Mat Teste Avaliacao

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Mat Teste Avaliacao as PDF for free.

More details

  • Words: 2,099
  • Pages: 8
Curso

Turma

No

A

Nome:

Departamento de Economia e Gest˜ ao Teste de Avalia¸c˜ ao — Matem´ atica I

13/01/2007

Assinale com uma cruz a resposta que considera correcta. O teste tem uma dura¸c˜ao de uma hora Cada pergunta vale dois valores. 1. |4 + 5x| ≥ 3 ⇔

5.

(a)

4 + 5x ≥ 3 ou 4 + 5x ≤ −3

4

(b)

4 + 5x ≥ −3 ou 4 + 5x ≤ 3

3

(c)

4 + 5x ≥ 3 e 4 + 5x ≤ −3

(d)

4 + 5x ≥ −3 e 4 + 5x ≤ 3

2 1 −2

2.

−1

4x3 + 3x2 + x − 3 = x→−∞ 1 + 2x2 lim

(a)

−2

(c) (d)

−∞

3. Dada a f.r.v.r. f (x) = x3 + 4, bijectiva, a sua inversa f −1 (x) ´e definida por, (a)

f −1 (x) =

2

−1

3 2

3x2 lim x→−∞ 2x2 0

(b)

1 0

1 x3 +4

√ 3

(b)

f −1 (x) =

(c)

f −1 (x) =

(d)

Nenhuma das anteriores

√ 3

x3 + 4 −4 + x

4. Considere a fun¸c˜ ao  1 2 2 x − 1, f (x) = −1,

Esta representa¸c˜ao gr´afica corresponde fun¸c˜ao ( 4x2 − 1, se x ≤ 12 (a) f (x) = −x + 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (b) f (x) = x + 12 , se x > 21 ( 4x2 − 1, se x ≤ 12 (c) f (x) = x + 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (d) f (x) = −x + 12 , se x > 21

se x ≥ 0 se x < 0

A fun¸c˜ ao f (x),

ln(3 − x) x→2 x

6. Calcule o valor do limite lim

(a)

´e cont´ınua no ponto x = 0.

(a)

+∞

(b)

n˜ ao ´e cont´ınua no ponto x = 0.

(b)

1 2

(c)

n˜ ao ´e cont´ınua no ponto x = −1.

(c)

0

(d)

n˜ ao ´e cont´ınua no ponto x = 12 .

(d)

−∞

a `

x2 − 9 x→−3 x + 3

9. Determine o dom´ınio da fun¸c˜ao ex + 4 f (x) = x+4

7. Calcule o valor do limite lim (a)

−6

(b)

−3

(c)

0

(d)

+∞

(a)

Df = R

(b)

Df = R \ {ln(4)}

(c)

Df = R \ {4}

(d)

Df = R \ {−4}

10. Considere as fun¸c˜oes f (x) = x2 + 3 e g(x) = ex . Temos,

8. Sendo Qs = −15 + 5P e Qd = 25 − 3P os pre¸cos e quantidades de equil´ıbrio s˜ ao,

2

(a)

f (g(x)) = ex

(b)

f (g(x)) = e2x + 3

P = 5, Qs = 10 e Qd = 10

(c)

f (g(x)) = (ex + 3)2

P = 5, Qs = 5 e Qd = 5

(d)

f (g(x)) = e(x ) + 3

(a)

P = 10, Qs = 10 e Qd = 10

(b)

Ps =

(c) (d)

25 3

e Pd =

35 4

Teste de Avalia¸c˜ ao — Matem´ atica I

2

+3

2

13/01/2007

A Departamento de Economia e Gest˜ ao Teste de Avalia¸c˜ ao — Matem´ atica I Solu¸c˜ oes

13/01/2007

1. |4 + 5x| ≥ 3 ⇔

5.

(a)

4 + 5x ≥ 3 ou 4 + 5x ≤ −3

4

(b)

4 + 5x ≥ −3 ou 4 + 5x ≤ 3

3

(c)

4 + 5x ≥ 3 e 4 + 5x ≤ −3

(d)

4 + 5x ≥ −3 e 4 + 5x ≤ 3

2 1 −2

−1

1

2

0

2.

4x3 + 3x2 + x − 3 = x→−∞ 1 + 2x2

−1

lim

(a)

−2

3 2

(c)

3x2 lim x→−∞ 2x2 0

(d)

−∞

(b)

Esta representa¸c˜ao gr´afica corresponde fun¸c˜ao ( 4x2 − 1, se x ≤ 12 (a) f (x) = −x + 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (b) f (x) = x + 12 , se x > 21 ( 4x2 − 1, se x ≤ 12 (c) f (x) = x + 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (d) f (x) = −x + 12 , se x > 21

3. Dada a f.r.v.r. f (x) = x3 + 4, bijectiva, a sua inversa f −1 (x) ´e definida por, (a)

f −1 (x) =

(b)

f −1 (x) =

(c)

f −1 (x) =

(d)

1 x3 +4

√ 3 √ 3

x3 + 4 −4 + x

ln(3 − x) x→2 x

6. Calcule o valor do limite lim

Nenhuma das anteriores

4. Considere a fun¸c˜ ao  1 2 2 x − 1, f (x) = −1,

(a)

+∞

(b)

1 2

(c)

0

(d)

−∞

se x ≥ 0 se x < 0 x2 − 9 x→−3 x + 3

7. Calcule o valor do limite lim

A fun¸c˜ ao f (x), (a)

´e cont´ınua no ponto x = 0.

(a)

−6

(b)

n˜ ao ´e cont´ınua no ponto x = 0.

(b)

−3

(c)

n˜ ao ´e cont´ınua no ponto x = −1.

(c)

0

(d)

n˜ ao ´e cont´ınua no ponto x = 12 .

(d)

+∞

1

a `

10. Considere as fun¸c˜oes f (x) = x2 + 3 e g(x) = ex . Temos,

8. Sendo Qs = −15 + 5P e Qd = 25 − 3P os pre¸cos e quantidades de equil´ıbrio s˜ ao, (a)

P = 10, Qs = 10 e Qd = 10 25 3

e Pd =

35 4

2

(a)

f (g(x)) = ex

+3

(b)

f (g(x)) = e2x + 3

(b)

Ps =

(c)

P = 5, Qs = 10 e Qd = 10

(c)

f (g(x)) = (ex + 3)2

(d)

P = 5, Qs = 5 e Qd = 5

(d)

f (g(x)) = e(x ) + 3

2

9. Determine o dom´ınio da fun¸c˜ ao ex + 4 f (x) = x+4 (a)

Df = R

(b)

Df = R \ {ln(4)}

(c)

Df = R \ {4}

(d)

Df = R \ {−4}

Teste de Avalia¸c˜ ao — Matem´ atica I

2

13/01/2007

Curso

Turma

No

B

Nome:

Departamento de Economia e Gest˜ ao Teste de Avalia¸c˜ ao — Matem´ atica I

13/01/2007

Assinale com uma cruz a resposta que considera correcta. O teste tem uma dura¸c˜ao de uma hora Cada pergunta vale dois valores. 1. |2 − 6x| ≤ 4 ⇔

5.

(a)

2 − 6x ≥ 4 ou 2 − 6x ≤ −4

4

(b)

2 − 6x ≥ −4 ou 2 − 6x ≤ 4

3

(c)

2 − 6x ≥ 4 e 2 − 6x ≤ −4

(d)

2 − 6x ≥ −4 e 2 − 6x ≤ 4

2 1

2.

−7x3 + 4x2 + 2x − 1 = x→+∞ 1 − 3x2

−2

−1

lim

(a)

+∞

(b)

4x2 lim x→−∞ −3x2

(c)

7 3

(d)

0

f −1 (x) =

1

2

−1 −2

3. Dada a f.r.v.r. f (x) = x5 − 1, bijectiva, a sua inversa f −1 (x) ´e definida por, (a)

0

1 x5 −1

√ 5

(b)

f −1 (x) =

(c)

f −1 (x) =

(d)

Nenhuma das anteriores

√ 5

x5 − 1 x+1

4. Considere a fun¸c˜ ao  2 x − 2, f (x) = −2,

Esta representa¸c˜ao gr´afica corresponde fun¸c˜ao ( 4x2 − 1, se x ≤ 12 (a) f (x) = −x − 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (b) f (x) = x − 12 , se x > 21 ( 4x2 − 1, se x ≤ 12 (c) f (x) = x − 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (d) f (x) = −x − 12 , se x > 21

se x ≥ 0 se x < 0

A fun¸c˜ ao f (x),

ex−2 x→2 x

6. Calcule o valor do limite lim

(a)

n˜ ao ´e cont´ınua no ponto x = 0.

(a)

+∞

(b)

´e cont´ınua no ponto x = 0.

(b)

1 2

(c)

n˜ ao ´e cont´ınua no ponto x = −2.

(c)

0

(d)

n˜ ao ´e cont´ınua no ponto x = 1.

(d)

−∞

a `

x2 − 16 x→4 x − 4

9. Determine o dom´ınio da fun¸c˜ao ex + 5 f (x) = x−5

7. Calcule o valor do limite lim (a)

4

(b)

8

(a)

Df = R

(c)

0

(b)

Df = R \ {ln(5)}

+∞

(c)

Df = R \ {5}

(d)

Df = R \ {−5}

(d)

10. Considere as fun¸c˜oes f (x) = 5x2 e g(x) = ln x. Temos,

8. Sendo Qs = −35 + 4P e Qd = 25 − 2P os pre¸cos e quantidades de equil´ıbrio s˜ ao, (a)

P = 10, Qs = 10 e Qd = 10

(a)

g(f (x)) = ln(5) + ln(x2 )

(b)

P = 10, Qs = 5 e Qd = 5

(b)

g(f (x)) = ln(5 + x2 )

(c)

P = 5, Qs = 5 e Qd = 5

(c)

g(f (x)) = (5 ln x)2

(d)

Ps =

(d)

g(f (x)) = 5 ln(x2 )

35 4

e Pd =

25 2

Teste de Avalia¸c˜ ao — Matem´ atica I

2

13/01/2007

B Departamento de Economia e Gest˜ ao Teste de Avalia¸c˜ ao — Matem´ atica I Solu¸c˜ oes

13/01/2007

1. |2 − 6x| ≤ 4 ⇔

5.

(a)

2 − 6x ≥ 4 ou 2 − 6x ≤ −4

4

(b)

2 − 6x ≥ −4 ou 2 − 6x ≤ 4

3

(c)

2 − 6x ≥ 4 e 2 − 6x ≤ −4

(d)

2 − 6x ≥ −4 e 2 − 6x ≤ 4

2 1

−2

2.

−1

−7x3 + 4x2 + 2x − 1 = x→+∞ 1 − 3x2

0

1

2

−1

lim

(a)

−2

+∞

Esta representa¸c˜ao gr´afica corresponde fun¸c˜ao ( 4x2 − 1, se x ≤ 12 (a) f (x) = −x − 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (b) f (x) = x − 12 , se x > 21 ( 4x2 − 1, se x ≤ 12 (c) f (x) = x − 12 , se x > 12 ( −4x2 − 1, se x ≤ 21 (d) f (x) = −x − 12 , se x > 21

2

(b)

lim

x→−∞

(c)

7 3

(d)

0

4x −3x2

3. Dada a f.r.v.r. f (x) = x5 − 1, bijectiva, a sua inversa f −1 (x) ´e definida por, (a)

f −1 (x) =

(b)

f −1 (x) =

(c)

f −1 (x) =

(d)

1 x5 −1

√ 5 √ 5

x5 − 1 x+1

ex−2 x→2 x

6. Calcule o valor do limite lim

Nenhuma das anteriores

4. Considere a fun¸c˜ ao  2 x − 2, f (x) = −2,

(a)

+∞

(b)

1 2

(c)

0

(d)

−∞

se x ≥ 0 se x < 0 x2 − 16 x→4 x − 4

7. Calcule o valor do limite lim

A fun¸c˜ ao f (x), (a)

n˜ ao ´e cont´ınua no ponto x = 0.

(a)

4

(b)

´e cont´ınua no ponto x = 0.

(b)

8

(c)

n˜ ao ´e cont´ınua no ponto x = −2.

(c)

0

(d)

n˜ ao ´e cont´ınua no ponto x = 1.

(d)

+∞

1

a `

10. Considere as fun¸c˜oes f (x) = 5x2 e g(x) = ln x. Temos,

8. Sendo Qs = −35 + 4P e Qd = 25 − 2P os pre¸cos e quantidades de equil´ıbrio s˜ ao, (a)

P = 10, Qs = 10 e Qd = 10

(a)

g(f (x)) = ln(5) + ln(x2 )

(b)

P = 10, Qs = 5 e Qd = 5

(b)

g(f (x)) = ln(5 + x2 )

(c)

P = 5, Qs = 5 e Qd = 5

(c)

g(f (x)) = (5 ln x)2

(d)

Ps =

(d)

g(f (x)) = 5 ln(x2 )

35 4

e Pd =

25 2

9. Determine o dom´ınio da fun¸c˜ ao ex + 5 f (x) = x−5 (a)

Df = R

(b)

Df = R \ {ln(5)}

(c)

Df = R \ {5}

(d)

Df = R \ {−5}

Teste de Avalia¸c˜ ao — Matem´ atica I

2

13/01/2007

Related Documents

Mat Teste Avaliacao
November 2019 16
Teste Mat 3.docx
May 2020 5
Mat Teste Diagnostico
November 2019 12
Avaliacao
June 2020 15