Marking Scheme Add Math Zone C Kuching 2008

  • Uploaded by: Bid Hassan
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Marking Scheme Add Math Zone C Kuching 2008 as PDF for free.

More details

  • Words: 2,689
  • Pages: 15
1

Marking Scheme of Additional Mathematic Zone C Common Paper Paper 1 1.

(a)

{(1, a), (5, a), (5, u), (9, i)}

(b)

Many to many 2

2.

m 8 1  8 2 1 m  8   (8) 2 m4

3.

x a  f −1 ( x)    3 3 2 Either b = − or a = −2 is correct. 3 2 Both b = − and a = −2 are correct 3

3

3

4.

3 + k = −1 k = −4 3k = −p p = 12 4

5.

x − 4x + 3 > 0 2

( x − 1)( x − 3) > 0 x < 1, x > 3

6.

3

(a)

x=4

(b)

Either minimum value = −4 or (x – 4)2 is correct f(x) = (x − 4) 2 − 4 3

7.

log 6 6

log 6 (2 t 1)

log 6 2t  1  log 6 11

 log 6 11

2t  1  11

t 5

4

2 8.

4(3n )(32 ) − 7(3n ) +

3n 3

1 (36 − 7 + )(3n ) 3 88(3n1 ) . Since 88 is a multiple of 8 and (3n – 1) is an integer for all positive integer of n(n = 1, 2, 3, ….) , then 4(3n+2) – 7(3n) + 3n – 1 is divisible by 8.

9.

1(2

3

n−1

s10 =

) = 512 and n = 10

1(210 − 1) = 1023 2 −1

10.

h = 2 + 0.42 + 0.0042 + 0.000042 + ... or a = 0.42, r = 0.01 k h 0.42 h 2.4 = 2+ or = k 1 − 0.01 k 1 − 0.01 h 80 = , h = 80, k = 33 k 33

11.

(a)

2

3 T1 = 2(1) + 3 = 5 or T2 = 2(2) + 3 = 7 d = T2 − T1 = 7 − 5 = 2 (b)

10  2  S10 − S 2 =  (2(5) + (10 − 1)(2))  −  (2(5) + (2 − 1)(2))  2  2  128 *Alternative: use T3 = 9 as first term and find S8 4

12.

13.

1 2 1 1 = −2 y 2x 1 1− 4x = y 2x 2x y= 1− 4x

m=−

4

2PR =3RQ 2 ( x − 2) 2 + [ y − ( −1)]2 = 3 ( x − 3) 2 + ( y − 5) 2 5x2 – 38x + 5y2 – 98y + 286 = 0 3

14.

6 (a)    2 (b) 3i  5 j % %

2

3 15.

r  35a  12b % % % h  35 k  23

16.

17.

3

uuu r uur uuur (a) SQ  SP  PQ uuu r SQ  5 x  4 y % % uur uuu r uuu r 1 uuu r uuu r (b) TR  TQ  QR  SQ  PS 4 uur 1 5 TR  (5 x  4 y )  4 y  x  y 4 % 4% % 3(2sin x cos x)  5cos x  0

4

cos x(6sin x  5)  0 5 6 x  90, 270, 236.44,303.56

cos x  0 or sin x 

18.

Length of arc AB = 12 cm

6  6  6( )  24

or

4

  2 radian



19.

2 x 180 = 11435' 

f '( x )  20( x  3)

3

3

f '(2)  20(2  3)3  20 2

20.

2

1 x  (1  x)  , y  1 3 , 2 2   dy  (1  x)   3   dx 2   p

When p =6, x  1  2(6)  11 ,

dy  (1  (11))   3    18 dx 2  

dy  18(4)  72 units s -1 dt 4

21.

3

 4x  − 3x  = 4 2 k k 2 2 [2(3) – 3(3)] – [2k – 3k] = 4 3

∫ (4 x − 3)dx = 4 = 

2

(2k – 5)(x + 1) = 0, k =

5 ( k > 0) 2 3

4 22.

Either (2 + x) < (12 + 8 + 7 + 3) or (2 + x + 12) > (8 + 7 + 3) Both (2 + x) < (12 + 8 + 7 + 3) and (2 + x + 12) > (8 + 7 + 3) 4 < x < 28 3

23.

(a)

C3 × C4

8

15

= 76440 (b)

3

P3 × 4 P4

=144 4

24.

4 3 3 2 5 4 × or × or × (any one correct) 12 11 12 11 12 11 4 3 3 2 5 4 × + × + × (all correct with the summation) 12 11 12 11 12 11 19 66

25.

62 − 65 (a) z = 15 z = −0.2

3

70 − 65 ) 15 = 0.3696

(b) P ( z >

4

5

Paper 2 y = 8 − 2 x or equivalent (Express x or y as the subject)

1.

2 x 2 + (8 − 2 x) 2 − x(8 − 2 x ) − 18 = 0 (use substitution method to eliminate x or y) 4 x 2 − 20 x + 23 = 0 −(−20) ± (−20) − 4(4)(23) 2(4) (use formula correctly to solve quadratic equation) x=

x = 1.793 or 3.207 y = −4.414 or 2.

(a)

52 =

− 1.586

416 x (use the formula, x  ) n n n=8

2  y2 x 2 2 2 49 =  (52) (use the formula,   x ) 8 n

y (b)

2

 8 [ 49  (52) 2 ]  22024

New mean = 3(52) + 5 = 161 New standard deviation = 3 ( 49 )  21

3.

(a)

a  S1  3(1) 2  5(1)  8 T2  S2  S1  [3(2) 2  5(2)]  8  14 (find T2 ) d  14  8  6

(b)

T10  8  9(6) (use Tn  a  (n  1)d ) T10  62

(c)

3n 2  5n  1062 n  18

6 4.

(a)

: The shape of cos. : The amplitude is 3 : One period for the range 0  x  2 : Modulus of the graph. (b)

x . 2 x : the straight line of y  1  in the graph. 2 (give K1 if the equation is wrong, straight line is drawn correctly according to the wrong equation, but no N1 for answer, even the answer is 4 solutions) : find the equation y  1 

: 4 solutions (cannot give N1 if equation is wrong or the straight is drawn wrongly) 5.

(a)

uuu r uur uuur uuur uuur uur SQ  SP  PQ or QR  QT  TR or (use triangle law)

uuur uuur uuur PU  PQ  QU

uuu r SQ  4a  6b % % uuur QR  4a  6b % % uuur uuur 1 uuur uuur 1 PU  PQ  QT or PU  4a  (6b) 2 % 2 %

(b)

uuur PU  4a  3b % % uuu r uuu r PR  8a  6b or UR  4a  3b r uu u r % % % uuu % (Find vector PR or UR ) uuu r uuur Show PR  2 PU or

uuur uuu r PU  UR

7 6.

dy  (6 x  4) dx ; dx 

dy  3 x 2  4 x  c1 dx

11  3(2) 2  4(2)  c1 dy  3 x 2  4 x  15 dx

c1  15; y   (3 x 2  4 x 15) dx ;

y  x 3  2 x 2 15 x  c2

y  x 3  2 x 2 15 x 5 dy x   or x = 3 (use 3x2 – 4x – 15 = 0 ; = 0) 3 dx 5 5 5 400 y = (  )3 – 2(  )2 – 15(  ) = 3 3 3 27 2 400 d y 5 Maximum value of y =  6( )  4  14 ; 2 27 dx 3 y = (3)3 – 2(3)2 – 15(3) = – 36 d2y  6(3)  4  14 ; dx 2 7.

(a)

xy x

2

4.3 1

8.8 4

Minimum value of y = 36

16.5 9

27.2 16

41.0 25

57.6 36

correct axes and scale All point plotted correctly

(Refer graph on page 8) (b)

xy  ax 2 

a=

Line of best fit

b (express equation in linear form) a

57.6  16.5 (Equate a to the gradient) 36  9 a 1.522

b b  2.78 (Equate to the xy-intercept) a a b  4.186 y  4.9

8

9 8.

(a)

(i) 

3  1  2 p p  2   1  3 5  ( 1)  , ,   (Midpoint of AC = Midpoint of BM) 2 2   2 2     

p (ii) M AD

5 2

5  (1) 7  2  1  3 8

7 y  2   ( x  2) 8

8 y  7 x  30  0 (b)



5   2(1)  1( x) 2( 2 )  1( y )  ,  1,5    1 2 1 2     5 2( )  1( y ) 2(1)  1( x) 2 solve  1 or 5 1 2 1 2

P   5, 10  (c)

1 2



5 3 5 3     (1)( )  ( 1)( 1)  (3)( )  (5)(5)   ( 1)(5)  (3)( )  ( 1)(5)  (1)( )  2 2 2 2     = 17 unit 2

10 9.

10  POQ = 12 (use s  r )

(a)

 POQ = 1.2 radians (b)

Identify the right angle triangle, know OPQ = 0.6 radian and radius OP is the hypotenuse

cos 0.6rad  (alternative: use sin 

5 a (use cos  ) radius h

o and follow by Pythagoras theorem) h

5 , radius = 6.058 cm cos 0.6rad 1 1 2 2  10   1.2  or  6.058  2.4  2 2

radius  (c)

1 2

(use A  r 2 to find area of sector PQTS or OQRS) 1 1 2 2  10   sin1.2rad  or  6.058  sin 2.4rad  2 2 1 absin C (use 2 to find the area of tringle PQS or ORS) 60 – 46.6 or 44.04 – 12.39 (find the area of segment QTS or QRS) = 31.65 – 13.4 (use area of segment QRS – area of segment QTS) = 18.25 cm2

11 10.

(a)

dy  3x 2  2 x  1 dx Gradient of tangent  3(2) 2  2(2)  1  9 Gradient of normal   1 y  5   ( x  2) ; 9

(b)

(i)

x  9 y  47

1 or y  3 3 (solve simultaneous equations, not necessary getting the correct answers)

8 y  3( y 2  1)  0 = (3 y  1)( y  3)  y  

A = ( 8, 3) (ii)

1 9



3 64 3   know volume is equal to    y 2 dy  minus   y 4  2 y 2  1 dy 1  0 9 

 64 3  π  27 y 

3

0

 y5 2 y3  −π  − + y 3 5 

3

(do integration correctly)

1

1 2  64   243  π  (27) − 0 − π ( − 18 + 3) − ( − + 1) 5 3  27   5  (do substitution correctly) = 30

14 π unit 3 15



12 11.

(a)

(i)

7

C1 × .251 × .756

or

7

C0 × .250 × .757

n r nr (use Cr p q correctly)

1  7C1  .251  .756  7C0  .250  .757 (knowing p ( x  2)  1  P( x  1)  P ( x  0) ) = 0.5551 (ii)

n(0.25)(0.75) = 375 n = 2000

(b)

(i)

53  61 or 11

72  61 x  (use z  correctly) 11 

1 – 0.23352*  0.15866* or equivalent 0.60782 (ii)

n(0.60782) = 200 n = 329

13 12.

AB2 = 7.92 + 62 − 2×7.9×6 cos ∠ 130° (Use cosine rule in ΔABC)

(a)

AB = 12.62 cm sin ∠ADC sin 50 = (Use sine rule in ΔADC) 7.9 6.4 sin ADC  0.9456

ADC  108.99( ADC is obtuse) DAC  180  50  108.99  21.01 DC 6.4  (Use sine rule in ΔADC) sin 21.01 sin 50 DC = 3 cm 1 (6.4)(3  6) sin108.99 or equivalent 2 (use area of triangle = 12 ab sin C ) = 27.23 cm2 13.

(a)

120 

RM 5.40 130 x 110 = I x 100 or equivalent (Use I 07 / 06  I 06 / 04  I 07 / 04  100 )

(b)

(c)

Q P1 x 100 (Use I  1  100 ) Q0 4.5

143  I iWi = 120  3  135(2 y )  130  6  150( y ) (Find  IiWi correctly and use x = 2y)

(i)

I 

120  3  135(2 y )  130  6  150( y ) (divide  IiWi by  Wi correctly) 3  2y  6  y 120  3  135(2 y )  130  6  150( y )  132 (Equate I 3  2y  6  y

x = 4, y = 2 (ii)

33 Q X 100  132 (Use I  1  100 ) Q05 Q0 RM25

to 132)

14 14.

(a)

a

dy  4t  12 (find a using differentiation dx

4t  12  0 (use

dy  0 when v maximum) dx

vmax  2(3) 2  12(3)  18 ms-1 (b)





s   2t 2  12t dt   s = 0 when t = 0, thus c = 0.  s  

sA  

2(3)3  6(3) 2 3

or

sB  

(c)

Solve 

2t 3  6t 2 (find s using integration) 3

2(2)3  6(2)2 (substitute t = 2 or t = 3 is s) 3

 sB

sA

2t 3  6t 2  c 3

 17

1 3

2t 3  6t 2  0 (use s = 0) 3 t  9s

(d)

Solve 2t 2  12t  0 (use v = 0) t  6s

15.

x + y ≤ 80 or equivalent

(a)

y ≤ 3x or equivalent y ≥ 30 or equivalent (b) (Refer graph on page 13) At least one straight line is drawn correctly (from inequalities involving x and y) All the three straight lines are drawn Correctly Region is correctly shaded (c)

(i)

45

(ii)

Optimum point (20,60) Substitute (20,60) in 45x + 60y RM4500

15

Related Documents


More Documents from "Bid Hassan"