 cm
Contoh 5:
x
y=
2
y=
192 – (4√2) 4(4√2)
=
160 16√2
= 5√2
V maks = (4√2)2. 5√2
8 – 2x
V maks = 160√2 cm3
V = p.l.t V = (8 – 2x).(5 – 2x).(x) = 48x – 26x2 + 4x3 V’ = 40 – 52x + 12x2 = 0 0 = 3x2 – 13x + 10
x=1
(3x – 10)(x – 1)
x=
10 3
Uji dengan turunan pertama untuk menentukan mana titik maksimum (titik balik maksimum),
1
10
/3
TURUNAN
5
MAT 4
materi78.co.nr
Limit A.
PENDAHULUAN Limit adalah batas nilai suatu fungsi f(x) untuk nilai x mendekati a dari kanan (a+) dan kiri (a-), dapat dinotasikan: lim f(x) x→a
B.
=
∞ 0 ∞
,
lim
x→a g(x)
=
=
(0-2√0+1) (0-1)
= lim
x(x-2√x+1)
x→0
x(x-1)
= -1
Contoh pengerjaan dalil L’Hospital:
lim
2x3 -5x2 -2x-3
x→3 4x
3
-13x2 +4x-3
= lim
x→3 12x
=
0 0
6x2 -10x-2 2
-26x+4
2
6(3) -10(3)-2 2
12(3) -26(3)+4
=
11 17
Contoh 2:
1) Pemfaktoran. lim
2) Perkalian dengan bentuk sekawan. 3) Dalil L’Hospital dengan turunan, yaitu: lim
x2 -x
Contoh 1:
Limit fungsi aljabar x → a dengan bentuk tak tentu, dapat diselesaikan dengan cara menghilangkan pembuat nol, dengan: f(x)
x2 -2x√x+x
x→0
, dan ∞ – ∞.
5
x-√x (x-√x)(x-√x) = lim x+ x x2 -x √ x→0 x→0 = lim
Limit fungsi aljabar tak dapat berupa bentuk tak
16
lim
Limit fungsi aljabar dapat dicari dengan memasukkan nilai x ke dalam fungsi. 0
(2+3)
=
Contoh 2:
LIMIT FUNGSI ALJABAR
tentu, yaitu
(2+2)(2+√6-2)
f(x)
= lim
x→a g(x)
3-x
x→3
4-
x→a g'(x)
dapat
langsung
Contoh 1:
-1
x→3
4-
2x+3
2√x2 +3x+18
= lim
2(3)+3
13 =-1 4 Grafik limit fungsi aljabar dapat menggambarkan nilai f(x) kontinu dan diskontinu pada limit. =
f'(x)
Contoh pengerjaan yang dimasukkan nilai x nya:
4x-6-√x2 +3x+18
2√(3)2 +3(3)+18
Nilai f(x) kontinu adalah nilai dimana grafik limit di sekitar titik x = a berkelanjutan.
lim x2 -5x+4 = (3)2 – 5(3) + 4 = -2
x→3
Contoh 2: lim
x-1
x→2 x-2
=
1 0
f(x) = lim
=∞
a
Contoh pengerjaan dengan pemfaktoran: Contoh 1: lim
x→1
x2 -1 x-1
= lim
(x+1)(x-1)
x→1
(x-1)
Syarat f(x) kontinu di x = a: =1+1=2
2) Nilai f(x) sama dengan nilai limit f(x) x → a.
Contoh 2: x2 -4 (x-2)(x+2) (2+2) 4 lim 2 = lim = = (2+3) 5 x→2 x +x-6 x→2 (x-2)(x+3) Contoh pengerjaan dengan perkalian sekawan: Contoh 1: lim
x2 -4
x→2 x-√6-x
2
= lim
x→2
= lim
x→2
= lim
x→2
1) Nilai f(a) dan limit f(x) x → a terdefinisi.
(x -4)(x+√6-x) x2 -(6-x) (x-2)(x+2)(x+√6-x) x2 +x-6 (x-2)(x+2)(x+√6-x) (x-2)(x+3)
f(a) = lim f(x) x→a
Contoh: x2 +x-2
, x ≠ -2 f(x)= {√x+6-2 3a+6, x = -2 Jika f(x) kontinu di x = -2, maka nilai a adalah? Jawab: Nilai f(-2) dicari menggunakan persamaan 2, sedangkan nilai limit f(x) x → -2 dicari menggunakan persamaan 1.
LIMIT
1
MAT 4
materi78.co.nr lim
x2 +x-2
x→-2 √x+6-2
= lim
3) Jika n < m,
(x+2)(x-1)(√x+6-2) x+6-4
x→-2
lim
= (-2-1)(√-2+6-2) = -12 f(-2) = lim f(x) x→-2
3a + 6 = -12
f(x)
=0
x→∞ g(x)
Contoh pengerjaan:
a = -6
Contoh 1:
Nilai f(x) diskontinu adalah nilai dimana grafik di sekitar titik x = a tidak terdefinisi dan tidak mempunyai nilai limit.
2x2 -x+1
lim
x→∞ (1-3x)(x+2)
=
2x2 …
=-
2
-3x …
2 3
Contoh 2: f(x) lim
lim
2x2 +x-3 x+1
x→∞
=
2x2 … x…
Limit fungsi aljabar x → ∞ dengan bentuk tak tentu:
a
n-1
lim √axn +bx
f(x)
x→∞
f(x)
lim
+…–√pxn +qxn-1 +… = ∞ – ∞
dapat diselesaikan dengan:
lim
a
1) Jika a = p,
a
lim f(x) - g(x) =
x→∞
Contoh: Pada interval berapa f(x) =
x2 -9 √x2 -4x-5
b-q n
n √an-1
2) Jika a > p,
diskontinu?
lim f(x) - g(x) = +∞
x→∞
Jawab: Agar f(x) tidak terdefinisi (bentuk
a 0
3) Jika a < p,
dan √<0 ),
maka dapat dibuat:
lim f(x) - g(x) = -∞
x→∞
x2 – 4x - 5 ≤ 0
+
(x – 5)(x + 1)
– -1
x = 5 x = -1
+
Contoh:
5
lim √4x2 +x+1-2x+3 = lim √4x2 +x+1-√(2x-3)2
x→∞
f(x) tak terdefinisi pada interval -1 ≤ x ≤ 5.
x→∞
= lim √4x2 +x+1-√2x2 -12x+9
Limit fungsi aljabar x → ∞ dengan bentuk tak tentu, dapat diselesaikan dengan: lim
=∞
n-1 axn +bx +…
m m-1 +… x→∞ px +qx
=
x→∞
=-
∞ ∞
1.
a ± ∞ = ±∞
2.
a.∞ = ∞
3.
∞.∞ = ∞
4.
k∞ = ∞
m = pangkat x tertinggi (derajat) penyebut 1) Jika n = m, f(x)
x→∞ g(x)
5. =
a
Untuk mempercepat hitungan, hanya hitung x yang mungkin memiliki pangkat tertinggi.
lim
f(x)
x→∞ g(x)
6.
p
2) Jika n > m,
12
Sifat-sifat operasi bilangan tak hingga (∞):
n = pangkat x tertinggi (derajat) pembilang
lim
1
C.
a ∞
a 0
=0 = ∞, a ≠ 0
LIMIT FUNGSI TRIGONOMETRI Limit fungsi trigonometri dapat dicari dengan memasukkan nilai x ke dalam fungsi. Limit fungsi trigonometri tak dapat berupa
= ±∞
0
bentuk tak tentu, yaitu . 0
LIMIT
2
MAT 4
materi78.co.nr Limit fungsi trigonometri dengan bentuk tak tentu, dapat diselesaikan dengan cara menghilangkan pembuat nol, dengan: lim
f(x)
x→a g(x)
=
3) Jika seluruh fungsi pada limit adalah fungsi sinus dan tangen, keduanya dapat dicoret (dianggap 1), lalu limit dikerjakan seperti biasa.
0
Contoh pengerjaan limit trigonometri:
0
Contoh 1: cos x - sin x cos x- sin x limπ = limπ 2 2 cos2x x→ x→ cos x-sin x
1) Fungsi trigonometri istimewa (x → a) lim
x→a
lim
x→a
sin h h
h
x→a sin h
tan h h
= lim
= lim
= limπ
h
=1
( cos x- sin x)( cos x+ sin x) 1
1
x→ ( cos x+ sin x)
= √2 2
4
Contoh 2: 3.sin4x 3.sin4x 3.4x 2 lim = lim = = 5.6x 5 x→0 5.tan6x x→0 5.tan6x Contoh 3:
Identitas sin2α + cos2α = 1
lim
x→0
1 + cot2α = cosec2α
4
cos x- sin x
= limπ
2) Mengubah fungsi trigonometri lain menjadi fungsi trigonometri istimewa dengan menggunakan identitas dan rumus trigonometri.
2
1-cos4x
= lim
x.tan3x
tan2α + 1 = sec2α
2
1-(1-2sin 2x)
= lim
x.tan3x
x→0
=
Rumus sudut rangkap
2(2x)
2
x.tan3x
8
=
x.3x
x→0
2sin 2x)
3
Contoh 4: (2a+x)sin(a-x) (2a+x)sin(a-x) lim = lim 2 2 x -a x→a x→a -(-x+a)(x+a) (2a+a) 3 = =− 2 -(a+a)
sin2A = 2.sinA.cosA cos2A = cos2A – sin2A
Contoh 5:
cos2A = 2cos2A – 1 = 1 – 2sin2A
-x2 (-x2 +9) = lim = -(3)2 = -9 2 2 x→3 sin(9-x ) x→3 sin(9-x ) Contoh 6: lim
tan2A =
4
x→
h
x→a tan
4
=1
2tanA 1−tan2 A
limπ
Rumus jumlah dan selisih sudut
x→
sin(A + B) = sinA.cosB + cosA.sinB
D.
2
x4 -9x2
1+cos2x cosx
= limπ x→
1+2cos2 x-1
2
SIFAT-SIFAT LIMIT
lim f(x)±g(x) = lim f(x) ± lim g(x)
x→a
cos(A – B) = cosA.cosB + sinA.sinB Rumus jumlah dan selisih fungsi 1 2
1
1
2
2
2
1) Penjumlahan dan pengurangan
cos(A + B) = cosA.cosB – sinA.sinB
2
x→
Sifat-sifat operasi hitung limit:
sin(A – B) = sinA.cosB – cosA.sinB
1
= limπ 2cosx = 0
cosx
sinA + sinB = 2. sin (A + B). cos (A – B) sinA – sinB = 2. cos (A + B). sin (A – B)
x→a
2) Perkalian dan pembagian lim f(x).g(x) = lim f(x) .lim g(x)
x→a
lim
x→a
f(x)
x→a g(x)
1
1
2
2
1
1
2
2
cosA + cosB = 2. cos (A + B). cos (A – B) cosA – cosB = –2. sin (A + B). sin (A – B)
x→a
=
x→a
lim f(x)
x→a
lim g(x)
x→a
3) Perpangkatan 2
lim [f(x)] = [ lim f(x)]
x→a
LIMIT
2
x→a
3
MAT 4
materi78.co.nr
Lingkaran A.
PENDAHULUAN Lingkaran adalah koordinat kedudukan titik-titik yang memiliki jarak sama terhadap suatu titik tertentu.
Persamaan lingkaran dapat dibentuk jika diketahui beberapa variabel untuk mencari variabel lain: 1) Titik pusat dan satu titik pada lingkaran
Jari-jari lingkaran adalah jarak lingkaran terhadap titik pusat lingkaran yang besarnya selalu sama terhadap titik dimanapun pada lingkaran.
r
PERSAMAAN LINGKARAN Persamaan lingkaran diturunkan dari teorema Phytagoras.
A(x1, y1) Pusat lingkaran
: (xp, yp)
Titik pada lingkaran : (x1, y1) Jari-jari
A
y2
y2 – y1
B.
P(xp, yp)
r = √(x1 - xp)2 + (y1 - yp)2
y1
B
x2 – x1 x1
x2
AB2 = (x2 – x1)2 + (y2 – y1)2
Membentuk persamaan lingkaran (x – xp)2 + (y – yp)2 = r2 2) Titik pusat dan menyinggung sumbu x atau y
Persamaan dasar lingkaran adalah:
yp
P(xp, yp) r
P(xp, yp) xp
r A(x, y)
Pusat lingkaran
: (xp, yp)
Titik pada lingkaran : (xp, 0) atau (0, yp) Bentuk dasar
Jari-jari
(x – xp)2 + (y – yp)2 = r2
:r
Bentuk persamaan terbuka 2
Menyinggung sb y
r = |yp|
Pusat lingkaran : (xp, yp) Jari-jari
Menyinggung sb x
2
x + y + Ax + By + C = 0
r = |xp|
Membentuk persamaan lingkaran (x – xp)2 + (y – yp)2 = r2 3) Titik-titik ujung diameter
A = –2xp
B = –2yp
B(x2, y2)
C = xp2 + yp2 – r2
r 1
1
2
2
Pusat lingkaran : (– A, – B) Jari-jari
:
√xp2
P r
+ yp2 - C
A(x1, y1)
LINGKARAN
1
MAT 4
materi78.co.nr Titik pada lingkaran : (x1, y1) dan (x2, y2)
1) Jika K < 0, maka titik berada di dalam lingkaran.
Pusat lingkaran 1
1
2
2
2) Jika K = 0, maka titik berada pada lingkaran (memenuhi persamaan lingkaran).
P( (x1 + x2) , (y1 + y2))
3) Jika K > 0, maka titik berada di luar lingkaran.
Jari-jari r=
1 2
√(x2 - x1) + (y2 - y1) 2
Kedudukan garis terhadap lingkaran terdiri dari tiga macam:
2
Membentuk persamaan lingkaran (x – xp)2 + (y – yp)2 = r2 atau
garis memotong lingkaran
(x – x1)(x – x2) + (y – y1)(y – y2) = 0 4) Titik pusat dan persamaan garis singgung lingkaran
1) Ubah agar persamaan lingkaran hanya memuat satu variabel saja (x atau y), dengan mensubstitusi persamaan garis ke persamaan lingkaran.
r P(xp, yp)
2) Persamaan lingkaran akan menjadi persamaan garis parabola dengan bentuk umum: ax2 + bx + c = 0
: (xp, yp)
Titik pada lingkaran : tidak diketahui
3) Cari nilai determinan (D) persamaan tersebut:
Jari-jari r=|
D = b2 – 4ac
a.xp+b.yp+c √a2 +b2
|
Membentuk persamaan lingkaran (x – xp)2 + (y – yp)2 = r2
C.
garis tidak memotong lingkaran
Kedudukan garis terhadap lingkaran dapat ditentukan menggunakan nilai determinan.
ax + by + c = 0
Pusat lingkaran
garis menyinggung lingkaran
KEDUDUKAN TITIK DAN GARIS TERHADAP LINGKARAN Kedudukan titik terhadap lingkaran terdiri dari tiga macam:
A(x1, y1)
titik di dalam lingkaran
A(x1, y1)
titik pada lingkaran
A(x1, y1)
titik di luar lingkaran
Kedudukan titik terhadap lingkaran dapat ditentukan menggunakan nilai kuasa. Kuasa (K) adalah persamaan lingkaran yang telah disubstitusi oleh koordinat titik yang diuji. K = x12 + y12 + Ax1 + By1 + C
D.
a.
Jika D < 0, maka garis memotong lingkaran (di dua titik perpotongan).
b.
Jika D = 0, maka garis menyinggung lingkaran (di satu titik perpotongan).
c.
Jika D > 0, maka garis tidak memotong lingkaran (tidak ada titik perpotongan).
PERSAMAAN GARIS SINGGUNG LINGKARAN Garis singgung lingkaran adalah garis yang memotong lingkaran hanya pada satu titik perpotongan dan tegak lurus dengan jari-jari lingkaran pada titik itu Persamaan garis singgung lingkaran dapat dibentuk jika diketahui persamaan lingkaran: x2 + y2 + Ax + By + C = 0 1) Gradien garis singgung lingkaran Membentuk persamaan garis singgung y – yp = m(x – xp) ± r √m2 +1 (xp, yp) = pusat lingkaran r = jari-jari m = gradien garis singgung lingkaran
LINGKARAN
2
MAT 4
materi78.co.nr 2) Titik pada lingkaran/titik singgung (K = 0) A(x1, y1)
Melalui satu titik pada lingkaran hanya dapat dibuat satu buah garis singgung lingkaran saja. Membentuk persamaan garis singgung (x – xp)(x1 – xp) + (y – yp)(y1 – yp) = r2 3) Titik di luar lingkaran (K > 0) d
B(x1, y1)
Melalui satu titik di luar lingkaran dapat dibuat dua buah garis singgung lingkaran. Nilai gradien garis singgung dapat dicari menggunakan persamaan: y1 – yp = m(x1 – xp) ± r √m2 +1 Membentuk persamaan garis singgung y – y1 = m(x – x1) Panjang garis singgung dari titik di luar ke titik singgung d = √x12 + y12 + Ax1 + By1 + C
LINGKARAN
3
MAT 4
materi78.co.nr
Sistem Persamaan Polinom A.
b. Metode Horner
PENDAHULUAN Sistem persamaan polinom (suku banyak) adalah sistem persamaan dengan pangkat tertinggi >2. Bentuk umum polinom:
2
C.
P(x) = anxn + an-1xn-1 + an-2xn-1 + … + a1x + ao
1
-3
2
●
10
4
8
18
30 +
5
2
4
9
15
32
KESAMAAN POLINOM
Dua buah sistem persamaan polinom dikatakan memiliki kesamaan jika keduanya:
2) Variabel (x), adalah bilangan yang dimisalkan dengan huruf, misalnya x.
1) Memiliki derajat yang sama. 2) Memiliki variabel dan koefisien seletak yang sama antara polinom ruas kiri dengan kanan.
3) Koefisien (a), adalah bilangan yang mengikuti variabel.
Pada kesamaan polinom tidak berlaku pindah ruas atau kali silang.
SUBSTITUSI POLINOM Substitusi polinom dilakukan mendapatkan nilai polinom.
untuk
Contoh: Diketahui x4 + px2 + qx – 6 ≡ (x2 – 2)(x2 + r). Tentukan nilai p, q dan r!
Substitusi polinom P(x) dengan x = k dapat dilakukan dengan:
Jawab:
1) Metode substitusi normal Mengganti seluruh variabel persamaan polinom dengan k.
x
Jabarkan terlebih dahulu ruas kanan,
sistem
x4 + px2 + qx – 6 ≡ x4 + rx2 – 2x2 – 2r x4 + px2 + qx – 6 ≡ x4 + (r – 2)x2 – 2r
2) Metode Horner
Sesuai konsep kesamaan maka,
Bentuk bagan Horner untuk substitusi:
a.
0
f(x) ≡ g(x)
1) Derajat (n), adalah pangkat tertinggi dalam suatu suku banyak.
k
-8
Kesamaan polinom dilambangkan dengan:
Istilah pada polinom:
B.
5
xn
xn-1
xn-2
…
x1
x0
an
an-1
an-2
…
a1
ao
●
+
an
= P(k)
Letakkan seluruh koefisien dari derajat tertinggi sampai nol di bagian atas.
D.
p=r–2
r=3
q=0
p=3–2
-6 = -2r
p=1
PEMBAGIAN POLINOM, TEOREMA SISA DAN TEOREMA FAKTOR Konsep pembagian polinom: 19
b. Letakkan substitusi di samping kiri. c.
5
Hasil akhir adalah nilai polinom.
yg dibagi
Aturan penggunaan metode Horner: 1
dst.
● 2
a.
pembagi
3
+ = P(k)
4
Perkalian dengan penjumlahan ke bawah.
substitusi,
b. Ulang tahap di atas sampai mencapai nilai P(k). Contoh: Diketahui f(x) = 5x5 – 8x4 + x2 – 3x + 2. Tentukan nilai dari f(2)! Jawab: a.
Metode substitusi normal
f(2) = 5(2)5 – 8(2)4 + (2)2 – 3(2) + 2 = 32
=3+
4 5
= hasil bagi +
P(x) Q(x)
= H(x) +
sisa pembagi
S(x) Q(x)
P(x) = H(x).Q(x) + S(x) 1) Derajat hasil bagi [H(x)] adalah derajat yang dibagi [P(x)] dikurang derajat pembagi [Q(x)]. 2) Derajat sisa [S(x)] adalah derajat pembagi [Q(x)] dikurang satu. Pembagian polinom dapat dilakukan dengan: 1) Metode pembagian biasa/susun Membagi bilangan seperti biasa dengan kurung bagi.
SISTEM PERSAMAAN POLINOM
1
MAT 4
materi78.co.nr 2) Metode Horner
Aturan penggunaan:
Aturan penggunaan: a.
Letakkan seluruh koefisien dari derajat tertinggi sampai nol di bagian atas.
● ●
b. Letakkan faktor pengali di samping kiri. c.
Baris bawah bagian kiri adalah hasil bagi, sedangkan bagian kanan adalah sisa. hasil bagi =
5
1
kolom bagian kiri
●
9
2
6
●
3
●
●
●
● ●
7 8
+
4
Contoh: Tentukan hasil bagi 4x5 + 3x3 – 6x2 – 5x + 1 bila dibagi dengan 2x – 1!
koef derajat pembagi
Jawab: sisa = kolom bagian kanan
a.
Metode pembagian biasa/susun 2x4 + x3 + 2x2 – 2x – 7/2
Bagan Horner tingkat satu 2x – 1
Pembagi ax + b xn
xn-1
an b
- /a
xn-2
an-1
x1
…
an-2
…
a1
x0
4x5 – 2x4
ao
2x4 + 3x3 – 6x2 – 5x + 1
hasil xn-2
x0
…
3
4x3 – 2x2
sisa
– 4x – 5x + 1 – 4x2 + 2x
Aturan penggunaan:
7
/2 -
+
4
2
5
– /2 4
Hasil bagi = 2x + x + 2x – 2x – 7/2
Bagan Horner tingkat dua xn
xn-1 xn-2
…
x2
x1
x0
an
an-1 an-2
…
a2
a1
ao
-c/a
●
Pembagi ax + b 4 1
/2
+
● x0
…
2
b. Metode Horner
●
xn-1 xn-2 xn-3
3
Sisa = – 5/2
Pembagi ax2 + bx + c
●
-
– 7x + 1
3
●
-b/a
-
2
Sisa = c 1
2
4x – 6x – 5x + 1
c
xn-3
-
2x4 – x3
+
● xn-1
4x5 + 3x3 – 6x2 – 5x + 1
m
n
0
3
-6
-5
1 7
●
2
1
2
-2
- /2 +
4
2
4
-4
-7
- 5/2
4x4 + 2x3 + 4x2 – 4x – 7
Sisa = mx + n
Hasil bagi =
Aturan penggunaan:
Hasil bagi = 2x4 + x3 + 2x2 – 2x – 7/2
1
4
●
3
●
●
2
Sisa = – 5/2 ●
5 2
Teorema sisa menjelaskan bahwa: +
6
1) Derajat sisa adalah derajat pembagi dikurang satu. 2) Jika P(x) dibagi q(x) bersisa, dan k adalah nilai x pembuat q(x) menjadi nol, maka P(k) = sisa.
Bagan Horner tingkat tiga Pembagi ax3 + bx2 + cx + d
b
xn-1 xn-2 …
x3
x2
x1
x0
a.
Jika P(x) : (ax + b), maka sisanya P(– ).
an an-1 an-2 …
a3
a2
a1
ao
b.
●
●
Jika P(x) : (ax2 + bx + c), maka sisanya adalah P(x1) dan P(x2).
xn -b/a ● -c/a ●
●
-d/a ●
●
● +
● hasil
n-1
x
n-2
x
n-3
x
p …
0
x
q
r
a
Teorema sisa dapat digunakan untuk menentukan sisa pembagian polinom tanpa mengetahui polinom dan/atau hasil baginya.
sisa
2
Sisa = px + qx + r
SISTEM PERSAMAAN POLINOM
2
MAT 4
materi78.co.nr Contoh: Suku banyak g(x) jika dibagi (x – 1) bersisa 6, sedangkan apabila dibagi (x – 2) sisanya 3. Tentukan sisanya apabila f(x) dibagi (x2 – 3x + 2)! Jawab:
Faktor/akar-akar polinom menggunakan teorema faktor.
dapat
dicari
Sifat-sifat akar-akar polinom: 1) Persamaan kuadrat Bentuk umum:
f(2) = 3
ax2 + bx + c
f(1) = 6
dengan akar-akar x1 dan x2,
f(x) : (x2 – 3x + 2), sisa = mx + n, maka f(2) = 2m + n = 3 f(1) =
x 1 + x2 = –
m+n =6 – m = -3
n=9
maka, f(x) bila dibagi (x2 – 3x + 2) bersisa –3x + 9. Teorema faktor menjelaskan bahwa: 1) Jika P(x) habis dibagi q(x) atau mempunyai sisa nol, maka q(x) adalah faktor dari P(x). 2) Jika P(x) = f(x).g(x) maka f(x) dan g(x) adalah faktor dari P(x). Teorema faktor dapat digunakan untuk menentukan faktor lain atau akar-akar rasional dari sistem persamaan polinom menggunakan metode Horner. Contoh: Jika salah satu akar dari f(x) = x4 + mx3 – 6x2 + 7x – 6 adalah 2, tentukan akar linear lainnya!
b
x1.x2 =
a
c a
2) Persamaan pangkat tiga Bentuk umum: ax3 + bx2 + cx + d dengan akar-akar x1, x2 dan x3, x 1 + x2 + x3 = –
b a
x1.x2 + x1.x3 + x2.x3 =
c a
d
x1.x2.x3 = –
a
3) Persamaan pangkat empat Bentuk umum: ax4 + bx3 + cx2 + dx + e
Jawab: Pertama-tama, cari terlebih dahulu nilai m dengan substitusi polinom f(2) = 0, karena 2 adalah akar/faktor dari f(x). f(2) = 0 4
3
dengan akar-akar x1, x2, x3 dan x4, x 1 + x2 + x3 + x4 = –
b a
2
0 = (2) + m(2) – 6(2) + 7(2) – 6 0 = 8m
x1.x2 + x1.x3 + x1.x4 + x2.x3 + x2.x4 + x3.x4 =
m=0 Kemudian gunakan metode Horner dan cara tebak untuk menentukan faktor/akar lain. 2 -3
1
0
-6
7
-6
●
2
4
-4
6
1
2
-2
3
0
●
-3
3
-3 +
1
-1
1
0
+
x1.x2.x3 + x1.x2.x4 + x1.x3.x4 + x2.x3.x4 = –
x1.x2.x3.x4 =
e a
Faktor f(x) antara lain adalah (x – 2), (x + 3), dan (x2 – x + 1). Jadi, faktor/akar linear selain 2 adalah -3.
E.
SISTEM PERSAMAAN POLINOM Sistem persamaan polinom (suku banyak) mempunyai faktor/akar linear atau himpunan penyelesaian seperti persamaan kuadrat atau linear.
SISTEM PERSAMAAN POLINOM
3
c a
d a
MAT 2
materi78.co.nr
Statistika A.
Diagram lingkaran (sudut atau presentase)
PENDAHULUAN Statistika adalah ilmu pengambilan, penyajian, penafsiran data.
yang mempelajari pengolahan, dan
NILAI MATEMATIKA
Data terdiri dari dua jenis, yaitu data kualitatif (sifat) dan data kuantitatif (angka).
B.
56
60
65
70
80
85
90
100
PENYAJIAN DATA
8% 10%
Penyajian data terdiri dari dua: 1) Penyajian data tunggal 2) Penyajian data kelompok Data tunggal dapat disajikan dalam bentuk: Berjajar 56 70 70 90 80 56
60 70 60 90 90 56
65 70 56 90 100 60
75 70 85 90 65 75
75 85 85 90 65 80
70 85 80 90 80 100
75 80 100 65
7%
18%
10% 10% 15% 12%
10%
Diagram batang-daun
Tabel distribusi frekuensi
5
6666
6
0005555
Nilai 56
Frekuensi 4
7
0000005555
60
3
65 70
4 6
8
000005555
9
0000000
75 80
4 5
85
4
90 100
7 3
10
000
Data tunggal dapat diubah penyajiannya menjadi data kelompok, dengan cara berikut: 1) Penentuan range/jangkauan data.
Diagram batang
R = x maks – x min
NILAI MATEMATIKA 6 4
k = 1 + 3,3.log n
2 0 60
65
70
75
80
85
x maks = data terbesar x min = data terkecil R = 100-44 = 56
2) Penentuan banyak kelas/kelompok data yang akan dibuat.
8
56
75
90 100
Diagram garis
NILAI MATEMATIKA 8
n = banyak data k = 1 + 3,3.log40 k = 1 + 5,28 = 6,28 ≈ 6
3) Penentuan panjang atau lebar kelas/ kelompok, yaitu interval data dari tiap kelompok. c=
R k
c = 56 : 6 c = 9,33 ≈ 9
6 4 2 0 56 60 65 70 75 80 85 90 100 95 100
STATISTIKA
1
MAT 2
materi78.co.nr Setelah dihitung, data majemuk dapat disajikan dalam bentuk: Tabel distribusi frekuensi kumulatif/kelompok Nilai
Frekuensi
56-64
7
3+4
65-73
10
4+6
74-82
9
4+5
83-91
11
4+7
92-100
3
Unsur-unsur dalam penyajian data majemuk berdasarkan pendekatan t.d. frekuensi kumulatif: 1) Batas bawah (BB), merupakan nilai terkecil dalam suatu interval. 2) Batas atas (BA), merupakan nilai terbesar dalam suatu interval. Contoh: Pada interval 65-73, batas bawah adalah 65 dan batas atas adalah 73.
3) Nilai tengah interval, dengan rumus: M=
BB + BA 2
M=
(65 + 73) = 69 2
4) Tepi bawah, dengan rumus:
Ogif positif Data yang digunakan untuk ogif positif berasal dari tabel distribusi kumulatif kurang dari dengan tambahan tepi bawah dari kelas terendah. Ciri dari ogif positif adalah grafiknya menaik.
NILAI MATEMATIKA 45 40 35 30 25 20 15 10 5 0 55,5
TA = 73,5
6) Panjang kelas, merupakan panjang interval kelas dengan rumus:
c = TA - TB
c = 73,5 – 64,5 c=9
Bentuk lain tabel distribusi frekuensi kelompok: T.d. frekuensi kumulatif kurang dari (≤) F. Kumulatif
≤64,5
7
≤73,5
17
7 + 10
≤82,5
26
17 + 9
≤91,5
37
26 + 11
≤100,5
40
37 + 3
91,5
100,5
NILAI MATEMATIKA 45 40 35 30 25 20 15 10 5 0 55,5
Nilai yang digunakan adalah tepi atas tiap kelas. Nilai
82,5
Data yang digunakan untuk ogif negatif berasal dari tabel distribusi kumulatif lebih dari dengan tambahan tepi atas dari kelas tertinggi. Ciri dari ogif negatif adalah grafiknya menurun.
TB = 64,5
TA = BA + 1/2 ketelitian data TA = 73 + ½.1
73,5
Ogif negatif
TB = BB – 1/2 ketelitian data TB = 65 – ½.1 5) Tepi atas, dengan rumus:
64,5
64,5
73,5
82,5
91,5
100,5
Histogram (diagram batang)
T.d. frekuensi kumulatif lebih dari (≥) Nilai yang digunakan adalah tepi bawah tiap kelas. Nilai
F. Kumulatif
≥55,5
40
≥64,5
33
40 - 7
≥73,5
23
33 - 10
≥82,5
14
23 - 9
≥91,5
3
14 - 11
Data yang diperlukan histogram adalah tepi atas dan tepi bawah tiap kelas.
NILAI MATEMATIKA 11 10 9 8 7 6 5 4 3 2 1 0
55,5 100,5
64,5
STATISTIKA
73,5
82,5
91,5
2
MAT 2
materi78.co.nr Poligon frekuensi (diagram garis) Data yang diperlukan poligon frekuensi adalah nilai tengah dari tiap kelas, dan nilai tengah satu kelas sebelum dan sesudah data kelas yang ada.
NILAI MATEMATIKA 12
Modus adalah data yang paling sering muncul dari seluruh data yang ada setelah diurutkan. Contoh: Pada data berikut, 1, 2, 3, 3, 3, 4, 5
modusnya 3.
1, 1, 2, 2, 3, 3, 4
modusnya 1, 2 dan 3.
1, 1, 2, 2, 3, 3
modusnya tidak ada.
Kuartil adalah batas-batas nilai yang terdapat pada data apabila sekelompok data telah diurutkan dan dibagi menjadi 4 bagian (3 batas).
10 8
Kuartil terbagi menjadi tiga:
6
a.
4
b. Kuartil tengah/median (Q2), adalah nilai tengah seluruh data.
2
0 51
C.
60
69
78
87
96
105
PENGOLAHAN DATA TUNGGAL
c.
Kuartil atas (Q3), adalah nilai tengah data pada pertengahan data terakhir.
Pengolahan data tunggal terdiri dari:
Kuartil tengah/median dengan rumus:
a.
Data ganjil
Ukuran pemusatan data, terdiri dari mean, modus, dan kuartil.
b. Ukuran penyebaran data (dispersi), terdiri dari range, hamparan, simpangan kuartil, langkah, pagar luar, pagar dalam, simpangan rata-rata, ragam, dan simpangan baku.
D.
Kuartil bawah (Q1), adalah nilai tengah data pada pertengahan data pertama.
PEMUSATAN DATA TUNGGAL
Σ xi n
=
xi = data n = banyak data fi = frekuensi data
Σ xi .fi Σ fi
Mean juga dapat dicari dengan nilai rata-rata sementara.
x̄ = x̄s +
Σ di n
= x̄s +
Σ di .fi Σ fi
Q2 = x ke
Dari data berikut: 114, 114, 115, 117, 117, 117, 119, 120, 121, 125, tentukan mean! x̄ =
114+114+115+…+125 10
2
(median terletak di antara dua data) Q2 =
1 2
[(x ke
-3-3-2+0+0+0+2+3+4+8
x̄ = 117 + = 117,9 10
2
)+ (x ke
n 2
+1)] bawah
dapat
Data ganjil Q1 = x ke
1 4
(n+1)
Q3 = x ke
(n+2)
Q3 = x ke
3 4
(n+1)
Data genap Q1 = x ke
1 4
3 4
(n+2) - 1
Batas-batas nilai lain yang memiliki konsep sama dengan kuartil: a.
Desil, membagi data menjadi 10 bagian (9 batas) dengan desil ke 5 sebagai median. Di = x ke
i(n + 1) 10
b. Persentil, membagi data menjadi 100 bagian (99 batas), dengan persentil ke 50 sebagai median.
10 9
n
Kuartil atas dan kuartil ditentukan dengan rumus:
= 117,9
Misalnya jika rata-rata sementara yang dipilih adalah 117, maka: -3 -3 -2 0 0 0 +2 +3 +4 +8 114 114 115 117 117 117 119 120 121 125 x̄ = 117 +
n+1
Data genap
x̄s = rata-rata sementara, diambil dari salah satu data di = selisih data dengan rata-rata sementara (x̄i – x̄s)
Contoh:
ditentukan
(mediannya terletak pada satu data)
Mean adalah nilai rata-rata hitung seluruh data yang ada. x̄ =
dapat
Pi = x ke
i(n + 1) 100
STATISTIKA
3
MAT 2
materi78.co.nr Statistik lima serangkai adalah penyajian data berupa diagram garis-kotak atau tabel yang memuat data kuartil, batas bawah, dan batas atas.
Jika suatu data berada di luar pagar, maka data tersebut tidak normal atau menyimpang (sangat berbeda dari data yang lain).
Diagram garis-kotak
Simpangan rata-rata adalah penyebaran dari nilai rata-rata.
+
SR = xmin
Q1
Q2
Q3
xmaks
Tabel
Σ |xi -x̅ | n
E.
Q3
xmin
xmaks
R = S2 =
S = √R =
R xmin Q1
Q2
Pl data tidak normal
Q3 xmaks
data normal
Range adalah jangkauan dari seluruh data. J = x maks – x min Hamparan adalah jangkauan antarkuartil yang merupakan selisih kuartil atas dengan kuartil bawah. H = Q3 – Q 1 Simpangan hamparan.
kuartil
adalah
setengah
dari
Qd = 1/2 H Langkah adalah hamparan.
Σ (xi -x̅ )2 n
=
Σ (xi -x̅)2 .fi Σ fi
L H
Pd data tidak normal
Σ fi
Simpangan baku/standar deviasi adalah akar kuadrat dari ragam yang menunjukkan homogenitas kelompok.
PENYEBARAN DATA TUNGGAL Qd
Σ |xi -x̅|.fi
Ragam/varian adalah jumlah kuadrat dari deviasi nilai-nilai data terhadap rata-rata.
Q2 Q1
=
satu
setengah
kali
dari
L = 3/2 H Pagar dalam adalah satu langkah dibawah kuartil bawah. Pd = Q 1 - L Pagar luar adalah satu langkah di atas kuartil atas. Pl = Q 3 + L Pagar dalam dan pagar luar berfungsi sebagai patokan untuk menyatakan suatu data normal atau tidak normal.
√Σ (xi-x̅ ) n
2
=√
Σ (xi -x̅)2 .fi Σ fi
Makin kecil nilai simpangan baku maka datanya makin homogen. Pada pengolahan data tunggal, jika setiap data dikali/dibagi a dan/atau ditambah/dikurang b: 1) Ukuran pemusatan data berubah sesuai urutan perubahan data yang terjadi. Contoh: Jika setiap data berikut: 2, 2, 4, 4, 6, 7, 8, 10 ditambah satu, kemudian dikali dua, maka rata-ratanya menjadi? Pembuktian: Rata-rata awal: x̄ =
2+2+4+4+6+7+8+10 8
= 5,375
Perubahan data menjadi: 2, 2, 4, 4, 6, 7, 8, 10 3, 3, 5, 5, 7, 8, 9, 11 ditambah 1 6, 6, 10, 10, 14, 16, 18, 22 dikali 2 Rata-rata setelah perubahan: x̄’ =
6+6+10+10+14+16+18+22 8
= 12,75
Nilai rata-rata 12,75 didapat dari: x̄’ = (x̄ + 1) x 2 = (5,375 + 1) x 2 x̄’ = 12,75 2) Ukuran penyebaran data selain ragam hanya berubah sesuai perubahan dikali/dibagi. Contoh: Jika setiap data berikut: 2, 2, 4, 4, 6, 7, 8, 10, a. Jika dikali 2 b. Jika dikali 2 kemudian ditambah 2 c. Jika ditambah 1 kemudian dikali 4 maka jangkauan masing-masingnya adalah?
STATISTIKA
4
MAT 2
materi78.co.nr Pembuktian: Range awal: J = 10 – 2 = 8 a. Perubahan: 4, 4, 8, 8, 12, 14, 16, 20, J’ = 20 – 4 = 16 (didapat dari J’ = 2J) b. Perubahan: 6, 6, 10, 10, 14, 16, 18, 22, J’ = 22 – 6 = 16 (didapat dari J’ = 2J) c. Perubahan: 12, 12, 20, 20, 28, 32, 36, 44, J’ = 44 – 12 = 32 (didapat dari J’ = 4J) 3) Untuk ragam, hanya berubah sesuai perubahan dikali/dibagi, namun faktornya dikuadratkan terlebih dahulu sebelum dikali/dibagi.
2) Metode simpangan x̄ = x̄s +
x̄s = rata-rata sementara, diambil dari salah satu nilai tengah kelas di = selisih nilai tengah tiap kelas dengan ratarata sementara (x̄i – x̄s)
3) Metode coding
μi =
di
Pembuktian: Rata-rata awal: x̄ =
5+5+8+9+14+16+20 7
Ragam awal: R=
(5-11)2 +(5-11)2 +(8-11)2 +…+(20-11)2 7
R=
62 +62 +32 +22 +32 +52 +92 7
200 7
Perubahan data menjadi:
Modus terletak pada kelas/interval dengan frekuensi terbanyak. Modus dapat dicari:
10, 10, 16, 28, 32, 40
dikali 2
S1 +S2
).c
TB = tepi bawah kelas modus S1 = selisih frekuensi dengan kelas sebelum kelas modus S2 = selisih frekuensi dengan kelas sesudah kelas modus c = panjang kelas
Cara menentukan batas kuartil, desil persentil sama dengan caradata tunggal.
dan
Median dapat dihitung dengan rumus: 1 n - fkq 2 2
fq
.c
2
x̄’ = 2x̄ = 22
TB = tepi bawah kelas median fkq = frekuensi kumulatif kelas sebelum kelas median fq = frekuensi kelas median
Ragam setelah perubahan:
Kuartil dapat dihitung dengan rumus:
Rata-rata setelah perubahan:
R’ =
(10-22)2 +(10-22)2 +(16-22)2 +…+(40-22)2 7
R’ =
122 +122 +62 +42 +62 +102 +182 7
=
800 7
(didapat dari R’ = (2)2R)
PENGOLAHAN DATA MAJEMUK Pengolahan data majemuk pada dasarnya sama dengan data tunggal namun memiliki cara yang berbeda untuk menghitungnya.
G.
S1
Mo = TB + (
Q2 = T B +
5, 5, 8, 9, 14, 16, 20
F.
Σ μi .fi .c ui = kode kelas i Σ fi c = panjang kelas
Median, kuartil, desil, persentil terletak pada kelas yang merupakan batas dari kuartil, desil atau persentil tersebut.
= 11
=
x̄ = x̄s +
c
Contoh: Jika setiap data berikut: 5, 5, 8, 9, 14, 16, 20, dikali dua, maka ragamnya menjadi?
Σ di .fi Σ fi
PEMUSATAN DATA MAJEMUK Mean dapat dihitung dengan tiga cara: 1) Metode biasa x̄ =
Σ xi .fi Σ fi
xi = nilai tengah tiap kelas
Qi = T B +
i n - fkq 4 i
fq
.c
i
TB = tepi bawah kelas Qi fkq = frekuensi kumulatif kelas sebelum kelas Qi fq = frekuensi kelas Qi
Desil dapat dihitung dengan rumus:
Di = TB +
i n - fkdi 10
fdi
.c
TB = tepi bawah kelas Di fkd = frekuensi kumulatif kelas sebelum kelas Di fd = frekuensi kelas Di
STATISTIKA
5
MAT 2
materi78.co.nr Persentil dapat dihitung dengan rumus:
Pi = T B +
i n - fkp 100 i
fp
.c
i
TB = tepi bawah kelas Pi fkp = frekuensi kumulatif kelas sebelum kelas Pi fp = frekuensi kelas Pi
Daerah batasan selain kuartil, desil dan persentil dapat ditentukan melalui persamaan: N = TB +
x - fks fk
.c
Simpangan rata-rata dapat dirumuskan: SR =
Σ |xi -x̅|.fi
Ragam dan simpangan baku dapat dihitung dengan cara: 1) Metode biasa Ragam R = S2 =
Σ (xi -x̅)2 .fi Σ fi
Simpangan baku
N = nilai tertinggi dari x data yang pertama TB = tepi bawah kelas batasan x = banyak data daerah sebelum N fks = frekuensi kumulatif kelas sebelum kelas batasan fk = frekuensi kelas batasan
Contoh:
S = √R =
√
Σ (xi -x̅)2 .fi Σ fi
2) Metode simpangan Ragam
Diketahui nilai ulangan Matematika suatu kelas: Nilai
Jumlah murid
60-64
3
65-69
4
70-74
6
75-79
2
80-84
20
85-89
5
Ternyata, guru Matematika kelas tersebut menyatakan 45% murid di kelas tersebut lulus ulangan. Tentukan KKM untuk lulus! Jawab:
R = S2 =
Σ di 2 .fi Σ di .fi 2 -( ) Σ fi Σ fi
Simpangan baku
S = √R =
22-15 20
Σ fi
Σ di .fi
−(
Σ fi
2
)
Ragam
Σ μ 2 .f
Σ μ .f
2
[ Σ if i - ( Σ if i) ].c i i
Simpangan baku
Jumlah murid tidak lulus = 55% x 40 = 22 murid Berarti, batasan terletak pada nilai 80-84.
√
Σ di 2 .fi
3) Metode coding
R = S2 =
Sementara, kita anggap batas nilai terendah untuk lulus adalah nilai tertinggi dari murid yang tidak lulus.
N = 79,5 +
xi = nilai tengah tiap kelas
Σ fi
S = √R =
√[
Σ μi 2 .fi Σ fi
Σ μi .fi
- (
Σ fi
2
) ] .c
x5
N = 79,5 + 1,75 = 81,25
H.
PENYEBARAN DATA MAJEMUK Range dapat dirumuskan: J = x maks – x min Hamparan dapat dirumuskan: H = Q3 – Q1 Simpangan kuartil dapat dirumuskan: Qd = 1/2 H
STATISTIKA
6
MAT 3
materi78.co.nr
Tranformasi Geometri A.
PENDAHULUAN
B.
JENIS-JENIS TRANSFORMASI GEOMETRI
Transformasi geometri adalah proses pemindahan atau pembentukan hasil atau bayangan dari suatu titik atau kurva. Jenis
Keterangan
Jenis-jenis transformasi geometri terdiri dari translasi (pergeseran), transformasi bersesuaian matriks, refleksi (pencerminan), rotasi (perputaran), dan dilatasi (perkalian). Persamaan
Matriks
Hasil Bayangan
x x' a ( ) = ( )+(y) y' b
a ( ) b
x’ = a + x
a c
x’ = ax + by
Translasi (T) pergeseran searah sumbu x sejauh a dan searah sumbu y sejauh b.
y’ = b + x
Transformasi bersesuaian matriks (M) transformasi oleh matriks berordo 2 x 2.
x' a ( )=( y' c
b x )( ) d y
x' 1 ( )=( y' 0
0 x )( ) -1 y
(
b ) d
y’ = cx + dy
Refleksi a. Sumbu x (y = 0) b. Garis y = b
x' 1 ( )=( y'-b 0
c. Sumbu y
x' -1 ( )=( y' 0
(x = 0) d. Garis x = a
x'-a -1 ( )=( y' 0
e. Garis y = x f. Garis y = –x
pencerminan dengan cermin berupa suatu sumbu, garis atau titik.
g. Titik O (0,0) h. Titik P (a,b) i. Garis y = mx
-1 x )( ) 0 y
x' -1 ( )=( y' 0
0 x )( ) -1 y
j. Garis
1 x' 1-m2 ( )= .( y'-n 1+m2 2m
y = mx + n
(
y’ = –y x’ = x
-1 0 ) 0 1
y’ = y x’ = 2a – x y’ = y
0 ( 1
1 ) 0
x’ = y
0 -1
-1 ) 0
x’ = –y
(
y’ = x y’ = –x x’ = –x
(
0 x-a )( ) -1 y-b
-1 0
0 ) -1
y’ = –y x’ = 2a – x y’ = 2b – y
x 2m )( ) -(1-m2 ) y 2m -(1-m2 )
0 ) -1
x’ = –x
0 x-a )( y ) 1
x' 0 ( )=( y' -1
1 0
y’ = 2b – y
0 x )( ) 1 y
1 x )( ) 0 y
1 x' 1-m2 ( )= .( 2 y' 1+m 2m
(
x 0 ) (y-b) -1
x' 0 ( )=( y' 1
x'-a -1 ( )=( y'-b 0
x’ = x
1-m2
1+m2 2m x 2 1+m ) (y-n) (
x’ =
2m 1+m2 y’ = -(1-m2 ) 1+m2 ) …
x + 2my – m2 x 1+m2 -y + 2mx + m2 y 1+m2
Rotasi (R) a. Pusat O(0,0) sejauh α b. Pusat P(a,b) sejauh α
perputaran terhadap suatu pusat dengan sudut tertentu. -α jika searah jarum jam, +α jika berlawanan.
x' cosα ( )=( y' sinα x'-a cosα ( )=( y'-b sinα
– sinα x )( ) cosα y – sinα x-a )( ) cosα y-b
x’ = x.cosα – y.sinα (
cosα sinα
– sinα ) cosα
y’ = x.sinα + y.cosα …
Dilatasi (D) a. Pusat O(0,0), perkalian dari suatu faktor skala k pusat dengan faktor b. Pusat P(a,b), skala k.
faktor skala k k > 0 dilatasi searah, k < 0 dilatasi berlawanan arah.
x' k ( )=( y' 0 x'-a k ( )=( y'-b 0
0 x )( ) k y 0 x-a )( ) k y-b
x’ = kx y’ = ky k ( 0
0 ) k
x’ = k(x – a) + a y’ = k(y – b) + b
GEOMETRI
1
MAT 3
materi78.co.nr
C.
BAYANGAN TITIK, KURVA DAN BANGUN DATAR Bayangan titik dapat ditentukan menggunakan persamaan-persamaan transformasi. Contoh 1: Tentukan bayangan titik B(2, -1) oleh transformasi: a.
T(4,5) x’ = 2 + 4 = 6
B’(6,4)
y’ = -1 + 5 = 4 b.
Transformasi bersesuaian matriks (-12 x’ = (2).2 + (0).(-1) = 4
0 ) 5
B’(4, -7)
y’ = (-1).2 + (5).(-1) = -7 c.
B’(2, 1)
y’ = -(-1) = 1 d.
Refleksi terhadap sumbu y x’ = -2
B’(-2, -1)
y’ = -1 e.
Refleksi terhadap titik P (4,5) x' = 2(4) – 2 = 6
B’(6, 11)
y’ = 2(5) –(–1) = 11 f.
Refleksi terhadap garis y = 3x 1 x' 1-(3)2 ( )= 2 .( y' 1+(3) 2.3
2.3 2 )( ) -(1-(3)2 ) -1
y’ = g.
(-8).2 + 6.(-1) = -2,2 10 (6).2 + 8.(-1) = 0,4 10
B’(-2,2, 0,4)
x' 1-(3) ( )= .( y'-1 1+(3)2 2.3
2
2.3 2 )( ) -(1-(3)2 ) -1-1
1 -8 6 2 x' ( ) = .( )( ) y'-1 10 6 8 -2
x’ = y’ –
0 8 )( ) -2 -2
x–2=4
x=6
y + 1 = -1
y = -2
Q(6, -2)
Bayangan kurva dapat ditentukan dengan memasukkan nilai x’ dan y’ ke dalam persamaan kurva y = f(x) sehingga menjadi y’ = f(x’).
x x' a ( ) = ( )+(y) y' b x x' a (y ) = ( ) – ( ) y' b Transformasi geometri selain translasi x' a ( )=( y' c x (y ) =
b x )( ) d y
1 d ( ad-bc -c
-b x' )( ) y' a
Contoh 1: Tentukan y = f(x’) dari parabola y = x2 – 2x + 3 oleh refleksi terhadap garis x = 2!
Refleksi terhadap garis y = 3x + 1 1
0 x-(2) )( ) 2 y-(-1) 1 -2 x-2 ( )= ( y+1 2(2) - 0(0) 0 x-2 4 ( )=( ) y+1 -1 8 2 ( )=( -2 0
Persamaan bayangan kurva tidak perlu diberi tanda aksen pada x dan y nya.
1 -8 6 x' 2 ( ) = .( )( ) y' 10 6 8 -1
x’ =
Gunakan invers matriks,
Translasi
Refleksi terhadap sumbu x x’ = 2
Jawab:
(-8).2 + 6.(-2) = -2,8 10 (6).2 + 8.(-2) 1= = -0,4 10
Jawab: x’ = 2(2) – x, sehingga x = 4 – x’ y’ = y, sehingga y = y’ (y’) = (4 – x’)2 – 2(4 – x’) + 3 y’ = 16 – 8x’ + x’2 – 8 + 2x’ + 3 (hilangkan aksen) y = x2 – 6x + 11
+ 1 = 0,6
B’(-2,8, 0,6) Contoh 2: Tentukan bayangan titik C(2, -4) yang diputar 30o searah jarum terhadap titik O. Jawab: x’ = 2.cos(-30) – (-4).sin(-30) = 2. 1/2√3 – 4.1/2 = √3 – 2 y’ = 2.sin(-30) + (-4).cos(-30) = –2.1/2 – 4.1/2√3 = –1 – 2√3 C’(√3 – 2, –1 – 2√3) Contoh 3: Tentukan titik Q jika Q’(8, -2) terjadi karena dilatasi pusat R(2,-1) dan faktor skala 2.
Contoh 2: Tentukan bayangan dari garis 2x + 4y – 3 = 0 oleh 1 -4 transformasi yang bersesuaian dengan (-1 )! 6 Jawab: 1 1 6 x 6 4 x' (y) = .( ) ( ) = .( (1)(6) - (-4)(-1) 1 1 y' 2 1
4 x' )( ) 1 y'
x = 3x’ + 2y’ y = 1/2 x’ + 1/2 y’ 2(3x’ + 2y’) + 4(1/2 x’ + 1/2 y’) – 3 = 0 6x’ + 4y’ + 2x’ + 2y’ – 3 = 0 (hilangkan aksen) 8x + 6y – 3 = 0
GEOMETRI
2
MAT 3
materi78.co.nr Contoh 3:
2) Transformasi (M2 ∘ M1) 2
2
Tentukan bayangan persamaan 4x + 4y – 3 = 0 oleh dilatasi dengan pusat X(1,2) dan faktor skala 2!
Matriks bersesuaian untuk komposisi transformasi bersesuaian matriks 1 dilanjutkan transformasi bersesuaian matriks 2:
Jawab: x’ = 2(x – 1) + 1
y’ = 2(y – 2) + 2
x’ = 2x – 2 + 1
y’ = 2y – 4 + 2
x= 4(
x'+1
2 x'+1 2
y=
)2 + 4(
y'+2 2
M2 ∘ M1 = (
y'+2
q a )( s c
Komposisi refleksi
)2 – 3 = 0
Terhadap garis x = a dilanjutkan
x2 + y2 + 2x + 4y + 2 = 0
Terhadap garis y = a dilanjutkan
Terhadap garis yang tegak lurus
Luas bangun datar bayangan dapat ditentukan:
Terhadap garis yang berpotongan
Rotasi 1 pada pusat P sejauh α dilanjutkan rotasi 2 pada pusat P sejauh β adalah rotasi dengan pusat P sejauh (α + β).
|M| = determinan matriks bersesuaian
KOMPOSISI TRANSFORMASI GEOMETRI Komposisi transformasi (o) adalah kejadian dimana suatu titik atau kurva P mengalami transformasi A sehingga menghasilkan P’, dan dilanjutkan oleh transformasi B sehingga menghasilkan P”. P
P’
B
P”
Tentukan bayangan garis 10x – 5y + 3 = 0 oleh transformasi yang bersesuaian dengan ( 1 0)
A
-2 1
dilanjutkan ( 1 2)! -2 1
Jawab: M2 o M 1 = ( 1
0 -3 2 )=( ) 1 -4 1 1 x -3 2 x' (y) = .( )( ) (-3)(1) - (2)(-4) -4 1 y'
x=
1
5 1
2 1 )( 1 -2
(-3x’ + 2y’)
y = (-4x’ + y’)
Penulisan komposisi transformasi: transformasi
Contoh:
-2
B∘A B∘A, dibaca transformasi B.
rotasi pada perpotongan garis sejauh 180o
4) Rotasi (R2 ∘ R1)
Transformasi bersesuaian matriks
A
x’ = x
rotasi pada perpotongan garis (m1 = tanα, m2 = tanβ) sejauh 2(β – α)
Dilatasi
L’ = |M|. L
x’ = 2(b – a) + x
y’ = 2(b – a) + y
garis y = b
Luas bangun datar bayangan berubah jika mengalami dilatasi dan transformasi bersesuaian matriks, namun tetap sebangun.
k = faktor skala
Hasil bayangan
y’ = y
garis x = b
Bayangan bangun datar dapat ditentukan dengan mentransformasikan titik-titiknya menjadi bayangannya, sehingga terbentuk bangun bayangan.
L’ = k2 + L
b ) d
3) Refleksi (Rf2 ∘ Rf1)
2
x’2 + 2x’ + 1 + y’2 + 4y’ + 4 – 3 = 0 (hilangkan aksen)
D.
p r
dilanjutkan
Bayangan akhir dicari dengan mentransformasikan titik atau kurva secara bertahap, atau dengan komposisi transformasi istimewa.
10.(
5 1 5
1
(-3x’ + 2y’)) – 5.( (-4x’ + y’)) + 3 = 0 5
2(-3x’ + 2y’) –(–4x’ + y’) + 3 = 0 -6x’ + 4y’ + 4x’ – y’ + 3 = 0 (hilangkan aksen) 3y – 2x + 3 = 0
Komposisi transformasi istimewa: 1) Translasi (T2 ∘ T1) Matriks bersesuaian untuk komposisi translasi 1 dilanjutkan translasi 2: c a c+a T2 ∘ T1 = ( )+( ) = ( ) d b d+b
GEOMETRI
3
MAT 3
materi78.co.nr
Trigonometri Dasar A.
4) Radian (rad)
PENDAHULUAN
Satu radian didefinisikan sebagai ukuran sudut yang dibentuk oleh suatu juring lingkaran yang busurnya bernilai sama dengan jari-jari lingkaran.
Trigonometri adalah ilmu matematika yang mempelajari tentang segitiga siku-siku. Pada segitiga siku-siku berlaku teorema Phytagoras dan nilai perbandingan sisi-sisi segitiga siku-siku.
B.
A
NILAI PERBANDINGAN TRIGONOMETRI
AB
r
B
Nilai perbandingan trigonometri adalah nilai perbandingan sisi-sisi segitiga siku-siku.
r
opposite depan
Macam definisi dari nilai perbandingan trigonometri: Nilai satu radian adalah: 1 rad = θ
samping adjacent sinus sinθ =
D.
depan
cosecθ =
cosinus cosθ =
samping
secθ =
miring
C.
cotθ =
samping sinθ
miring
1 cosθ
=
1 tanθ
cotθ =
cosθ
=
P
miring
r
samping
x
depan cosθ
Koordinat kartesius
sinθ
1 60
o
1o = 60’
1” =
60
’=
1 3600
o
tanα =
r = √x2 +y2
y x
Hubungan koordinat kartesius dengan polar: x = r cos α
E.
y = r sin α
SUDUT ISTIMEWA Perbandingan nilai sisi-sisi segitiga istimewa dan sudutnya antara lain:
1
3) Detik (“) Satu detik didefinisikan sebagai 1/60 menit atau 1/3600 derajat, sehingga 1o bernilai 3600” dan 1’ bernilai 60”. 1
P = (r, αo)
Hubungan koordinat polar dengan kartesius:
putaran penuh lingkaran
2) Menit (‘) Satu menit didefinisikan sebagai 1/60 derajat, sehingga 1o bernilai 60’. 1’ =
Koordinat polar
P = (x, y)
1) Derajat (o) Satu derajat didefinisikan sebagai 1/360 putaran penuh satu lingkaran. 360
y
α
samping
Sudut dapat dinyatakan dalam berbagai macam satuan, yaitu:
1
rad
180
depan
SATUAN SUDUT
1o =
π
KOORDINAT KARTESIUS DAN POLAR
cotangen
depan
tanθ =
=
1o =
secan
tangen tanθ =
1 sinθ
π
o
Suatu sudut dapat dinyatakan dalam koordinat kartesius dan koordinat polar.
cosecan
miring
180
60o
45o
1 45o 1
30o 3
a
a2 + b2 = c2
1o = 3600” b
TRIGONOMETRI
1
MAT 3
materi78.co.nr Nilai perbandingan trigonometri pada sudutsudut istimewa:
F.
0o
30o
45o
60o
90o
0
π 6
π 4
π 3
π 2
/2 3
1
1
/2
1
sin
0
cos
1
1
/2 3
1
tan
0
1
csc
∞
sec
1
cot
∞
1
/2 2
1
/2
0
3
∞
/3 3
1
2
∞
/3 3
0
/2 2 1
/3 3 2
2
/3 3
2
2
2
1
3
1
Sudut dapat bernilai negatif jika arah putarannya searah jarum jam. Sudut juga dapat bernilai lebih dari 360o jika melakukan lebih dari satu putaran penuh. Untuk mengubah sudut negatif atau besarnya lebih dari 360o, dapat digunakan konsep: α = α ± k.360o dengan k merupakan bilangan bulat. Nilai perbandingan trigonometri sudut pada kuadran II, III dan IV memiliki suatu hubungan atau relasi dengan kuadran I (≥90o). Sudut berelasi yang dapat dibentuk:
KUADRAN KOORDINAT KARTESIUS Nilai perbandingan trigonometri suatu sudut yang besarnya <90o dapat dijelaskan melalui kuadran koordinat kartesius. 90o
Kuadran
Sudut
I
β
atau
90 – α
II
90 + α
atau
180 – α
III
180 + α
atau
270 – α
IV
270 + α
atau
360 – α
Nilai-nilai sudut berelasi: sin(90- α)
= cosα
sin(180- α) = sinα
cos(90- α)
= sinα
cos(180- α) = -cosα
tan(90- α)
= cotα
tan(180- α) = -tanα
csc(90- α)
= secα
csc(180- α) = cscα
sec(90- α)
= cscα
sec(180- α) = -secα
cot(90- α)
= tanα
cot(180- α) = -cotα
sin(90+ α)
= cosα
sin(180+ α) = -sinα
cos(90+ α) = -sinα
cos(180+ α) = -cosα
tan(90+ α) = -cotα
tan(180+ α) = tanα
csc(90+ α) = secα
csc(180+ α) = -cscα
I
sec(90+ α) = -cscα
sec(180+ α) = -secα
0 ≤ α ≤ 90
cot(90+ α) = -tanα
cot(180+ α) = cotα
sin(270- α) = -cosα
sin(360- α) = -sinα
cos(270- α) = -sinα
cos(360- α) = cosα
tan(270- α) = cotα
tan(360- α) = -tanα
csc(270- α) = -secα
csc(360- α) = -cscα
sec(270- α) = -cscα
sec(360- α) = secα
cot(270- α) = tanα
cot(360- α) = -cotα
sin(270+ α) = -cosα
sin(360+ α) = sinα
cos(270+ α) = sinα
cos(360+ α) = cosα
tan(270+ α) = -cotα
tan(360+ α) = tanα
csc(270+ α) = -secα
csc(360+ α) = cscα
sec(270+ α) = cscα
sec(360+ α) = secα
cot(270+ α) = -tanα
cot(360+ α) = cotα
r
y
β α
180o sinα = cosα = tanα =
y r x
x = absis y = ordinat r = jari-jari
r y x
0o
x
270o
Tanda nilai perbandingan trigonometri berbeda di masing-masing kuadrannya. 90o
II 90 ≤ α ≤ 180 sin + cos – tan –
cosec + sec – cot –
sin + cos + tan +
180o sin – cos – tan +
cosec – sec – cot +
sin – cos + tan –
cosec + sec + cot + cosec – sec + cot –
180 ≤ α ≤ 270
270 ≤ α ≤ 360
III
IV
270o
0o
Hubungan kelipatan sudut dengan sudut lain: 1) Sudut 360o atau 2π rad dan kelipatan bilangan bulatnya bernilai 0o atau 0 rad. 2) Sudut 180o atau π rad dan kelipatan ganjilnya bernilai 180o atau π rad, sedangkan kelipatan genapnya bernilai 0o atau 0 rad.
TRIGONOMETRI
2
MAT 3
materi78.co.nr Pola yang dapat diambil: 1) Pada sudut 90± α dan 270± α , nama perbandingan berubah dengan tanda sesuai kuadran awal. 2) Pada sudut 180± α dan 360± α , nama perbandingan tetap dengan tanda sesuai kuadran awal. Contoh: Tentukan nilai trigonometri sudut-sudut berikut: 1. sin(-30o) = -sin(30) = -1/2 2. 3.
cos150o = -cos(30) = -1/2 3 cos(-300o) = cos(60) = 1/2
4.
tan(
23π ) 6
π 6
= tan(4π– ) = tan(-30) = -tan30 = -1/3 3
41π ) 3
5.
cot(−
6.
sec870o
π 3
= cot(-14π+ ) = cot60 = 1/3 3 = sec510 = sec150 = -sec(30) = -2/3 3
TRIGONOMETRI
3
MAT 3
materi78.co.nr
Identitas dan Persamaan Trigonometri A.
Identitas trigonometri membuktikan kebenaran trigonometri.
digunakan untuk suatu persamaan
Identitas nilai perbandingan trigonometri didapat dari: y sinα = P r x r cosα = y r α
2
2
sin α + cos α = ( 2
y r
2
sin α + cos α = 2
2
) +(
x r
2
sin α
+
2
sin α cos2 α
+
cos2 α 2
sin α cos2 α cos2 α
= =
2
2
2
tan α + 1 = sec α
cos2 α
(masukkan nilai k)
x = {-105, 255, 615} k = -1 k = 0 k = 1 Himpunan penyelesaian di kuadran II: 2x = –75 – x +k.360 x = –25 + k.120
persamaan
sinus
(masukkan nilai k)
x = {-25, 95, 215, 335, 455} k=0k=1 k=2 k=3 k=4 x = {95, 215, 255, 335}
apabila,
b. sin(2x) = -cos(x - 15) sin(2x) = sin(270+(x - 15)) (kuadran IV)
(kuadran I)
sin(2x) = sin(255+x) (kuadran II)
Hubungan antara dua mempunyai penyelesaian.
x = –a + k.360
x = 255 + k.360
3x = –75 + k.360
Himpunan penyelesaian di kuadran I:
dengan k merupakan bilangan bulat.
x = a + k.360
sin(2x) = -cos(x - 15)
Himpunan penyelesaian akhir:
x = (180 – a) + k.360
cos x = cos a
sin(2x) + cos(x-15) = 0, dengan 90o < x < 360o
2x = 180 – (255 + x) + k.360
1
Hubungan antara dua mempunyai penyelesaian.
x = a + k.360
a.
2x = 255 + x + k.360
PERSAMAAN TRIGONOMETRI
sin x = sin a
Tentukan himpunan penyelesaian dari:
Himpunan penyelesaian di kuadran I:
1 + cot α = cosec α
2
Contoh:
sin(2x) = sin(255+x)
r2
2
sin α
dengan k merupakan bilangan bulat.
sin(2x) = sin(270+(x - 15)) (kuadran IV)
x2 + y2
2
1
apabila,
x = a + k.180
a.
)
Identitas nilai perbandingan trigonometri lain didapat dari: 2
tangen
Jawab: 2
sin α + cos α = 1
sin α
tan x = tan a
persamaan
b. cos(3x) + cos(x) = 0, dengan –π < x < π
r = √x2 +y2
x
B.
Hubungan antara dua mempunyai penyelesaian.
IDENTITAS TRIGONOMETRI
persamaan
2x = 255 + x + k.360 cosinus
x = 255 + k.360
(masukkan nilai k)
x = {-105, 255, 615} Himpunan penyelesaian di kuadran II:
apabila,
2x = 180 – (255 + x) + k.360 2x = –75 – x +k.360
(kuadran I)
3x = –75 + k.360 x = –25 + k.120
(kuadran IV)
dengan k merupakan bilangan bulat.
(masukkan nilai k)
x = {-25, 95, 215, 335, 455} k=0k=1 k=2 k=3 k=4 Himpunan penyelesaian akhir: x = {95, 215, 255, 335}
TRIGONOMETRI
1
MAT 3
materi78.co.nr
C. PERSAMAAN FUNGSI TRIGONOMETRI
y = cotx
periode π
Grafik fungsi trigonometri antara lain: 1) Fungsi sinus dan cosinus y = sinx 1
π 0
0
2π
π 2
π
3π 2
2π
-1
periode 2π
Bentuk umum persamaan fungsi sinus dan cosinus: y = cosx
1
y = ±a.cos(bx ± c) ± d
Makna persamaan fungsi sinus dan cosinus: 1) Amplitudo fungsi
π 2π
0 -1
periode 2π 2) Fungsi cosecan dan secan y = cosecx
periode 2π
y = ±a.sin(bx ± c) ± d
±a Jika a > 0 (positif), maka grafik bergerak naik ke amplitudo tertinggi lebih dulu. Jika a < 0 (negatif), maka grafik bergerak turun ke amplitudo terendah lebih dulu. 2) Periode fungsi 360° b
1
0
π
Satu periode dibagi menjadi 4 daerah yang sama besar.
2π
3) Pergeseran horizontal grafik
-1
c b periode 2π
y = secx
Jika c/b > 0 (positif), maka grafik bergeser ke kiri sebesar c/b. Jika c/b < 0 (negatif), maka grafik bergeser ke kanan sebesar c/b.
1
4) Pergeseran vertikal grafik π
0
2π
-1
d Jika d > 0 (positif), maka grafik naik ke atas sebesar d.
3) Fungsi tangen dan cotangen periode π
y = tanx
Jika d < 0 (negatif), maka grafik turun ke bawah sebesar d. 5) Nilai maksimum dan minimum grafik Nilai maksimum: |a|+d
Nilai minimum: -| a | + d
Hubungan persamaan fungsi sinus dan cosinus: 0
π 2
π
3π 2π 2
1) Sudut persamaan sinus ke cosinus ditambah 270o sesuai konsep sudut berelasi. 2) Sudut persamaan cosinus ke sinus ditambah 90o sesuai konsep sudut berelasi.
TRIGONOMETRI
2
MAT 3
materi78.co.nr 3) Sudut yang terlalu kecil atau terlalu besar dapat disederhanakan menggunakan konsep: α = α ± k.360o
Grafik fungsi sinus dan cosinus juga dapat diubah menjadi sebuah persamaan, dengan: Nilai a a=
Nilai b
amaks −amin 2
dengan k merupakan bilangan bulat. Contoh:
Nilai c
Ubah ke persamaan berikut ke sinus atau cosinus!
Fungsi sinus
a.
y = 2. sin(3x + 100) y = 2. cos(370 + 3x)
y = 2. cos(3x + 10)
b. y = -3. cos(x + 4) y = -3. sin(90+(x + 4))
y = -3. sin(x + 94)
Cara menggambar grafik sinus dan cosinus:
c = – b. xpuncak
Nilai d d=
amaks +amin 2
dari
Contoh:
Langkah 1:
4
Buat grafik dasar sebelum pergeseran, yaitu persamaan menjadi y = -2.sin(3x), dengan:
2
- Amplitudo grafik adalah 2 dan grafik bergerak turun ke -2 lebih dulu.
0
- Periode grafik adalah 360/3 atau 120o.
-1
20
80
Tentukan persamaan fungsi grafik di atas!
2 0
Jawab: 60 120
a=
4-0 2
=2
Periode grafik di atas adalah 2 kali jarak antar puncak, yaitu 120o.
-2
360° 120°
Langkah 2:
b=
Buat grafik persamaan y = -2.sin(3x-60), dengan pergeseran horizontal ke kiri sebesar 20o.
c = 90 - 3.80 = 90 - 240 = -150 d=
4+0 2
=3
=2
Maka persamaan yang dapat dibentuk:
2 0
p
Cara menentukan persamaan fungsi sinus dan cosinus dari grafik:
Contoh: Buatlah gambar grafik satu periode persamaan fungsi y = -2. sin(3x-60) + 1!
360°
Fungsi cosinus
c = 90 – b. xpuncak
y = 2. cos(270+(3x + 100))
b=
y = 2. sin(3x - 150) + 2 (fungsi sinus) 60
y = 2. cos(3x + 120) +2 (fungsi cosinus) 120
-2
Langkah 3: Buat grafik persamaan y = -2.sin(3x-60) + 1, dengan pergeseran vertikal ke atas sebesar 1. 3
0 -1
60 120
TRIGONOMETRI
3
MAT 3
materi78.co.nr
Dalil-Dalil Trigonometri A.
Contoh:
ATURAN SINUS
Diketahui pada ΔABC nilai AB = 4, AC = 6, dan BC
Aturan sinus adalah:
= 2√7. Tentukan nilai dari sin A.
Perbandingan sisi depan sudut sama dengan perbandingan nilai sinus sudut.
Jawab: 2
C
C
cos A =
6 A a sin A
=
b sin B
cos A =
c
=
sin C
C.
Contoh: Sebuah kapal meninggalkan C dengan arah 060 o ke D yang berjarak 9 mil. Dari D, kapal tersebut melaju dengan arah 150o menuju E pada jurusan 90o. Tentukan jarak DE. Jawab:
sin45
=
60o
B.
9√2 2
x
2 √3
= 3√6 mil
B L=
a2 = b2 + c2 – 2bc.cos A
2
cos B =
L=
2sinA
b sinA.sinC 2sinB
c2 sinA.sinB 2sinC
Jawab: 2
2
2
a2 sinB.sinC
Hitunglah luas segitiga MNP jika diketahui ∠M = ∠P = 40o dan MN = 10 m. (sin N = 0,98)
c2 = a2 + b2 – 2ab.cos C
a 2 + b - c2
L = 10√3 cm2
Contoh:
b2 = a2 + c2 – 2ac.cos B
cos C =
L = 1/2 ac sin B
L = 1/2 x 5 x 8 x sin60
L= c
2bc
2) Diketahui besar sisi dan besar dua sudut yang terletak di antara sisi tersebut (sd-ss-sd)
Luas segitiga jika diketahui sd-ss-sd adalah:
C
cos A =
1) Diketahui besar sudut dan besar dua sisi yang mengapit sudut tersebut (ss-sd-ss)
L = 5 x 4 x 1/2√3
Aturan cosinus adalah:
b + c2 - a 2
Luas segitiga dapat dihitung dengan nilai perbandingan trigonometri bila:
Jawab:
ATURAN COSINUS
A
ATURAN LUAS SEGITIGA
Hitung luas segitiga ABC dengan sudut B sebesar 60o, AB = 5 cm dan BC = 8 cm!
1
DE =
A = 60o sin60 = 1/2√3
2
Contoh:
/2√3. DE = /2√2. 9
sin60
1
48
L = 1/2 ab sin C E
1
=
L = 1/2 bc sin A
45o 45o C 9
48
cos A =
Luas segitiga jika diketahui ss-sd-ss:
o
45o 30o
DE
24
B
2. 6. 4 36 + 16 - 28
3) Diketahui besar ketiga sisi (ss-ss-ss)
150
D
4
A
B
c
62 + 42 - (2√7)
a 2 + c2 - b 2ac
∠N = 180o – (40+40)o = 100o L=
102 sin40.sin100
2.sin40 L = 50 x 0,8 = 40 m2
=
100 × 0,8 2
2ab
TRIGONOMETRI
1
MAT 3
materi78.co.nr Luas segitiga jika diketahui ss-ss-ss adalah menggunakan setengah keliling segitiga. L = √s(s − a)(s − b)(s − c) s = 1/2 (a + b + c)
RUMUS SUDUT RANGKAP DAN PERTENGAHAN Nilai perbandingan trigonometri sudut rangkap dua dan tiga dapat dihitung dengan mengubah sudut menjadi setengah atau sepertiganya menggunakan rumus. Rumus sudut rangkap dua: Sinus
Contoh: Hitung luas segitiga yang sisi-sisinya memiliki panjang 4 cm, 6 cm dan 8 cm!
sin2A = 2.sinA.cosA Cosinus
Jawab: 1
s = /2 (4 + 6 + 8) = 9 cm s – a = 9 – 4 = 5 cm
s – b = 9 – 6 = 3 cm
s – c = 9 – 8 = 1 cm
cos2A = cos2A – sin2A cos2A = 2cos2A – 1
L = 3√15 cm2
L = √9×5×3×1 = √135
D.
E.
RUMUS JUMLAH DAN SELISIH TRIGONOMETRI Nilai perbandingan trigonometri dua buah sudut yang dijumlahkan atau dikurangkan dapat dihitung melalui rumus. Rumus jumlah dan selisih sudut:
cos2A = 1 – 2sin2A
Tangen tan2A =
2tanA 1−tan2 A
Rumus sudut rangkap tiga: Sinus
Cosinus
sin3A = 3sinA – 4sin3A
Sinus sin(A + B) = sinA.cosB + cosA.sinB sin(A – B) = sinA.cosB – cosA.sinB
Tangen tan3A =
3tanA−tan3 A
Cosinus cos(A + B) = cosA.cosB – sinA.sinB cos(A – B) = cosA.cosB + sinA.sinB
cos3A = 4cos3A – 3cosA
1−3tan2 A
Rumus sudut pertengahan digunakan untuk mengubah sudut menjadi dua kalinya. Rumus sudut pertengahan: Sinus
Tangen tan(A + B) =
1
1 − cosA
2
2
sin( A) = ±√
tanA+tanB 1−tanA.tanB
Bernilai positif jika terletak di kuadran I dan II. tan(A – B) =
Cosinus
tanA−tanB 1+tanA.tanB
1
1 + cosA
2
2
cos( A) = ±√
Rumus jumlah dan selisih fungsi: Sinus 1
1
2
2
1
1
2
2
Bernilai positif jika terletak di kuadran I dan IV.
sinA + sinB = 2. sin (A + B). cos (A – B) sinA – sinB = 2. cos (A + B). sin (A – B)
Tangen 1
1 − cosA
2
1 + cosA
tan( A) = ±√
Cosinus 1
1
2
2
1
1
2
2
cosA + cosB = 2. cos (A + B). cos (A – B) cosA – cosB = –2. sin (A + B). sin (A – B)
1
1 − cosA
2
sinA
tan( A) =
=
sinA 1 + cosA
Bernilai positif jika terletak di kuadran I dan III.
TRIGONOMETRI
2
MAT 3
materi78.co.nr
Vektor A.
PENDAHULUAN Vektor adalah besaran yang mempunyai nilai dan arah yang digambarkan dalam anak panah (garis).
Vektor pada ruang dinotasikan oleh sumbu x, y dan x dengan vektor satuan i, j dan k. +z
Vektor diberi nama dengan huruf kecil bergaris atas atau menyebut titik pangkal dan ujungnya.
1 B
C
1) Anak panah menunjuk arah yang ditunjuk vektor.
2) Vektor basis, ditulis dalam vektor satuan. Vektor satuan sumbu x adalah i, sumbu y adalah j, dan sumbu z adalah k. a̅ = x.i + y.j + z.k
a̅ |a̅ |
3 +x Vektor basis dapat ditentukan dengan menghitung vektor satuan mulai dari ujung ke pangkal vektor. Vektor basis AB dengan koordinat titik A (x1, y1, z1) dan B (x2, y2, z2) diketahui dapat dihitung: x - x1 ̅ – a̅ = ( 2 ̅̅̅̅ AB= b y2 - y1 ) Dalam ruang
3) Vektor kolom dan baris, ditulis dalam matriks kolom atau baris. x a̅ = (y) z
a̅ = (x
y
x2 - x1 ̅ – a̅ = (y2 - y1 ) ̅̅̅̅ AB= b z2 - z1 Panjang vektor dapat dihitung:
z)
Dalam bidang
̅ dikatakan searah apabila sejajar Vektor a̅ dan b ̅), dan dan menunjuk arah yang sama (a̅ = b dikatakan berlawanan apabila sejajar namun ̅). menunjuk arah yang berlawanan (a̅ = -b Dua vektor dikatakan sama besar apabila searah, sama besar (panjang) dan sama vektor basisnya.
B.
2
Dalam bidang
Vektor satuan (e̅ ) yang searah dengan vektor a̅ : e̅ =
+y
i
Bentuk penulisan vektor:
2
j
O
2) Besar kecilnya vektor dilambangkan dengan besar kecilnya anak panah. 1) Vektor posisi, ditulis dalam notasi vektor terhadap titik acuan. ̅̅̅̅. Contoh: vektor posisi titik A dari O adalah OA
A
k
VEKTOR PADA BIDANG DAN RUANG Vektor pada bidang dinotasikan oleh sumbu x dan sumbu y dengan vektor satuan i dan j. +y B
Dalam ruang
̅̅̅̅| = √x2 +y2 |AB
̅̅̅̅| = √x2 +y2 +z2 |AB
Contoh: Nyatakan vektor OA dan BC (pada gambar 1) dalam vektor basis, dan tentukan panjangnya! Jawab: ̅̅̅̅ OA = 4i + 3j ̅̅̅̅| = √42 +32 = √25 = 5 |OA ̅̅̅̅ BC = 3i – 2j ̅̅̅̅| = √32 +22 = √13 |OA Contoh:
C
-x
j O
i -y
A
Nyatakan vektor OA dan BC (pada gambar 2) dalam vektor basis, dan tentukan panjangnya! ̅̅̅̅ OA = 2i + 3j + 2k +x
̅̅̅̅| = √22 +32 +22 = √17 |OA ̅̅̅̅ BC = 2i – 3j + k ̅̅̅̅| = √22 +32 +12 = √14 |OA
VEKTOR
1
MAT 3
materi78.co.nr
C.
PENJUMLAHAN DAN PENGURANGAN VEKTOR
Perkalian skalar/titik (•) menghasilkan besaran skalar, memiliki definisi:
Penjumlahan dan pengurangan vektor digunakan untuk mencari resultan vektor. Resultan vektor dapat dicari dengan menghubungkan pangkal vektor awal dengan ujung vektor akhir. 1) Cara segitiga (dua vektor)
̅ = |a||b|cosθ a̅ • b Perkalian skalar dengan vektor basis dengan a̅ ̅ = (x2, y2, z2) diketahui dapat = (x1, y1, z1) dan b dihitung: x1 . x2 ̅ = ( y1 . y2 ) ̅a • b z1 . z2
̅ B ̅ A
Sifat-sifat perkalian skalar: Identitas
2) Cara jajar genjang (dua vektor)
Vektor satuan
̅ A ̅ B 3) Cara poligon (lebih dari dua vektor) ̅ A
̅ C
Sudut antara dua vektor adalah sudut yang terbentuk ketika pangkal dua vektor dihubungkan. Penjumlahan dan pengurangan vektor dengan panjang vektor dan sudut vektor: ̅ | = √|a|2 +|b|2 +2|a||b|cosθ |a̅ + b ̅ | = √|a|2 +|b|2 - 2|a||b|cosθ |a̅ - b Penjumlahan dan pengurangan vektor dengan ̅ = (x2, y2, vektor basis dengan a̅ = (x1, y1, z1) dan b z2) diketahui dapat dihitung: x1 - x2 ̅ = (y1 - y2 ) a̅ - b z1 - z2
Sifat penjumlahan dan pengurangan vektor adalah komutatif. A+B=B+A
D.
PERKALIAN SKALAR DAN VEKTOR Perkalian matriks dengan dioperasikan dengan: x k.x k(y) = (k.y) z k.z
i•i=j•j=k•k=1 i•j=j•k=k•i=0
Komutatif
a•b=b•a
Distributif
a • (b ± c) = (a • b) ± (a • c)
Asosiatif
(m.a) • (n.b) = (m.n)(a • b)
Tegak lurus a • b = 0, maka a ┴ b
̅ B
x1 + x2 ̅ = ( y1 + y2 ) a̅ + b z1 + z2
a • a = |a|2
suatu
bilangan
Perkalian vektor/silang (×) menghasilkan besaran vektor yang tegak lurus terhadap dua vektor yang dikali silang, memiliki definisi: ̅ = |a||b|sinθ e̅ a̅ × b Perkalian vektor dengan vektor basis dengan a̅ ̅ = (x2, y2, z2) diketahui dapat = (x1, y1, z1) dan b dihitung: i a × b = |x1 x2
k i z1 | x1 z2 x2
j y2 y2
̅ = (y1.z2 – y2.z1) i + (z1.x2 – z2.x1) j + a̅ × b (y1.x2 – y2.x1) k Sifat-sifat perkalian vektor: Identitas
a×a=0 i×i=j×j=k×k=0
Vektor satuan AntiKomutatif
i×j=k
j×k=i
k×i=j
j × i = -k
k × j = -i
i × k = -j
a×b≠b×a
a × b = -(b × a)
a × (b ± c) = (a × b) ± (a × c) Distributif
k. a̅ = k.|a̅ |
j y1 y2
(b ± c) × a = (b × a) ± (c × a)
VEKTOR
2
MAT 3
materi78.co.nr Sudut dua vektor dapat dicari menggunakan perkalian skalar. cosθ =
E.
2) Koplanar, yaitu ketiga titik terletak pada satu bidang, berlaku: ̅ = p.a̅ +q.c̅ b
̅ +n.c̅ a̅ = m.b
̅ a̅ • b ̅| |a̅ ||b
̅ c̅ = r.a̅ +s.b
dst. Dalil Menelaus pada perbandingan ruas garis:
PERBANDINGAN VEKTOR
C
Perbandingan vektor pada ruas garis dapat memenuhi dua ketentuan:
F
1) Titik C membagi ruas garis AB pada ruas garis
E
B
̅ b
.
A
a̅
F.
Perbandingan ruas garis ̅̅̅̅ : ̅̅̅̅ AC CB = m : n
.
DB EC FA
m
=1
AC FE DB
.
.
CF ED BA
=1
PROYEKSI VEKTOR Proyeksi vektor adalah penjatuhan ujung suatu vektor secara tegak lurus terhadap suatu acuan.
(sama tanda)
Vektor pembagi ruas garis c̅ =
D
B
AD BE CF
C
c̅ O
A
n
̅ b
̅ +n.a̅ m.b m+n
2) Titik C membagi ruas garis AB di luar ruas garis B
O
c̅
a̅
Proyeksi vektor pada suatu vektor/ruas garis lain disebut proyeksi ortogonal. Proyeksi ortogonal terdiri dari:
̅ b
1) Proyeksi vektor ortogonal, adalah vektor baru hasil penjatuhan vektor secara tegak lurus.
n a̅
O
A m
c̅
C
Perbandingan ruas garis
2) Proyeksi skalar ortogonal, adalah panjang vektor baru.
̅̅̅̅ AC : ̅̅̅̅ CB = m : -n Vektor pembagi ruas garis c̅ =
|c̅| =
̅ -n.a̅ m.b
Ketentuan letaknya:
̅ a̅ • b ̅ c̅ = [ 2 ]. b ̅| |b
̅ a̅ • b ̅| |b
m-n perbandingan
vektor
menurut
1) Kolinear, yaitu ketiga titik satu terletak pada satu garis, berlaku: ̅̅̅̅ AB = k. ̅̅̅̅ AC
̅̅̅̅ AC = m. ̅̅̅̅ AB
̅̅̅̅ AC = n. ̅̅̅̅ CB
dst.
VEKTOR
3