1
Marking Scheme of Additional Mathematic Zone C Common Paper Paper 1 1.
(a)
{(1, a), (5, a), (5, u), (9, i)}
(b)
Many to many 2
2.
m 8 1 8 2 1 m 8 (8) 2 m4
3.
x a f −1 ( x) 3 3 2 Either b = − or a = −2 is correct. 3 2 Both b = − and a = −2 are correct 3
3
3
4.
3 + k = −1 k = −4 3k = −p p = 12 4
5.
x − 4x + 3 > 0 2
( x − 1)( x − 3) > 0 x < 1, x > 3
6.
3
(a)
x=4
(b)
Either minimum value = −4 or (x – 4)2 is correct f(x) = (x − 4) 2 − 4 3
7.
log 6 6
log 6 (2 t 1)
log 6 2t 1 log 6 11
log 6 11
2t 1 11
t 5
4
2 8.
4(3n )(32 ) − 7(3n ) +
3n 3
1 (36 − 7 + )(3n ) 3 88(3n1 ) . Since 88 is a multiple of 8 and (3n – 1) is an integer for all positive integer of n(n = 1, 2, 3, ….) , then 4(3n+2) – 7(3n) + 3n – 1 is divisible by 8.
9.
1(2
3
n−1
s10 =
) = 512 and n = 10
1(210 − 1) = 1023 2 −1
10.
h = 2 + 0.42 + 0.0042 + 0.000042 + ... or a = 0.42, r = 0.01 k h 0.42 h 2.4 = 2+ or = k 1 − 0.01 k 1 − 0.01 h 80 = , h = 80, k = 33 k 33
11.
(a)
2
3 T1 = 2(1) + 3 = 5 or T2 = 2(2) + 3 = 7 d = T2 − T1 = 7 − 5 = 2 (b)
10 2 S10 − S 2 = (2(5) + (10 − 1)(2)) − (2(5) + (2 − 1)(2)) 2 2 128 *Alternative: use T3 = 9 as first term and find S8 4
12.
13.
1 2 1 1 = −2 y 2x 1 1− 4x = y 2x 2x y= 1− 4x
m=−
4
2PR =3RQ 2 ( x − 2) 2 + [ y − ( −1)]2 = 3 ( x − 3) 2 + ( y − 5) 2 5x2 – 38x + 5y2 – 98y + 286 = 0 3
14.
6 (a) 2 (b) 3i 5 j % %
2
3 15.
r 35a 12b % % % h 35 k 23
16.
17.
3
uuu r uur uuur (a) SQ SP PQ uuu r SQ 5 x 4 y % % uur uuu r uuu r 1 uuu r uuu r (b) TR TQ QR SQ PS 4 uur 1 5 TR (5 x 4 y ) 4 y x y 4 % 4% % 3(2sin x cos x) 5cos x 0
4
cos x(6sin x 5) 0 5 6 x 90, 270, 236.44,303.56
cos x 0 or sin x
18.
Length of arc AB = 12 cm
6 6 6( ) 24
or
4
2 radian
19.
2 x 180 = 11435'
f '( x ) 20( x 3)
3
3
f '(2) 20(2 3)3 20 2
20.
2
1 x (1 x) , y 1 3 , 2 2 dy (1 x) 3 dx 2 p
When p =6, x 1 2(6) 11 ,
dy (1 (11)) 3 18 dx 2
dy 18(4) 72 units s -1 dt 4
21.
3
4x − 3x = 4 2 k k 2 2 [2(3) – 3(3)] – [2k – 3k] = 4 3
∫ (4 x − 3)dx = 4 =
2
(2k – 5)(x + 1) = 0, k =
5 ( k > 0) 2 3
4 22.
Either (2 + x) < (12 + 8 + 7 + 3) or (2 + x + 12) > (8 + 7 + 3) Both (2 + x) < (12 + 8 + 7 + 3) and (2 + x + 12) > (8 + 7 + 3) 4 < x < 28 3
23.
(a)
C3 × C4
8
15
= 76440 (b)
3
P3 × 4 P4
=144 4
24.
4 3 3 2 5 4 × or × or × (any one correct) 12 11 12 11 12 11 4 3 3 2 5 4 × + × + × (all correct with the summation) 12 11 12 11 12 11 19 66
25.
62 − 65 (a) z = 15 z = −0.2
3
70 − 65 ) 15 = 0.3696
(b) P ( z >
4
5
Paper 2 y = 8 − 2 x or equivalent (Express x or y as the subject)
1.
2 x 2 + (8 − 2 x) 2 − x(8 − 2 x ) − 18 = 0 (use substitution method to eliminate x or y) 4 x 2 − 20 x + 23 = 0 −(−20) ± (−20) − 4(4)(23) 2(4) (use formula correctly to solve quadratic equation) x=
x = 1.793 or 3.207 y = −4.414 or 2.
(a)
52 =
− 1.586
416 x (use the formula, x ) n n n=8
2 y2 x 2 2 2 49 = (52) (use the formula, x ) 8 n
y (b)
2
8 [ 49 (52) 2 ] 22024
New mean = 3(52) + 5 = 161 New standard deviation = 3 ( 49 ) 21
3.
(a)
a S1 3(1) 2 5(1) 8 T2 S2 S1 [3(2) 2 5(2)] 8 14 (find T2 ) d 14 8 6
(b)
T10 8 9(6) (use Tn a (n 1)d ) T10 62
(c)
3n 2 5n 1062 n 18
6 4.
(a)
: The shape of cos. : The amplitude is 3 : One period for the range 0 x 2 : Modulus of the graph. (b)
x . 2 x : the straight line of y 1 in the graph. 2 (give K1 if the equation is wrong, straight line is drawn correctly according to the wrong equation, but no N1 for answer, even the answer is 4 solutions) : find the equation y 1
: 4 solutions (cannot give N1 if equation is wrong or the straight is drawn wrongly) 5.
(a)
uuu r uur uuur uuur uuur uur SQ SP PQ or QR QT TR or (use triangle law)
uuur uuur uuur PU PQ QU
uuu r SQ 4a 6b % % uuur QR 4a 6b % % uuur uuur 1 uuur uuur 1 PU PQ QT or PU 4a (6b) 2 % 2 %
(b)
uuur PU 4a 3b % % uuu r uuu r PR 8a 6b or UR 4a 3b r uu u r % % % uuu % (Find vector PR or UR ) uuu r uuur Show PR 2 PU or
uuur uuu r PU UR
7 6.
dy (6 x 4) dx ; dx
dy 3 x 2 4 x c1 dx
11 3(2) 2 4(2) c1 dy 3 x 2 4 x 15 dx
c1 15; y (3 x 2 4 x 15) dx ;
y x 3 2 x 2 15 x c2
y x 3 2 x 2 15 x 5 dy x or x = 3 (use 3x2 – 4x – 15 = 0 ; = 0) 3 dx 5 5 5 400 y = ( )3 – 2( )2 – 15( ) = 3 3 3 27 2 400 d y 5 Maximum value of y = 6( ) 4 14 ; 2 27 dx 3 y = (3)3 – 2(3)2 – 15(3) = – 36 d2y 6(3) 4 14 ; dx 2 7.
(a)
xy x
2
4.3 1
8.8 4
Minimum value of y = 36
16.5 9
27.2 16
41.0 25
57.6 36
correct axes and scale All point plotted correctly
(Refer graph on page 8) (b)
xy ax 2
a=
Line of best fit
b (express equation in linear form) a
57.6 16.5 (Equate a to the gradient) 36 9 a 1.522
b b 2.78 (Equate to the xy-intercept) a a b 4.186 y 4.9
8
9 8.
(a)
(i)
3 1 2 p p 2 1 3 5 ( 1) , , (Midpoint of AC = Midpoint of BM) 2 2 2 2
p (ii) M AD
5 2
5 (1) 7 2 1 3 8
7 y 2 ( x 2) 8
8 y 7 x 30 0 (b)
5 2(1) 1( x) 2( 2 ) 1( y ) , 1,5 1 2 1 2 5 2( ) 1( y ) 2(1) 1( x) 2 solve 1 or 5 1 2 1 2
P 5, 10 (c)
1 2
5 3 5 3 (1)( ) ( 1)( 1) (3)( ) (5)(5) ( 1)(5) (3)( ) ( 1)(5) (1)( ) 2 2 2 2 = 17 unit 2
10 9.
10 POQ = 12 (use s r )
(a)
POQ = 1.2 radians (b)
Identify the right angle triangle, know OPQ = 0.6 radian and radius OP is the hypotenuse
cos 0.6rad (alternative: use sin
5 a (use cos ) radius h
o and follow by Pythagoras theorem) h
5 , radius = 6.058 cm cos 0.6rad 1 1 2 2 10 1.2 or 6.058 2.4 2 2
radius (c)
1 2
(use A r 2 to find area of sector PQTS or OQRS) 1 1 2 2 10 sin1.2rad or 6.058 sin 2.4rad 2 2 1 absin C (use 2 to find the area of tringle PQS or ORS) 60 – 46.6 or 44.04 – 12.39 (find the area of segment QTS or QRS) = 31.65 – 13.4 (use area of segment QRS – area of segment QTS) = 18.25 cm2
11 10.
(a)
dy 3x 2 2 x 1 dx Gradient of tangent 3(2) 2 2(2) 1 9 Gradient of normal 1 y 5 ( x 2) ; 9
(b)
(i)
x 9 y 47
1 or y 3 3 (solve simultaneous equations, not necessary getting the correct answers)
8 y 3( y 2 1) 0 = (3 y 1)( y 3) y
A = ( 8, 3) (ii)
1 9
3 64 3 know volume is equal to y 2 dy minus y 4 2 y 2 1 dy 1 0 9
64 3 π 27 y
3
0
y5 2 y3 −π − + y 3 5
3
(do integration correctly)
1
1 2 64 243 π (27) − 0 − π ( − 18 + 3) − ( − + 1) 5 3 27 5 (do substitution correctly) = 30
14 π unit 3 15
12 11.
(a)
(i)
7
C1 × .251 × .756
or
7
C0 × .250 × .757
n r nr (use Cr p q correctly)
1 7C1 .251 .756 7C0 .250 .757 (knowing p ( x 2) 1 P( x 1) P ( x 0) ) = 0.5551 (ii)
n(0.25)(0.75) = 375 n = 2000
(b)
(i)
53 61 or 11
72 61 x (use z correctly) 11
1 – 0.23352* 0.15866* or equivalent 0.60782 (ii)
n(0.60782) = 200 n = 329
13 12.
AB2 = 7.92 + 62 − 2×7.9×6 cos ∠ 130° (Use cosine rule in ΔABC)
(a)
AB = 12.62 cm sin ∠ADC sin 50 = (Use sine rule in ΔADC) 7.9 6.4 sin ADC 0.9456
ADC 108.99( ADC is obtuse) DAC 180 50 108.99 21.01 DC 6.4 (Use sine rule in ΔADC) sin 21.01 sin 50 DC = 3 cm 1 (6.4)(3 6) sin108.99 or equivalent 2 (use area of triangle = 12 ab sin C ) = 27.23 cm2 13.
(a)
120
RM 5.40 130 x 110 = I x 100 or equivalent (Use I 07 / 06 I 06 / 04 I 07 / 04 100 )
(b)
(c)
Q P1 x 100 (Use I 1 100 ) Q0 4.5
143 I iWi = 120 3 135(2 y ) 130 6 150( y ) (Find IiWi correctly and use x = 2y)
(i)
I
120 3 135(2 y ) 130 6 150( y ) (divide IiWi by Wi correctly) 3 2y 6 y 120 3 135(2 y ) 130 6 150( y ) 132 (Equate I 3 2y 6 y
x = 4, y = 2 (ii)
33 Q X 100 132 (Use I 1 100 ) Q05 Q0 RM25
to 132)
14 14.
(a)
a
dy 4t 12 (find a using differentiation dx
4t 12 0 (use
dy 0 when v maximum) dx
vmax 2(3) 2 12(3) 18 ms-1 (b)
s 2t 2 12t dt s = 0 when t = 0, thus c = 0. s
sA
2(3)3 6(3) 2 3
or
sB
(c)
Solve
2t 3 6t 2 (find s using integration) 3
2(2)3 6(2)2 (substitute t = 2 or t = 3 is s) 3
sB
sA
2t 3 6t 2 c 3
17
1 3
2t 3 6t 2 0 (use s = 0) 3 t 9s
(d)
Solve 2t 2 12t 0 (use v = 0) t 6s
15.
x + y ≤ 80 or equivalent
(a)
y ≤ 3x or equivalent y ≥ 30 or equivalent (b) (Refer graph on page 13) At least one straight line is drawn correctly (from inequalities involving x and y) All the three straight lines are drawn Correctly Region is correctly shaded (c)
(i)
45
(ii)
Optimum point (20,60) Substitute (20,60) in 45x + 60y RM4500
15