Mat Exe Funcoes

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Mat Exe Funcoes as PDF for free.

More details

  • Words: 501
  • Pages: 2
Exerc´ıcios de Fun¸ c˜ oes 1.1 Determinar todos os intervalos de n´ umeros que satisfa¸cam as desigualdades abaixo. Fazer a representa¸c˜ ao gr´afica. b) x2 ≤ 9

a) 3 − x < 5 + 3x 1.2

Resolver as equa¸c˜ oes em R.

a) |5x − 3| = 12 1.3

b) |3x + 2| = 5 − x

Resolver as inequa¸c˜ oes em R.

a) |x + 12| < 7

b) |5 − 6x| ≥ 9 d) 2x2 + 3x + 3 ≤ 3

c) 1 < |x + 2| < 4 1.4

Se f (x) =

x2 − 4 , determinar: x−1

a) f (0) 1.5

c) f ( 1t )

b) f (−2)

d) y =

x+a x−a

com a 6= 0

b) f (x) = |x| , −3 ≤ x ≤ 3

c) k · f

b) f /g

d) f ◦ g

e) g ◦ f

Determine a fun¸c˜ ao Inversa das seguintes fun¸c˜oes. b) y =

a) y = 3x + 4

1.9

1 x−4

Se f (x) = 2x, g(x) = x2 + 1 e k ∈ R constante, calcule:

a) f + g 1.8

b) y =

Construir o gr´ afico das seguintes fun¸c˜oes.

a) f (x) = x2 + 8x + 14     0, se x < 0 1 c) f (x) = se x = 0 2,    1, se x > 0 1.7

e) f ( 21 )

d) f (x − 2)

Determinar o dom´ınio e o conjunto de imagem das seguintes fun¸c˜oes.

a) y = x2 √ c) y = x − 2 1.6

c) 1 − x − 2x2 ≥ 0

Seja f (x) =

    x,

x+a x−a

se x < 1

x2 , se 1 ≤ x ≤ 9 .   √  27 x, se x > 9 Verifique que f tem uma fun¸c˜ ao inversa e encontre f −1 . 15

c) y =



x − 1, x ≥ 1

1.10

Sejam f (x) = ln(x) e g(x) = x3 . Determine as express˜oes,

a) f (g(a)), a > 0

b) g(f (a)), a > 0

1.11 Sem recorrer a uma m´ aquina de calcular, obtenha o valor exacto das seguintes express˜ oes. a) log2 16

1 ) b) log2 ( 32

d) log10 (104 )

e) ln(e3 )

c) log10 (0,0001) √ f) ln( e)

1.12 Escreva as seguintes express˜oes em termos de r = ln a, s = ln b e t = ln c usando as propriedades do logaritmo. q √ 3 b) ln ab a) ln(a2 bc) c2 1.13

Resolva as seguintes equa¸c˜oes para x ∈ R.

a) log10 (1 + x) = 3

b) log3 (3x ) = 7

c) ln 4x − 3 ln(x2 ) = ln 2

d) ln( x1 ) + ln(2x3 ) = ln 3

e) 3x = 2

f) 2e3x = 7

g) ex − 2xex = 0

h) xe−x + 2e−x = 0

16

Related Documents

Mat Exe Funcoes
November 2019 14
Mat Funcoes
November 2019 19
Mat Exe Limites
November 2019 15
Mat Sol Funcoes
November 2019 15
Mat Exe Revisao
November 2019 15
Mat Exe Economia 1
November 2019 15