Marco metodolΓ³gico 1.Cuadratura gaussiana para 2 variables π
π
β« β« π(π₯, π¦)ππ₯ππ¦ π
π₯=
π
πβπ π+π π‘+ 2 2 ππ₯ =
π¦=
πβπ ππ‘ 2
πβπ π+π π’+ 2 2
ππ¦ =
πβπ ππ’ 2
(π β π)(π β π) 1 1 β« β« π(π₯, π¦)ππ‘ππ’ 4 β1 β1 Ejercicio Utilizar la cuadratura gaussiana de dos variables para encontrar el Γ‘rea de la siguiente funciΓ³n π§ = π₯ 2 + 2π¦ con n=5.
4
3
β« β« (π₯ 2 + 2π¦)ππ₯ππ¦ 1
π₯=
3β2 3+2 π‘+ 2 2 π₯=
1 5 π‘+ 2 2
1 ππ₯ = ππ‘ 2
2
π¦=
4β1 4+1 π’+ 2 2
3 5 π¦= π’+ 2 2 ππ¦ =
3 ππ’ 2
1 5 2 3 5 1 3 β« β« [( π‘ + ) + 2 ( π’ + )] ππ‘ ππ’ 2 2 2 2 2 β1 β1 2 1
1
EcuaciΓ³n objetivo 3 1 1 5 β« β« [0.25π‘ 2 + π‘ + 3π’ + 11.25] ππ‘ππ’ 4 β1 β1 2
Datos "RaΓz" π₯ β β0.906179845938664 π₯ β β0.5384693101056831 π₯β0 π₯ β 0.5384693101056831 π₯ β 0.906179845938664
"Coeficientes" 0.236926885056 0.478628670499 0.568888888889 0.478628670499 0.236926885056
Resolviendo primera parte 3 1 5 β« [0.25π‘ 2 + π‘ + 3π’ + 11.25] ππ‘ 4 β1 2 1
β« π(π‘)ππ‘ = 0.236926885056 (0.25(β0.9061798459386642 ) β1
5 + (β0.906179845938664) + 3π’ + 11.25) 2 + 0.478628670499 (0.25(β0.53846931010568312 ) 5 + (β0.906179845938664) + 3π’ + 11.25) 2 5 + 0.568888888889 (0.25(02 ) + (0) + 3π’ + 11.25) 2 + 0.236926885056 (0.25(0.9061798459386642 ) 5 + (0.906179845938664) + 3π’ + 11.25) 2 + 0.478628670499 (0.25(0.53846931010568312 ) 5 + (0.906179845938664) + 3π’ + 11.25) 2
1
β« π(π‘)ππ‘ = 22.666666666655285β + 5.999999999997π’ β1
Sustituyendo en ecuaciΓ³n objetivo 3 1 β« (22.666666666655285β + 5.999999999997π’)ππ’ 4 β1
3 1 3 β« π(π’)ππ’ = (0.236926885056(22.666666666655285β 4 β1 4 + 5.999999999997(β0.906179845938664))) + (0.478628670499(22.666666666655285β + 5.999999999997(β0.5384693101056831))) + (0.568888888889(22.666666666655285β + 5.999999999997(0))) + (0.236926885056(22.666666666655285β + 5.999999999997(0.906179845938664))) + (0.478628670499(22.666666666655285β + 5.999999999997(0.5384693101056831)))
3 1 β« π(π’)ππ’ = 33.99999999996593 4 β1 Resultado 4
3
β«1 β«2 (π₯ 2 + 2π¦)ππ₯ππ¦ = 33.99999999996593
Grafica
2.Cuadratura gaussiana para 3 variables π
π
π
β« β« β« π(π₯, π¦) ππ₯ππ¦ππ§ π
π₯=
π
πβπ π+π π‘+ 2 2 ππ₯ =
π
π¦=
πβπ ππ‘ 2
πβπ π+π π’+ 2 2
ππ¦ =
π§=
πβπ ππ’ 2
πβπ π+π π£+ 2 2
ππ =
πβπ ππ£ 2
(π β π)(π β π)(π β π) π π π β« β« β« π(π₯, π¦) ππ₯ππ¦ππ§ 6 π π π Ejercicio Utilizar cuadratura gaussiana para aproximar el volumen debajo de la curva acotada con la integral 4
(π₯ 2 +2π¦)
3
(π₯ 2 + 2π¦) ππ§ππ₯ππ¦
β« β« β« 1
1 5 π₯= π£+ 2 2
2
0
3 5 π¦= π’+ 2 2
1 ππ₯ = ππ£ 2
3 ππ¦ = ππ’ 2
π₯2 + π¦2 π₯2 + π¦2 π§= π‘+ 2 2 π₯2 + π¦2 ππ§ = ππ‘ 2
FunciΓ³n objetivo 1
1
1
β« β« β« ((0.5π‘ + (5β2))2 + 3π’ + 5) β (0.5 β ((0.5π‘ + (5β2))2 ) + 3π’ + 5) ππ‘ππ’ππ£ β1 β1 β1
Datos "RaΓz" π₯ β β0.906179845938664 π₯ β β0.5384693101056831 π₯β0 π₯ β 0.5384693101056831 π₯ β 0.906179845938664 Resolviendo
"Coeficientes" 0.236926885056 0.478628670499 0.568888888889 0.478628670499 0.236926885056
Primera parte 1
β« ((0.5π‘ + (5β2))2 + 3π’ + 5) β (0.5 β ((0.5π‘ + (5β2))2 ) + 3π’ + 5) ππ‘ β1
= 0.236926885056 β (((0.5 β β0.906179845938664 + (5β2))2 + 3π’ + 5) β (0.5 β ((0.5 β β0.906179845938664 + (5β2))2 ) + 3π’ + 5)) + 0.478628670499 β (((0.5 β β0.5384693101056831 + (5β2))2 + 3π’ + 5) β (0.5 β ((0.5 β β0.5384693101056831 + (5β2))2 ) + 3π’ + 5)) + 0.568888888889 β (((0.5 β 0 + (5β2))2 + 3π’ + 5) β (0.5 β ((0.5 β 0 + (5β2))2 ) + 3π’ + 5)) + 0.236926885056 β (((0.5 β 0.906179845938664 + (5β2))2 + 3π’ + 5) β (0.5 β ((0.5 β 0.906179845938664 + (5β2))2 ) + 3π’ + 5)) + 0.478628670499 β (((0.5 β β0.5384693101056831 + (5β2))2 + 3π’ + 5) β (0.5 β ((0.5 β 0.5384693101056831 + (5β2))2 ) + 3π’ + 5))
1
1
β« β« (123.81577941575648β + 80.0674305832622π’ β1 β1
+ 168.88000000002046π’2 )ππ’ππ£
Segunda parte 1
β« (123.81577941575648β + 80.0674305832622π’ + 168.88000000002046π’2 )ππ’ β1
= 0.236926885056 β (123.81577941575648 + 80.0674305832622 β β0.906179845938664 + 168.88000000002046 β (β0.906179845938664)2 ) + 0.478628670499 β (123.81577941575648 + 80.0674305832622 β β0.5384693101056831 + 168.88000000002046 β (β0.5384693101056831)2 ) + 0.568888888889 β (123.81577941575648 + 80.0674305832622 β 0. +168.88000000002046 β (0)2 ) + 0.236926885056 β (123.81577941575648 + 80.0674305832622 β 0.906179845938664 + 168.88000000002046 β (0.906179845938664)2 ) + 0.478628670499 β (123.81577941575648 + 80.0674305832622 β 0.5384693101056831 + 168.88000000002046 β (0.5384693101056831)2 ) 1
β« 360.2182254979811ππ£ β1
Tercera parte 1
β« 360.2182254979811ππ£ β1
= 0.236926885056 β 360.2182254979811 + 0.478628670499 β 360.2182254979811 + 0.568888888889 β 360.2182254979811 + 0.236926885056 β 360.2182254979811 + 0.478628670499 β 360.2182254979811 Respuesta
1
1
1
β« β« β« ((0.5π‘ + (5β2))2 + 3π’ + 5) β (0.5 β ((0.5π‘ + (5β2))2 ) + 3π’ + 5) ππ‘ππ’ππ£ β1 β1 β1
= 720.436450995602