Marco Metodologico Proyecto 1 Apli 4.docx

  • Uploaded by: Julio Cesar Subuyuj
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Marco Metodologico Proyecto 1 Apli 4.docx as PDF for free.

More details

  • Words: 833
  • Pages: 6
Marco metodolΓ³gico 1.Cuadratura gaussiana para 2 variables 𝑑

𝑏

∫ ∫ 𝑓(π‘₯, 𝑦)𝑑π‘₯𝑑𝑦 𝑐

π‘₯=

π‘Ž

π‘βˆ’π‘Ž 𝑏+π‘Ž 𝑑+ 2 2 𝑑π‘₯ =

𝑦=

π‘βˆ’π‘Ž 𝑑𝑑 2

π‘‘βˆ’π‘ 𝑑+𝑐 𝑒+ 2 2

𝑑𝑦 =

π‘‘βˆ’π‘ 𝑑𝑒 2

(𝑏 βˆ’ π‘Ž)(𝑑 βˆ’ 𝑐) 1 1 ∫ ∫ 𝑓(π‘₯, 𝑦)𝑑𝑑𝑑𝑒 4 βˆ’1 βˆ’1 Ejercicio Utilizar la cuadratura gaussiana de dos variables para encontrar el Γ‘rea de la siguiente funciΓ³n 𝑧 = π‘₯ 2 + 2𝑦 con n=5.

4

3

∫ ∫ (π‘₯ 2 + 2𝑦)𝑑π‘₯𝑑𝑦 1

π‘₯=

3βˆ’2 3+2 𝑑+ 2 2 π‘₯=

1 5 𝑑+ 2 2

1 𝑑π‘₯ = 𝑑𝑑 2

2

𝑦=

4βˆ’1 4+1 𝑒+ 2 2

3 5 𝑦= 𝑒+ 2 2 𝑑𝑦 =

3 𝑑𝑒 2

1 5 2 3 5 1 3 ∫ ∫ [( 𝑑 + ) + 2 ( 𝑒 + )] 𝑑𝑑 𝑑𝑒 2 2 2 2 2 βˆ’1 βˆ’1 2 1

1

EcuaciΓ³n objetivo 3 1 1 5 ∫ ∫ [0.25𝑑 2 + 𝑑 + 3𝑒 + 11.25] 𝑑𝑑𝑑𝑒 4 βˆ’1 βˆ’1 2

Datos "RaΓ­z" π‘₯ β†’ βˆ’0.906179845938664 π‘₯ β†’ βˆ’0.5384693101056831 π‘₯β†’0 π‘₯ β†’ 0.5384693101056831 π‘₯ β†’ 0.906179845938664

"Coeficientes" 0.236926885056 0.478628670499 0.568888888889 0.478628670499 0.236926885056

Resolviendo primera parte 3 1 5 ∫ [0.25𝑑 2 + 𝑑 + 3𝑒 + 11.25] 𝑑𝑑 4 βˆ’1 2 1

∫ 𝑓(𝑑)𝑑𝑑 = 0.236926885056 (0.25(βˆ’0.9061798459386642 ) βˆ’1

5 + (βˆ’0.906179845938664) + 3𝑒 + 11.25) 2 + 0.478628670499 (0.25(βˆ’0.53846931010568312 ) 5 + (βˆ’0.906179845938664) + 3𝑒 + 11.25) 2 5 + 0.568888888889 (0.25(02 ) + (0) + 3𝑒 + 11.25) 2 + 0.236926885056 (0.25(0.9061798459386642 ) 5 + (0.906179845938664) + 3𝑒 + 11.25) 2 + 0.478628670499 (0.25(0.53846931010568312 ) 5 + (0.906179845938664) + 3𝑒 + 11.25) 2

1

∫ 𝑓(𝑑)𝑑𝑑 = 22.666666666655285β€Š + 5.999999999997𝑒 βˆ’1

Sustituyendo en ecuaciΓ³n objetivo 3 1 ∫ (22.666666666655285β€Š + 5.999999999997𝑒)𝑑𝑒 4 βˆ’1

3 1 3 ∫ 𝑔(𝑒)𝑑𝑒 = (0.236926885056(22.666666666655285β€Š 4 βˆ’1 4 + 5.999999999997(βˆ’0.906179845938664))) + (0.478628670499(22.666666666655285β€Š + 5.999999999997(βˆ’0.5384693101056831))) + (0.568888888889(22.666666666655285β€Š + 5.999999999997(0))) + (0.236926885056(22.666666666655285β€Š + 5.999999999997(0.906179845938664))) + (0.478628670499(22.666666666655285β€Š + 5.999999999997(0.5384693101056831)))

3 1 ∫ 𝑔(𝑒)𝑑𝑒 = 33.99999999996593 4 βˆ’1 Resultado 4

3

∫1 ∫2 (π‘₯ 2 + 2𝑦)𝑑π‘₯𝑑𝑦 = 33.99999999996593

Grafica

2.Cuadratura gaussiana para 3 variables 𝑓

𝑑

𝑏

∫ ∫ ∫ 𝑓(π‘₯, 𝑦) 𝑑π‘₯𝑑𝑦𝑑𝑧 𝑒

π‘₯=

𝑐

π‘βˆ’π‘Ž 𝑏+π‘Ž 𝑑+ 2 2 𝑑π‘₯ =

π‘Ž

𝑦=

π‘βˆ’π‘Ž 𝑑𝑑 2

π‘‘βˆ’π‘ 𝑑+𝑐 𝑒+ 2 2

𝑑𝑦 =

𝑧=

π‘‘βˆ’π‘ 𝑑𝑒 2

π‘’βˆ’π‘“ 𝑒+𝑓 𝑣+ 2 2

π‘‘πœƒ =

π‘’βˆ’π‘“ 𝑑𝑣 2

(𝑏 βˆ’ π‘Ž)(𝑑 βˆ’ 𝑐)(𝑒 βˆ’ 𝑓) 𝑓 𝑑 𝑏 ∫ ∫ ∫ 𝑓(π‘₯, 𝑦) 𝑑π‘₯𝑑𝑦𝑑𝑧 6 𝑒 𝑐 π‘Ž Ejercicio Utilizar cuadratura gaussiana para aproximar el volumen debajo de la curva acotada con la integral 4

(π‘₯ 2 +2𝑦)

3

(π‘₯ 2 + 2𝑦) 𝑑𝑧𝑑π‘₯𝑑𝑦

∫ ∫ ∫ 1

1 5 π‘₯= 𝑣+ 2 2

2

0

3 5 𝑦= 𝑒+ 2 2

1 𝑑π‘₯ = 𝑑𝑣 2

3 𝑑𝑦 = 𝑑𝑒 2

π‘₯2 + 𝑦2 π‘₯2 + 𝑦2 𝑧= 𝑑+ 2 2 π‘₯2 + 𝑦2 𝑑𝑧 = 𝑑𝑑 2

FunciΓ³n objetivo 1

1

1

∫ ∫ ∫ ((0.5𝑑 + (5⁄2))2 + 3𝑒 + 5) βˆ— (0.5 βˆ— ((0.5𝑑 + (5⁄2))2 ) + 3𝑒 + 5) 𝑑𝑑𝑑𝑒𝑑𝑣 βˆ’1 βˆ’1 βˆ’1

Datos "RaΓ­z" π‘₯ β†’ βˆ’0.906179845938664 π‘₯ β†’ βˆ’0.5384693101056831 π‘₯β†’0 π‘₯ β†’ 0.5384693101056831 π‘₯ β†’ 0.906179845938664 Resolviendo

"Coeficientes" 0.236926885056 0.478628670499 0.568888888889 0.478628670499 0.236926885056

Primera parte 1

∫ ((0.5𝑑 + (5⁄2))2 + 3𝑒 + 5) βˆ— (0.5 βˆ— ((0.5𝑑 + (5⁄2))2 ) + 3𝑒 + 5) 𝑑𝑑 βˆ’1

= 0.236926885056 βˆ— (((0.5 βˆ— βˆ’0.906179845938664 + (5⁄2))2 + 3𝑒 + 5) βˆ— (0.5 βˆ— ((0.5 βˆ— βˆ’0.906179845938664 + (5⁄2))2 ) + 3𝑒 + 5)) + 0.478628670499 βˆ— (((0.5 βˆ— βˆ’0.5384693101056831 + (5⁄2))2 + 3𝑒 + 5) βˆ— (0.5 βˆ— ((0.5 βˆ— βˆ’0.5384693101056831 + (5⁄2))2 ) + 3𝑒 + 5)) + 0.568888888889 βˆ— (((0.5 βˆ— 0 + (5⁄2))2 + 3𝑒 + 5) βˆ— (0.5 βˆ— ((0.5 βˆ— 0 + (5⁄2))2 ) + 3𝑒 + 5)) + 0.236926885056 βˆ— (((0.5 βˆ— 0.906179845938664 + (5⁄2))2 + 3𝑒 + 5) βˆ— (0.5 βˆ— ((0.5 βˆ— 0.906179845938664 + (5⁄2))2 ) + 3𝑒 + 5)) + 0.478628670499 βˆ— (((0.5 βˆ— βˆ’0.5384693101056831 + (5⁄2))2 + 3𝑒 + 5) βˆ— (0.5 βˆ— ((0.5 βˆ— 0.5384693101056831 + (5⁄2))2 ) + 3𝑒 + 5))

1

1

∫ ∫ (123.81577941575648β€Š + 80.0674305832622𝑒 βˆ’1 βˆ’1

+ 168.88000000002046𝑒2 )𝑑𝑒𝑑𝑣

Segunda parte 1

∫ (123.81577941575648β€Š + 80.0674305832622𝑒 + 168.88000000002046𝑒2 )𝑑𝑒 βˆ’1

= 0.236926885056 βˆ— (123.81577941575648 + 80.0674305832622 βˆ— βˆ’0.906179845938664 + 168.88000000002046 βˆ— (βˆ’0.906179845938664)2 ) + 0.478628670499 βˆ— (123.81577941575648 + 80.0674305832622 βˆ— βˆ’0.5384693101056831 + 168.88000000002046 βˆ— (βˆ’0.5384693101056831)2 ) + 0.568888888889 βˆ— (123.81577941575648 + 80.0674305832622 βˆ— 0. +168.88000000002046 βˆ— (0)2 ) + 0.236926885056 βˆ— (123.81577941575648 + 80.0674305832622 βˆ— 0.906179845938664 + 168.88000000002046 βˆ— (0.906179845938664)2 ) + 0.478628670499 βˆ— (123.81577941575648 + 80.0674305832622 βˆ— 0.5384693101056831 + 168.88000000002046 βˆ— (0.5384693101056831)2 ) 1

∫ 360.2182254979811𝑑𝑣 βˆ’1

Tercera parte 1

∫ 360.2182254979811𝑑𝑣 βˆ’1

= 0.236926885056 βˆ— 360.2182254979811 + 0.478628670499 βˆ— 360.2182254979811 + 0.568888888889 βˆ— 360.2182254979811 + 0.236926885056 βˆ— 360.2182254979811 + 0.478628670499 βˆ— 360.2182254979811 Respuesta

1

1

1

∫ ∫ ∫ ((0.5𝑑 + (5⁄2))2 + 3𝑒 + 5) βˆ— (0.5 βˆ— ((0.5𝑑 + (5⁄2))2 ) + 3𝑒 + 5) 𝑑𝑑𝑑𝑒𝑑𝑣 βˆ’1 βˆ’1 βˆ’1

= 720.436450995602

Related Documents


More Documents from ""