Curso
Turma
No
A
Nome:
Departamento de Economia e Gest˜ ao Teste de Avalia¸c˜ ao — Matem´ atica I
13/01/2007
Assinale com uma cruz a resposta que considera correcta. O teste tem uma dura¸c˜ao de uma hora Cada pergunta vale dois valores. 1. |4 + 5x| ≥ 3 ⇔
5.
(a)
4 + 5x ≥ 3 ou 4 + 5x ≤ −3
4
(b)
4 + 5x ≥ −3 ou 4 + 5x ≤ 3
3
(c)
4 + 5x ≥ 3 e 4 + 5x ≤ −3
(d)
4 + 5x ≥ −3 e 4 + 5x ≤ 3
2 1 −2
2.
−1
4x3 + 3x2 + x − 3 = x→−∞ 1 + 2x2 lim
(a)
−2
(c) (d)
−∞
3. Dada a f.r.v.r. f (x) = x3 + 4, bijectiva, a sua inversa f −1 (x) ´e definida por, (a)
f −1 (x) =
2
−1
3 2
3x2 lim x→−∞ 2x2 0
(b)
1 0
1 x3 +4
√ 3
(b)
f −1 (x) =
(c)
f −1 (x) =
(d)
Nenhuma das anteriores
√ 3
x3 + 4 −4 + x
4. Considere a fun¸c˜ ao 1 2 2 x − 1, f (x) = −1,
Esta representa¸c˜ao gr´afica corresponde fun¸c˜ao ( 4x2 − 1, se x ≤ 12 (a) f (x) = −x + 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (b) f (x) = x + 12 , se x > 21 ( 4x2 − 1, se x ≤ 12 (c) f (x) = x + 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (d) f (x) = −x + 12 , se x > 21
se x ≥ 0 se x < 0
A fun¸c˜ ao f (x),
ln(3 − x) x→2 x
6. Calcule o valor do limite lim
(a)
´e cont´ınua no ponto x = 0.
(a)
+∞
(b)
n˜ ao ´e cont´ınua no ponto x = 0.
(b)
1 2
(c)
n˜ ao ´e cont´ınua no ponto x = −1.
(c)
0
(d)
n˜ ao ´e cont´ınua no ponto x = 12 .
(d)
−∞
a `
x2 − 9 x→−3 x + 3
9. Determine o dom´ınio da fun¸c˜ao ex + 4 f (x) = x+4
7. Calcule o valor do limite lim (a)
−6
(b)
−3
(c)
0
(d)
+∞
(a)
Df = R
(b)
Df = R \ {ln(4)}
(c)
Df = R \ {4}
(d)
Df = R \ {−4}
10. Considere as fun¸c˜oes f (x) = x2 + 3 e g(x) = ex . Temos,
8. Sendo Qs = −15 + 5P e Qd = 25 − 3P os pre¸cos e quantidades de equil´ıbrio s˜ ao,
2
(a)
f (g(x)) = ex
(b)
f (g(x)) = e2x + 3
P = 5, Qs = 10 e Qd = 10
(c)
f (g(x)) = (ex + 3)2
P = 5, Qs = 5 e Qd = 5
(d)
f (g(x)) = e(x ) + 3
(a)
P = 10, Qs = 10 e Qd = 10
(b)
Ps =
(c) (d)
25 3
e Pd =
35 4
Teste de Avalia¸c˜ ao — Matem´ atica I
2
+3
2
13/01/2007
A Departamento de Economia e Gest˜ ao Teste de Avalia¸c˜ ao — Matem´ atica I Solu¸c˜ oes
13/01/2007
1. |4 + 5x| ≥ 3 ⇔
5.
(a)
4 + 5x ≥ 3 ou 4 + 5x ≤ −3
4
(b)
4 + 5x ≥ −3 ou 4 + 5x ≤ 3
3
(c)
4 + 5x ≥ 3 e 4 + 5x ≤ −3
(d)
4 + 5x ≥ −3 e 4 + 5x ≤ 3
2 1 −2
−1
1
2
0
2.
4x3 + 3x2 + x − 3 = x→−∞ 1 + 2x2
−1
lim
(a)
−2
3 2
(c)
3x2 lim x→−∞ 2x2 0
(d)
−∞
(b)
Esta representa¸c˜ao gr´afica corresponde fun¸c˜ao ( 4x2 − 1, se x ≤ 12 (a) f (x) = −x + 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (b) f (x) = x + 12 , se x > 21 ( 4x2 − 1, se x ≤ 12 (c) f (x) = x + 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (d) f (x) = −x + 12 , se x > 21
3. Dada a f.r.v.r. f (x) = x3 + 4, bijectiva, a sua inversa f −1 (x) ´e definida por, (a)
f −1 (x) =
(b)
f −1 (x) =
(c)
f −1 (x) =
(d)
1 x3 +4
√ 3 √ 3
x3 + 4 −4 + x
ln(3 − x) x→2 x
6. Calcule o valor do limite lim
Nenhuma das anteriores
4. Considere a fun¸c˜ ao 1 2 2 x − 1, f (x) = −1,
(a)
+∞
(b)
1 2
(c)
0
(d)
−∞
se x ≥ 0 se x < 0 x2 − 9 x→−3 x + 3
7. Calcule o valor do limite lim
A fun¸c˜ ao f (x), (a)
´e cont´ınua no ponto x = 0.
(a)
−6
(b)
n˜ ao ´e cont´ınua no ponto x = 0.
(b)
−3
(c)
n˜ ao ´e cont´ınua no ponto x = −1.
(c)
0
(d)
n˜ ao ´e cont´ınua no ponto x = 12 .
(d)
+∞
1
a `
10. Considere as fun¸c˜oes f (x) = x2 + 3 e g(x) = ex . Temos,
8. Sendo Qs = −15 + 5P e Qd = 25 − 3P os pre¸cos e quantidades de equil´ıbrio s˜ ao, (a)
P = 10, Qs = 10 e Qd = 10 25 3
e Pd =
35 4
2
(a)
f (g(x)) = ex
+3
(b)
f (g(x)) = e2x + 3
(b)
Ps =
(c)
P = 5, Qs = 10 e Qd = 10
(c)
f (g(x)) = (ex + 3)2
(d)
P = 5, Qs = 5 e Qd = 5
(d)
f (g(x)) = e(x ) + 3
2
9. Determine o dom´ınio da fun¸c˜ ao ex + 4 f (x) = x+4 (a)
Df = R
(b)
Df = R \ {ln(4)}
(c)
Df = R \ {4}
(d)
Df = R \ {−4}
Teste de Avalia¸c˜ ao — Matem´ atica I
2
13/01/2007
Curso
Turma
No
B
Nome:
Departamento de Economia e Gest˜ ao Teste de Avalia¸c˜ ao — Matem´ atica I
13/01/2007
Assinale com uma cruz a resposta que considera correcta. O teste tem uma dura¸c˜ao de uma hora Cada pergunta vale dois valores. 1. |2 − 6x| ≤ 4 ⇔
5.
(a)
2 − 6x ≥ 4 ou 2 − 6x ≤ −4
4
(b)
2 − 6x ≥ −4 ou 2 − 6x ≤ 4
3
(c)
2 − 6x ≥ 4 e 2 − 6x ≤ −4
(d)
2 − 6x ≥ −4 e 2 − 6x ≤ 4
2 1
2.
−7x3 + 4x2 + 2x − 1 = x→+∞ 1 − 3x2
−2
−1
lim
(a)
+∞
(b)
4x2 lim x→−∞ −3x2
(c)
7 3
(d)
0
f −1 (x) =
1
2
−1 −2
3. Dada a f.r.v.r. f (x) = x5 − 1, bijectiva, a sua inversa f −1 (x) ´e definida por, (a)
0
1 x5 −1
√ 5
(b)
f −1 (x) =
(c)
f −1 (x) =
(d)
Nenhuma das anteriores
√ 5
x5 − 1 x+1
4. Considere a fun¸c˜ ao 2 x − 2, f (x) = −2,
Esta representa¸c˜ao gr´afica corresponde fun¸c˜ao ( 4x2 − 1, se x ≤ 12 (a) f (x) = −x − 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (b) f (x) = x − 12 , se x > 21 ( 4x2 − 1, se x ≤ 12 (c) f (x) = x − 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (d) f (x) = −x − 12 , se x > 21
se x ≥ 0 se x < 0
A fun¸c˜ ao f (x),
ex−2 x→2 x
6. Calcule o valor do limite lim
(a)
n˜ ao ´e cont´ınua no ponto x = 0.
(a)
+∞
(b)
´e cont´ınua no ponto x = 0.
(b)
1 2
(c)
n˜ ao ´e cont´ınua no ponto x = −2.
(c)
0
(d)
n˜ ao ´e cont´ınua no ponto x = 1.
(d)
−∞
a `
x2 − 16 x→4 x − 4
9. Determine o dom´ınio da fun¸c˜ao ex + 5 f (x) = x−5
7. Calcule o valor do limite lim (a)
4
(b)
8
(a)
Df = R
(c)
0
(b)
Df = R \ {ln(5)}
+∞
(c)
Df = R \ {5}
(d)
Df = R \ {−5}
(d)
10. Considere as fun¸c˜oes f (x) = 5x2 e g(x) = ln x. Temos,
8. Sendo Qs = −35 + 4P e Qd = 25 − 2P os pre¸cos e quantidades de equil´ıbrio s˜ ao, (a)
P = 10, Qs = 10 e Qd = 10
(a)
g(f (x)) = ln(5) + ln(x2 )
(b)
P = 10, Qs = 5 e Qd = 5
(b)
g(f (x)) = ln(5 + x2 )
(c)
P = 5, Qs = 5 e Qd = 5
(c)
g(f (x)) = (5 ln x)2
(d)
Ps =
(d)
g(f (x)) = 5 ln(x2 )
35 4
e Pd =
25 2
Teste de Avalia¸c˜ ao — Matem´ atica I
2
13/01/2007
B Departamento de Economia e Gest˜ ao Teste de Avalia¸c˜ ao — Matem´ atica I Solu¸c˜ oes
13/01/2007
1. |2 − 6x| ≤ 4 ⇔
5.
(a)
2 − 6x ≥ 4 ou 2 − 6x ≤ −4
4
(b)
2 − 6x ≥ −4 ou 2 − 6x ≤ 4
3
(c)
2 − 6x ≥ 4 e 2 − 6x ≤ −4
(d)
2 − 6x ≥ −4 e 2 − 6x ≤ 4
2 1
−2
2.
−1
−7x3 + 4x2 + 2x − 1 = x→+∞ 1 − 3x2
0
1
2
−1
lim
(a)
−2
+∞
Esta representa¸c˜ao gr´afica corresponde fun¸c˜ao ( 4x2 − 1, se x ≤ 12 (a) f (x) = −x − 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (b) f (x) = x − 12 , se x > 21 ( 4x2 − 1, se x ≤ 12 (c) f (x) = x − 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (d) f (x) = −x − 12 , se x > 21
2
(b)
lim
x→−∞
(c)
7 3
(d)
0
4x −3x2
3. Dada a f.r.v.r. f (x) = x5 − 1, bijectiva, a sua inversa f −1 (x) ´e definida por, (a)
f −1 (x) =
(b)
f −1 (x) =
(c)
f −1 (x) =
(d)
1 x5 −1
√ 5 √ 5
x5 − 1 x+1
ex−2 x→2 x
6. Calcule o valor do limite lim
Nenhuma das anteriores
4. Considere a fun¸c˜ ao 2 x − 2, f (x) = −2,
(a)
+∞
(b)
1 2
(c)
0
(d)
−∞
se x ≥ 0 se x < 0 x2 − 16 x→4 x − 4
7. Calcule o valor do limite lim
A fun¸c˜ ao f (x), (a)
n˜ ao ´e cont´ınua no ponto x = 0.
(a)
4
(b)
´e cont´ınua no ponto x = 0.
(b)
8
(c)
n˜ ao ´e cont´ınua no ponto x = −2.
(c)
0
(d)
n˜ ao ´e cont´ınua no ponto x = 1.
(d)
+∞
1
a `
10. Considere as fun¸c˜oes f (x) = 5x2 e g(x) = ln x. Temos,
8. Sendo Qs = −35 + 4P e Qd = 25 − 2P os pre¸cos e quantidades de equil´ıbrio s˜ ao, (a)
P = 10, Qs = 10 e Qd = 10
(a)
g(f (x)) = ln(5) + ln(x2 )
(b)
P = 10, Qs = 5 e Qd = 5
(b)
g(f (x)) = ln(5 + x2 )
(c)
P = 5, Qs = 5 e Qd = 5
(c)
g(f (x)) = (5 ln x)2
(d)
Ps =
(d)
g(f (x)) = 5 ln(x2 )
35 4
e Pd =
25 2
9. Determine o dom´ınio da fun¸c˜ ao ex + 5 f (x) = x−5 (a)
Df = R
(b)
Df = R \ {ln(5)}
(c)
Df = R \ {5}
(d)
Df = R \ {−5}
Teste de Avalia¸c˜ ao — Matem´ atica I
2
13/01/2007