DUCTILITY ENHANCEMENT OF R.C. COLUMNS USING FRP COMPOSITES MAJOR PROJECT By, Vijay N. Garchar (06MCL004) Guided by, Prof. U.V.Dave
DEPARTMENT OF CIVIL ENGINEERING Ahmedabad 382481 May 2008
1
INTRODUCTION • Ductility is defined by the ratio of the total imposed displacement Δ at any instant to that at the concept of yield Δy. µ=
∆ 〉1 ∆y
The primary aim of the detailing of composite structures, Produce ductile members, which are capable of meeting the inelastic deformation demands imposed by severe earthquakes. 2
EFFECT OF DUCTILITY ON R.C. COLUMNS
• •
Improve the behavior of the building primarily by reducing the forces in the structure. Serves as a shock absorber in structure and reduces the transmitted force to one that is sustainable 3
FACTORS AFFECTING COLUMN DUCTILITY
Ductility Increases in following cases, 1. Shear Strength 2. Axial Compressive Stress 3. Ultimate Strain of Concrete 4. Axial Compressive Stress 5. Ultimate Strain of Concrete 6. Yield Strength of Steel 7. Transverse Reinforcement
4
RESEARCH SIGNIFICANCE
• Resistance of Structure to sustain forces during earthquakes. • To impart ductility in RC Columns using FRP material along with steel and concrete i.e. Composites Material. • To study Behavior of Different FRP composites & RC Columns under different loadings.
5
DUCTILITY ENHANCEMENT OF R.C. COLUMNS
• Increasing Transverse Reinforcement • Steel Jacket confinement • FRP confinement
6
INCREASING TRANSVERSE REINFORCEMENT
7
STEEL JACKET CONFINEMENT
8
ADVANTAGES OF FRP COMPOSITES
• • • •
Increase Structure Service Life Resistance to Salts and other Corrosive Agents Reduce Field Installation Time and Light Weight Reduce Traffic Delays due to Faster Construction Especially in Bridge • Corrosion Resistance • Allow Greater Vehicular Load due to Weight Reduction
9
ADVANTAGES OF FRP COMPOSITES 1. Light weight, 2. Nonmagnetic, 3. High strength to weight ratio, 4. High impact strength, 5. Directional strength, 6. High dielectric strength insulator 7. Corrosion resistance, 8. Low maintenance, 9. Weather resistance, 10.Long term durability, 11.Dimensional stability, 12.Part consolidation, 13.Low thermal conductivity, 14.Small to large part geometry possible, 15.Low coefficient of thermal expansion, 16.Tailored surface finish, and 17.Radar transparency.
10
SCOPE OF WORK
SCOPE OF WORK
EXPERIMENTAL
ANALYTICAL
11
SCOPE OF WORK
EXPERIMENTAL WORK
CIRCULAR
SQUARE
12
SCOPE OF WORK LOADING CONDITIONS
AXIAL
AXIAL CYCLIC
ECCENTRIC
WRAPPING MATERIAL
GLASS FIBERS
CARBON FIBERS
13
SCOPE OF WORK 36 Columns Shape
Square (18)
Circular (18)
Loading
Cyclic (6)
Axial (6) FRP Material UN Wrapped (2)
GFRP (2)
CFRP (2)
UN Wrapped GFRP (2) (2)
FRP Material UN Wrapped (2)
Eccentric (6)
CFRP (2)
UN Wrapped (2) Loading
GFRP (2)
Axial (6)
GFRP (2)
CFRP (2)
Eccentric (6)
Cyclic (6)
CFRP (2)
UN Wrapped (2)
GFRP (2)
CFRP (2)
UN Wrapped (2)
GFRP (2)
14
CFRP (2)
SCOPE OF WORK Name of Specimen Unwrapped CTA1
Square
Circular
Eccentric
Cyclic
AXIAL
.
.
.
CFRP
GFRP
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
CTA2
.
.
.
CTE1
.
.
.
.
CTE2
.
.
.
.
CTAC1
.
.
.
.
.
.
.
.
CTAC2
.
.
.
.
.
.
.
.
STE1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
STE2
.
.
.
STAC1
.
.
.
.
.
. .
STAC2
.
.
.
.
.
STA1
.
.
.
.
STA2
.
.
.
.
.
.
.
.
.
.
.
.
Notation of Specimen :
SGFA1
.
.
.
.
.
.
.
.
SGFA2
.
.
.
.
.
.
.
.
CGFA1
.
.
.
.
.
.
.
.
CGFA2
.
.
.
.
.
.
.
.
SGFAC1
.
.
.
.
.
.
.
.
SGFAC2
.
.
.
.
.
.
.
.
CGFAC1
.
.
.
.
.
.
CGFAC2
.
.
SGFE1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
SGFE2
.
CGFE1
.
CGFE2
.
SCFA1
.
.
.
.
.
.
.
.
SCFA2
.
.
.
.
.
.
.
.
CCFA1
.
.
.
.
.
.
.
.
CCFA2
.
.
.
.
.
.
.
.
SCFAC1
.
.
.
.
.
.
.
.
SCFAC2
.
.
.
.
.
.
.
.
CCFAC1
.
.
.
.
.
.
.
.
CCFAC2
.
.
.
.
.
.
.
.
SCFE1
.
.
.
.
.
.
.
.
SCFE2
.
.
.
.
.
.
.
.
CCFE1
.
.
.
.
.
.
.
.
CCFE2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
C
Circular
S
Square
T
Control specimen
CF
CFRP Wrapped Specimen
GF
GFRP Wrapped Specimen
A
Axially Loaded Column
AC
Axially Cyclic Loaded Column Specimen
E
Eccentrically Loaded Specimen
SGFAC
GFRP wrapped, Axially cyclic Loaded Square Column Specimen
15
MATERIAL USED IN COLUMNS 1. CONCRETE GRADE – M25 Water 0.45
Cement 1
Sand 1.27
Coarse Aggregates 2.26
1. Longitudinal Reinforcement 1. Fe-415 – Square Columns – 4 Nos. 2. Fe-250 – Circular Columns – 8 Nos. 2. Transverse Reinforcement Fe-250 – Square & Circular Columns @ 150 mm c/c 16
GEOMETRY OF SECTION Geometry of section is decided based on extensive literature review 8 – 6 mm Dia bars
100 mm
1000 mm
4 – 10 mm Dia bars
6 mm @ 150 mm c/c
100 mm 6 mm @ 150 mm c/c
1000 mm
17
PARAMETERS MEASURED 1. Ultimate Failure Load of Axially and eccentric loaded columns. Ultimate Failure Load of Axial cyclic loaded columns. 2. Cracking pattern of wrapped and unwrapped columns. 3. Strain measurement at external of surface of FRP. 4. Strain measurement at intermediate height of columns. 5. Ultimate stress carried by confined and unconfined concrete column.
18
PARAMETERS STUDIED 1. Comparative study of axial and eccentric loaded circular and square columns. 2. Efficiency of wrapping material base upon geometry of columns under different loading conditions. 3. Ductility measurement of wrapped and unwrapped columns and comparison of the same under different loading conditions. 4. Comparisons of experimental and analytical results for axially loaded circular and square columns. 5. Measurement of Specific Damping Capacity (SDC), Stiffness Degradation & Energy Dissipation under Axial Cyclic Loading. 19
ANALYTICAL SCOPE OF WORK
• Axial load of column wrapped with CFRP & GFRP composites for Square and Circular columns. • Analytical Pu – Mu curve
20
LITERATURE REVIEW Literature review has been done based on classification of paper according to the following topics. •Parametric study by various Researchers •Eccentrically loaded column •Confinement model •Corner radius effect •Wrapping techniques •Test setup for Eccentrically loaded columns
21
LITERATURE REVIEW Researchers
Size of Specimens
Corner Radius FRP (mm) Type
ff(MPa)
Ef(MPa)
fco (MPa)
Mirmiran et al.[21]
153 x 153 x 305
3.65
GT
524 - 641
37.2 – 40.7
40.6
Mohamed [22]
132 x 132 x 300 102 x 176 x 300 79 x 214 x 300 152 x 305
30 30
CC GS
4364
230 230 230 248 248 230
18.3 15.2
CC GS CC
3500 3500 3500 -
27.58 34.47 31.7 – 52.1
3200 2500 1100
230 74 39
25 170 24
Youssef, et al. [23] Wang, et al. [6]
150 x 150 x 300 150 x 150 x 300 150 x 150 x 300
15 30 45 60 75
Berthet et al. [24]
160 x 320
-
Lau et al. [25]
100 x 200
-
CC GS GS
Labossie[26]
5, 25, 38 5, 25, 38
CC AS
1265 230
82.7 13.6
35.7 -43.9
8.3 30 30 5
CC CC
3022 3654
188.9 207
22.5 20.7 – 41.7
Zhao [30]
152 x 152 x 500 152 x 203 x 500 152 x 152 x 500 108 x 108 x 305 152.5 x 305 200 x 200 x 400 200 x 200 x 600 200 x 200 x 600 100 x 100 x 300
CC HS CC
4433 3972 1800
252 439 221
38 38 26.8 – 35.5
Matthys et al. [31]
400 x 2000
-
CC GS
2600
198
31.8 39.1
Parvin [27] Shahawy et al. [28] Hosotani et al.[29]
22
LITERATURE REVIEW
• It has been revealed from extensive literature review that in following research is needed in following areas 1. Eccentrically Loaded Columns 2. Axial Cyclic Loaded Columns
23
LITERATURE REVIEW Hadi (2007)
Knife Edge Plate System
24
Knife Edge Plate System
25
26
LITERATURE REVIEW
27
Parveen et al.
Knife Edge Plate System 28
LITERATURE REVIEW Mander et al. Shao et al. Sheikh Baris et al. Lin et al. Hoshikuma et al. Hoppel et al. Samaan et al. Xiao et al. Kumutha et al. Youssef et al. Maalej et al.
29
LITERATURE REVIEW
EXPERIMENTATION
30
CASTING OF COLUMNS Formwork Square Columns
31
CASTING OF COLUMNS Reinforcement for Square & Circular Columns
32
CASTING OF COLUMNS Casting of Square Column
33
CASTING OF COLUMNS
Casting of Circular Column
34
WRAPPING OF COLUMNS Following Procedure is used for wrapping of Column using GFRP & CFRP composites. 1.Surface Preparation 2.Application of Putty 3.Application of Primer Coat 4.Cutting of Fibers 5.Application of Saturent 6.Wrapping of Fibers
35
SURFACE PREPARATION
36
WRAPPING TECHNIQUES
Orientation of Fibers in Hoop Direction
Orientation of Fibers in Longitudinal Direction 37
APPLICATION OF PUTTY Columns are washed with water and dried for 24 hours. PREPARATION OF PUTTY APPLICATION OF PUTTY APPLICATION OF PUTTY ON COLUMN FINISHING OF SURFACE
Unevenness of Concrete surface.
38
APPLICATION OF PRIMER COAT 24 hours after application of putty primer coat is applied. PREPARATION OF PRIMER COAT APPLICATION OF PRIMER COAT
Finished Surface
Column Specimen after primer coat application.
39
CUTTING OF FIBERS Fibers are cut according to the size of Square and Circular Column. MEASUREMENT OF FIBERS CUTTING OF FIBERS
40
APPLICATION OF SATURENT 5 hours after application of Primer Coat, Saturent is Applied. APPLICATION OF SATURENT ON COLUMN
Mixing of Goldband base for saturent
Mixing of Goldband hardener with base for saturent.
41
WRAPPING OF COLUMNS
WRAPPING OF SQUARE COLUMN COMPLETE WRAPPING OF SQUARE COLUMN WRAPPING OF CIRCULAR COLUMN CFRP WRAPPING Pressing of GFRP wrap remove entrapped air.
to
42
TESTING SETUP p
Eccentric Loading System
h
h
43
d
d
TESTING OF RC COLUMNS
44
TESTING SETUP Eccentric Loading System
FIX SUPPORT
RCC Column
Knife Edge Plate Hydraulic Jack
Base
45
TESTING SETUP Eccentric Loading System
46
TESTING SETUP AXIAL , AXIAL CYCLIC LOADING
47
TESTING SETUP
150 mm
100 mm 50 mm
50 mm
15 mm
200 mm
200 mm
FIX SUPPORT
48
TESTING SETUP
FIX SUPPORT
49
TESTING SETUP FIX SUPPORT-CIRCULAR COLUMNS
15 mm
200 mm
150 mm
6 mm Thick Plate
150 mm
200 mm
PLAN
100 mm
200 mm
ELEVATION
50
TESTING SETUP KNIFE EDGE PLATE
60 mm
400 mm
400 mm
51
TESTING SETUP ATTACHMENTS 150 mm
50 mm
LVDT resting point
Connection point with Knife Edge Plate
Adjustable Groove
Packing Plate (Square) 150 mm Diameter
50 mm
Vertical Attachment
Packing Plate (Circular)
52
INSTRUMENTATION LVDT (Liner Variable Differential Transducer)
LVDT is attached with column to give total displacement at the time of load application
Digital Displacement Indicator. 53
INSTRUMENTATION HYDRAULIC JACK
Hydraulic jack
MECHANICAL STRAIN GAUGE
Mechanical Strain Gauge (DEMEC) 54
INSTRUMENTATION ELECTRONIC STRAIN GAUGE
Components of Strain Gauges
Strain Indicator 55
TESTING SETUP
Fix Support
Dial Gauge
300 mm Column
30 0 m m
Strain Gauge s
LVDT
30 0 m m Hydraulic
Knife Edge Plate
Jack
56
AXIALLY LOADED COLUMNS
57
TESTING PROCEDURE AXIAL LOADING
Stress Controlled Approach Load is increased on the column at specific intervals and corresponding to every load displacement and strains are measured for the columns Interval for load increment is kept as 10 kN
58
TEST RESULTS-AXIAL LOADINGCIRCULAR COLUMN
CIRCULAR
SQUARE COLUMNS
COLUMNS UN -WRAPPED
UN-WRAPPED
GFRP WRAPPED
GFRP WRAPPED
CFRP WRAPPED
CFRP WRAPPED
59
TEST RESULTS-AXIAL LOADINGCIRCULAR COLUMN 350 300 250
) N (k d a o L
200 CTA
150
CGFA
100
CCFA
50 0 0
2
4 6 Deflection (mm)
8
10
Variation of Load Deflection for CTA, CGFA & CCFA
Column
Load(kN)
Increment in % with respect to CTA
CTA CGFA CCFA
145 230 310
70 113.79
Increment in % with respect to CGFA 23
60
TEST RESULTS-AXIAL LOADINGCIRCULAR COLUMN 50
2)
40 30 CTA
20
/m (N s tre S
CGFA CCFA
10 0 0
0.002
0.004
0.006 Strain
0.008
0.01
0.012
Variation of Stress-Strain for CTA, CGFA & CCFA
Column
Stress N/mm2
Increment in % with respect to CTA
CTA CGFA CCFA
18.46 29.46 39.47
70 113.79
Increment in % with respect to CGFA 23
61
45
40
40
35
35
2)
45
30
30
25
CTA
20
CGFA
20
CGFA
15
CCFA
15
CCFA
10
CTA
25
/m (N s tre S
/m s(N tre S
2)
TEST RESULTS-AXIAL LOADINGCIRCULAR COLUMN
10
5
5
0
0 0
0.0001
0.0002
0.0003 Strain
0.0004
0.0005
0.0006
0
0.0001
0.0002
0.0003
0.0004
0.0005
Strain
Variation of Stress-Strain for CTA, CGFA & CCFA at 1/3rd Variation of Stress-Strain for CTA, CGFA & CCFA at 2/3rd height height 45 40
/m (N s tre S
2)
35 30 25
CTA
20
CGFA
15
CCFA
10 5 0 0
0.00005
0.0001
0.00015 0.0002 Strain
0.00025
0.0003
0.00035
62 Variation of Stress-Strain for CTA, CGFA & CCFA at 1/2
FAILURE MODES – AXIAL LOADING – CIRCULAR COLUMNS
Radial Cracks in CTA
Failure mode for CTA
63
FAILURE MODES – AXIAL LOADING – CIRCULAR COLUMNS
Longitudinal Crack of CTA
Failure of CTA
64
FAILURE MODES – AXIAL LOADING – CIRCULAR COLUMNS
Failure of GFRP in CGFA
Rupture of GFRP in CGFA
65
FAILURE MODES – AXIAL LOADING – CIRCULAR COLUMNS
Failure mode of GFRP in CGFA
Cracking in Fibers in CGFA 66
FAILURE MODES – AXIAL LOADING – CIRCULAR COLUMNS
Buckling of bar in CCFA
Rupture of CFRP in CCFA 67
FAILURE MODES – AXIAL LOADING – CIRCULAR COLUMNS
Buckling of bar & Rupture of CFRP in CCFA
Failure mode of CCFA
68
TEST RESULTS-AXIAL LOADINGSQUARE COLUMN 400 350 300 250
STA
) N (k d a o L
200
SGFA
150
SCFA
100 50 0 0
2
4
6 Deflection (mm)
8
10
12
Variation in Load- Deflection relationship for STA, SGFA & SCFA Column
Load(kN)
Increment in % with respect to STA
Increment in % with respect to SGFA
STA SGFA SCFA
210 330 380
61.90 80.95
12
69
TEST RESULTS-AXIAL LOADINGSQUARE COLUMN 50
2)
40 30 STA
20
/m (N s tre S
SGFA SCFA
10 0 0
0.002
0.004
0.006 0.008 Strain
0.01
0.012
0.014
Variation in Stress-Strain relationship for STA, SGFA & SCFA Column
Stress N/mm2
Increment in % with respect to Unwrapped
Increment in % with respect to GFRP
STA SGFA SCFA
26.73 42.016 48.38
61.90 80.95
12
70
TEST RESULTS-AXIAL LOADINGSQUARE COLUMN 50
40.000
40
2)
2)
50.000
30
SGFA SCFA
20.000
/m (N s tre S
/m (N s tre S
30.000
STA
STA SGFA
20
SCFA
10
10.000
0
0.000 0
0
0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 Strain
Variation in Stress-strain relationship for STA, SGFA & SCFA at 1/3rd height
0.0001
0.0002
0.0003 Strain
0.0004
0.0005
0.0006
Variation in Stress-strain relationship for STA, SGFA & SCFA at 2/3rd height
50
2 )
40 30
(N s e r t S /m
STA SGFA
20
SCFA
10 0 0
0.0001
0.0002
0.0003 Strain
0.0004
0.0005
0.0006
71 Variation in Stress-strain relationship for STA, SGFA & SCFA at 1/2
FAILURE MODES – AXIAL LOADING – SQUARE COLUMNS
Buckling of Reinforcement bar & failure mode for STA
Buckling of Reinforcement bar for STA 72
FAILURE MODES – AXIAL LOADING – SQUARE COLUMNS
73
Initiation of Crack on STA
Failure of cover concrete for STA
FAILURE MODES – AXIAL LOADING – SQUARE COLUMNS
Cracking pattern in cross sectional area of SGFA
Complete failure of SGFA
74
FAILURE MODES – AXIAL LOADING – SQUARE COLUMNS
75
Failure of GFRP from corner in SGFA
Failure mode of SGFA
FAILURE MODES – AXIAL LOADING – SQUARE COLUMNS
76
Cracked Cross-section of SCFA
Failure from corner for SCFA
FAILURE MODES – AXIAL LOADING – CIRCULAR COLUMNS
Rupture of CFRP from corner for SCFA
Failure of SCFA
77
ECCENTRICALLY LOADED COLUMNS
78
TESTING PROCEDURE ECCENTRIC LOADING
Stress Controlled Approach. Eccentricity of 20 mm is applied over the column and kept constant throughout test Interval for load increment is kept as 10 kN
79
TEST RESULTS - ECCENTRIC LOADINGCIRCULAR COLUMN
CIRCULAR
SQUARE COLUMNS
COLUMNS UN -WRAPPED
UN-WRAPPED
GFRP WRAPPED
GFRP WRAPPED
CFRP WRAPPED
CFRP WRAPPED
80
TEST RESULTS - ECCENTRIC LOADINGCIRCULAR COLUMN 300 250 200 150
) N (k d a o L
CTE CGFE
100
CCFE
50 0 0
2
4 6 Deflection (mm)
8
10
Variation of Load-Deflection for CTE, CGFE & CCFE Column Load(kN) CTE CGFE CCFE
120 200 250
Increment in % with respect to CTE 66.66 108.33
Increment in % with respect to CGFE 25
81
TEST RESULTS - ECCENTRIC LOADINGCIRCULAR COLUMN
2)
30.000
20.000 CTE
/m (N s tre S
CGFE
10.000
CCFE
0.000 0
0.002
0.004
0.006
0.008
0.01
Strain
Variation of Stress-Strain for CTE, CGFE & CCFE Column CTE CGFE CCFE
Stress N/mm2 12 20 25
Increment in % with respect to CTE 66.66 108.33
Increment in % with respect to CGFE 25
82
35.000
35.000
30.000
30.000
25.000
25.000
2)
2)
TEST RESULTS - ECCENTRIC LOADINGCIRCULAR COLUMN
20.000
20.000
CTE
15.000
CTE
10.000
CGFE
5.000
CCFE
/m (N s tre S
tre S /m (N s
15.000
CGFE
10.000
CCFE
5.000 0.000
0.000 0
0.0001
0.0002 0.0003 Strain
0.0004
0
0.0005
Variation of Stress-Strain for CTE, CGFE & CCFE at 1/3rd height
0.00005
0.0001 0.00015 Strain
0.0002
0.00025
Variation of Stress-Strain for CTE, CGFE & CCFE at 2/3rd height
35.000 30.000
2)
25.000 20.000
CTE
15.000
/m (N s tre S
CGFE CCFE
10.000 5.000 0.000 0
0.0001
0.0002 Strain
0.0003
0.0004
83
Variation of Stress-Strain for CTE, CGFE & CCFE at 1/2 height
FAILURE MODES – ECCENTRIC LOADING – CIRCULAR COLUMNS
Failure of CTE
Cracking Pattern of CTE
84
FAILURE MODES – ECCENTRIC LOADING – CIRCULAR COLUMNS
Spalling of cover concrete due to eccentricity effect
Failure pattern for CTE
85
FAILURE MODES – ECCENTRIC LOADING – CIRCULAR COLUMNS
Rupture of GFRP due to eccentric loading
Failure pattern of CGFE
86
FAILURE MODES – ECCENTRIC LOADING – CIRCULAR COLUMNS
Crushing of concrete and rupture of GFRP
Failure modes of GFRP in CGFE
87
FAILURE MODES – ECCENTRIC LOADING – CIRCULAR COLUMNS
Failure of CFRP due to rupture of CFRP
Failure of CCFE
88
FAILURE MODES – ECCENTRIC LOADING – CIRCULAR COLUMNS
89
Rupture of CFRP in CCFE
Failure pattern of CCFE
TEST RESULTS - ECCENTRIC LOADINGSQUARE COLUMN 350 300 250 200 ) N (k d a o L
STE 150
SGFE
100
SCFE
50 0 0
2
4 6 Deflection (mm)
8
10
Variation in Load Deflection for STE, SGFE & SCFE Column Load(kN) STE SGFE SCFE
150 200 300
Increment in % with respect to STE 33.33 100
Increment in % with respect to SGFE 50
90
TEST RESULTS - ECCENTRIC LOADINGSQUARE COLUMN
2)
30.000
20.000
/m (N s tre S
CTE
10.000
CGFE
S
CCFE
S S
0.000 0
0.002
0.004
0.006
0.008
0.01
Strain
Variation Stress-Strain for STE, SGFE & SCFE Column Load(kN) STE SGFE SCFE
15 20 30
Increment in % with respect to STE 33.33 100
Increment in % with respect to SGFE 50
91
35.000
35.000
30.000
30.000
25.000
25.000
2)
2)
TEST RESULTS - ECCENTRIC LOADINGSQUARE COLUMN
20.000
20.000
CTE
15.000
CTE
10.000
CGFE
5.000
CCFE
/m (N s tre S
/m (N s tre S
15.000
CGFE
10.000
CCFE
5.000 0.000
0.000 0
0.0001
0.0002 0.0003 Strain
0.0004
0
0.0005
Variation in Stress-Strain for STE, SGFE & SCFE at 1/3rd height 35.000
0.00005
0.0001 0.00015 Strain
0.0002
0.00025
Variation in Stress-Strain for STE, SGFE & SCFE at 2/3rd height
30.000
2)
25.000 20.000
CTE
15.000
/m (N s tre S
CGFE CCFE
10.000 5.000 0.000 0
0.0001
0.0002 Strain
0.0003
0.0004
92
Variation in Stress-Strain Curve for STE, SGFE & SCFE at 1/2 height
FAILURE MODES – ECCENTRIC LOADING – SQUARE COLUMNS
Crack pattern of column along the line of load applied
Crack pattern in section of STE
93
FAILURE MODES – ECCENTRIC LOADING – SQUARE COLUMNS
Crack pattern along eccentric line for STE
Crack pattern for STE
94
FAILURE MODES – ECCENTRIC LOADING – SQUARE COLUMNS
Cracked section for SGFE
Rupture of GFRP from corner in SGFE
95
FAILURE MODES – ECCENTRIC LOADING – SQUARE COLUMNS
Cracked section and crushing of concrete for SGFE
Cracking of Concrete SGFE
96
FAILURE MODES – ECCENTRIC LOADING – SQUARE COLUMNS
Rupture of CFRP composites from corner for SCFE
Failure Pattern for SCFE
97
FAILURE MODES – ECCENTRIC LOADING – SQUARE COLUMNS
Cracking pattern on section of SCFE
Failure pattern for SCFE
98
COMPARISIONS AXIAL - ECCENTRIC LOADING Decrease in Load Carrying Capacity of Circular Column Column Unwrapped GFRP CFRP
Axial (kN) 145 230 310
Eccentric % Decrease w.r.t. Axial (kN) Load 120 20 200 9.09 250 19.35
Decrease in Load Carrying Capacity of Square Column Column
Axial (kN) Unwrapped 210 GFRP 330 CFRP 380
Eccentric (kN) 150 200 300
% Decrease w.r.t. Axial Load 28.57 39.39 18.42
99
AXIAL CYCLIC LOADED COLUMNS
100
TESTING PROCEDURE AXIAL CYCLIC LOADING Load
Load
Deformation
Deformation
Full cycle hysteresis loop
Half Cycle hysteresis Loop
Strain Controlled Approach. Load is applied in specific interval and corresponding displacement is measure while in this case displacement is having specific interval and corresponding load is measured. 101 Interval for displacement increment is 1 mm
TESTING PROCEDURE AXIAL CYCLIC LOADING Restoring Force ΔL Vertical Displacement
ΔL
A
D
Height of Column
O
E G Vertical Displacement
102
TEST RESULTS– CYCLIC LOADING – CIRCULAR COLUMNS Results as mentioned are average of column1 & Column2
CIRCULAR
SQUARE COLUMNS
COLUMNS UN -WRAPPED
UN-WRAPPED
GFRP WRAPPED
GFRP WRAPPED
CFRP WRAPPED
CFRP WRAPPED 103
TEST RESULTS– CYCLIC LOADING – CIRCULAR COLUMNS 160 CYCLE-1
140
CYCLE-2
120
CYCLE-3
100
CYCLE-4
80
CYCLE-5
) N (k d a o L
CYCLE-6
60 CYCLE-7
40
CYCLE-8 CYCLE-9
20 0 0
2
4 6 Deflection (mm)
8
10
104
Variation of Load Deflection Relationship for Unwrapped Circular Column (CTAC)
TEST RESULTS– CYCLIC LOADING – CIRCULAR COLUMNS 300 CYCLE-1 250
CYCLE-2 CYCLE-3
200
CYCLE-4 CYCLE-5
150
) N (k d a o L
CYCLE-6 CYCLE-7
100
CYCLE-8 CYCLE-9
50
CYCLE-10 CYCLE-11
0 0
2
4
6 8 Deflection (mm)
10
12
CYCLE-12
105
Variation of Load Deflection Relationship for GFRP wrapped Circular Column (CGFAC)
TEST RESULTS– CYCLIC LOADING – CIRCULAR COLUMNS 350 CYCLE-1
300
CYCLE-2 CYCLE-3
250
CYCLE-4 CYCLE-5 CYCLE-6
200
) N (k d a o L
CYCLE-7 CYCLE-8
150
CYCLE-9 CYCLE-10
100
CYCLE-11 CYCLE-12
50
CYCLE-13 CYCLE-14
0 0
2
4
6 8 Deflection (mm)
10
12
14
106
Variation of Load Deflection Relationship for CFRP wrapped Circular Column (CCFAC)
TEST RESULTS– CYCLIC LOADING – CIRCULAR COLUMNS 0.0007
0.0012
CYCLE-1
CYCLE-1
0.0006 CYCLE-2
0.0005
CYCLE-2
0.001
CYCLE-3
CYCLE-3
CYCLE-4
0.0008 0.0004
CYCLE-5
in tra S
CYCLE-4
CYCLE-6
0.0003
train S
CYCLE-5
0.0006
CYCLE-7 CYCLE-8
CYCLE-6
0.0002
0.0004
CYCLE-9 CYCLE-10
CYCLE-7
0.0001
CYCLE-11
0.0002 CYCLE-8
0 1
2
3
4 5 6 Deflection (mm)
7
8
9
CYCLE-13
0
CYCLE-9
10
0
1
2
3
4
5
6 7 8 9 Deflection (mm)
Unwrapped 0.0012
CYCLE-1
10
11
12
13
14
15
CYCLE-14
GFRP Wrapped
CYCLE-2 0.001
CYCLE-3 CYCLE-4 CYCLE-5
0.0008
CYCLE-6 CYCLE-7
train S
0
CYCLE-12
0.0006
CYCLE-8 CYCLE-9
0.0004
CYCLE-10 CYCLE-11
0.0002
CYCLE-12 CYCLE-13
0 0
1
2
3
4
5
6 7 8 9 Deflection (mm)
10
11
12
13
14
15
CYCLE-14
CFRP Wrapped 107
Strain Variation at 1/3rd Height of Columns
TEST RESULTS– CYCLIC LOADING – CIRCULAR COLUMNS 0.0004
0.0004 CYCLE-1 CYCLE-2
0.0003 CYCLE-3
0.00025 CYCLE-4
in tra S
0.0002 CYCLE-5
0.00015 CYCLE-6
0.0001
CYCLE-7
CYCLE-1
0.00035
CYCLE-2 CYCLE-3
0.0003
CYCLE-4 CYCLE-5
0.00025
CYCLE-6
0.0002
CYCLE-7
train S
0.00035
CYCLE-8
0.00015
CYCLE-9 CYCLE-10
0.0001
CYCLE-11
0.00005 0 0
1
2
3
4 5 6 Deflection (mm)
7
Unwrapped
8
9
10
CYCLE-8
0.00005
CYCLE-9
0
CYCLE-12 CYCLE-13
0
4
8 Deflection (mm)
0.0009 CYCLE-1
0.0008
12
16
CYCLE-14
GFRP Wrapped
CYCLE-2
0.0007
CYCLE-3
0.0006
CYCLE-4
train S
CYCLE-5 0.0005
CYCLE-6
0.0004
CYCLE-7 CYCLE-8
0.0003
CYCLE-9
0.0002
CYCLE-10 CYCLE-11
0.0001
CYCLE-12 CYCLE-13
0 0
1
2
3
4
5
6 7 8 9 Deflection (mm)
10 11 12 13 14
15
CYCLE-14
CFRP Wrapped 108
Strain Variation at 2/3rd Height of Columns
TEST RESULTS– CYCLIC LOADING – CIRCULAR COLUMNS 0.0006
0.0008
CYCLE-1
0.0005
CYCLE-1
0.0007
CYCLE-2
in tra S
0.0001
CYCLE-5 CYCLE-6
0.0004
CYCLE-7
train S
CYCLE-5
0.0002
CYCLE-4
0.0005
CYCLE-4
0.0003
CYCLE-3
0.0006
CYCLE-3
0.0004
CYCLE-2
CYCLE-6
0.0003
CYCLE-7
0.0002
CYCLE-8
0.0001
CYCLE-9
0
CYCLE-8 CYCLE-9 CYCLE-10 CYCLE-11
0 0
1
2
3
4 5 6 Deflection (mm)
7
Unwrapped
8
9
10
CYCLE-12 CYCLE-13
0
1
2
3
4
5
6 7 8 9 Deflection (mm)
0.0009 CYCLE-1
0.0008
10
11
12
13
14
15
CYCLE-14
GFRP Wrapped
CYCLE-2
0.0007
CYCLE-3
0.0006
CYCLE-4
train S
CYCLE-5 0.0005
CYCLE-6
0.0004
CYCLE-7 CYCLE-8
0.0003
CYCLE-9
0.0002
CYCLE-10 CYCLE-11
0.0001
CYCLE-12 CYCLE-13
0 0
1
2
3
4
5
6 7 8 9 10 11 12 13 14 15 Deflection (mm)
CYCLE-14
CFRP Wrapped 109
Strain Variation at 1/2 Height of Columns
FAILURE MODES– CYCLIC LOADING – CIRCULAR COLUMNS
Failure modes for CTAC
Buckling of Reinforcement bars for CTAC
110
FAILURE MODES– CYCLIC LOADING – CIRCULAR COLUMNS
Failure modes for CTAC
Cracking Pattern for CTAC
111
FAILURE MODES– CYCLIC LOADING – CIRCULAR COLUMNS
Rupture of GFRP for CGFAC
Failure of CGFAC
112
FAILURE MODES– CYCLIC LOADING – CIRCULAR COLUMNS
Failure Pattern for CGFAC
Cracking Pattern for CGFAC 113
FAILURE MODES– CYCLIC LOADING – CIRCULAR COLUMNS
Fracture of CFRP
Buckling of Reinforcement
114
TEST RESULTS– CYCLIC LOADING – SQUARE COLUMNS 300 CYCLE-1
250
CYCLE-2 CYCLE-3
200
CYCLE-4 CYCLE-5
150
) N (k d a o L
CYCLE-6 CYCLE-7
100
CYCLE-8 CYCLE-9
50
CYCLE-10 CYCLE-11
0 0
2
4
6 8 Deflection (mm)
10
12
CYCLE-12
Variation of Load Deflection for unwrapped Square Column (STAC)
115
TEST RESULTS– CYCLIC LOADING – SQUARE COLUMNS 350 CYCLE-1
300
CYCLE-2 CYCLE-3
250
CYCLE-4
200
CYCLE-5
) N (k oad L
Series6
150
CYCLE-7 CYCLE-8
100
CYCLE-9 CYCLE-10
50
CYCLE-11
0
CYCLE-12
0
2
4
6 8 Deflection (mm)
10
12
CYCLE-13
116
Variation of Load Deflection for GFRP wrapped Square Column (SGFAC)
TEST RESULTS– CYCLIC LOADING – SQUARE COLUMNS 400 CYCLE-1
350
CYCLE-2 CYCLE-3
300
CYCLE-4 CYCLE-5
250
CYCLE-6
200
CYCLE-7
) N (k d a o L
CYCLE-8
150
CYCLE-9 CYCLE-10
100
CYCLE-11
50
CYCLE-12 CYCLE-13
0 0
2
4
6 8 10 Deflection (mm)
12
14
CYCLE-14
117
Variation of Load Deflection for CFRP wrapped Square Column (SCFAC)
TEST RESULTS– CYCLIC LOADING – SQUARE COLUMNS 0.0008
0.0012 CYCLE-1
CYCLE-1
0.0007
CYCLE-2 0.0006
CYCLE-2
0.001
CYCLE-3
CYCLE-3
CYCLE-4
0.0008
CYCLE-4
0.0005
CYCLE-5
CYCLE-5
CYCLE-6
CYCLE-6
0.0006
CYCLE-7
0.0003
CYCLE-7
in tra S
train S
0.0004
CYCLE-8
CYCLE-8
CYCLE-9
0.0004
CYCLE-10
CYCLE-9
0.0002
CYCLE-10 0.0001
CYCLE-11
0.0002
CYCLE-12
CYCLE-11
CYCLE-13
CYCLE-12
0 2
4
6 8 Deflection (mm)
Unwrapped
10
0
12
2
4
6 8 Deflection (mm)
0.0016 CYCLE-1
0.0014
10
12
GFRP Wrapped
CYCLE-2 CYCLE-3
0.0012
CYCLE-4 CYCLE-5
0.001
CYCLE-6 CYCLE-7
0.0008
train S
0
0
CYCLE-8
0.0006
CYCLE-9 CYCLE-10
0.0004
CYCLE-11 CYCLE-12
0.0002
CYCLE-13 CYCLE-15
0 0
4
8 Deflection (mm)
12
16
CYCLE-14
CFRP Wrapped 118
Strain Variation at 1/3rd Height of Columns
TEST RESULTS– CYCLIC LOADING – SQUARE COLUMNS 0.0004
0.0004
CYCLE-1
0.00035
CYCLE-3
0.0003
CYCLE-2 CYCLE-3
0.0003
CYCLE-4 0.00025
CYCLE-1
0.00035
CYCLE-2
CYCLE-4
CYCLE-5
CYCLE-5
0.00025
CYCLE-6
CYCLE-6
in tra S
0.0002
0.0002
CYCLE-7
in tra S
CYCLE-7
0.00015
CYCLE-8
CYCLE-8
0.00015
CYCLE-9
CYCLE-9
0.0001
CYCLE-11
CYCLE-11
0.00005
CYCLE-10
0.0001
CYCLE-10
CYCLE-12
0.00005
CYCLE-12
CYCLE-13
0
0
2
4
6 8 Deflection (mm)
Unwrapped
10
12
0
0.0008
2
4
6 8 Deflection (mm)
CYCLE-1 CYCLE-2
0.0007
10
12
GFRP Wrapped
CYCLE-3
0.0006
CYCLE-4 CYCLE-5
0.0005
CYCLE-6 CYCLE-7
0.0004
train S
0
CYCLE-8 CYCLE-9
0.0003
CYCLE-10
0.0002
CYCLE-11 CYCLE-12
0.0001
CYCLE-13 CYCLE-15
0 0
4
8 Deflection (mm)
12
16
CYCLE-14
CFRP Wrapped 119
Strain Variation at 2/3rd Height of Columns
TEST RESULTS– CYCLIC LOADING – SQUARE COLUMNS 0.0006
0.0008
CYCLE-1 0.0005
CYCLE-1
0.0007
CYCLE-2 CYCLE-3
CYCLE-2 CYCLE-3
0.0006
CYCLE-4
CYCLE-4
0.0004
CYCLE-5
CYCLE-6
CYCLE-6
0.0004
CYCLE-7 CYCLE-8
0.0002
CYCLE-8
0.0003
CYCLE-9
CYCLE-9 CYCLE-10
0.0002
CYCLE-10 0.0001
CYCLE-7
in tra S
train S
0.0003
CYCLE-5
0.0005
CYCLE-11
CYCLE-11 CYCLE-12
0.0001
CYCLE-12
CYCLE-13
0
0
2
4
6 8 Deflection (mm)
Unwrapped
10
0
12
2
4
6 8 Deflection (mm)
0.0012 CYCLE-1 CYCLE-2
0.001
10
12
GFRP Wrapped
CYCLE-3 CYCLE-4
0.0008
CYCLE-5 CYCLE-6 CYCLE-7
0.0006
in tra S
0
CYCLE-8 CYCLE-9
0.0004
CYCLE-10 CYCLE-11
0.0002
CYCLE-12 CYCLE-13 CYCLE-15
0 0
4
8 Deflection (mm)
12
16
CYCLE-14
CFRP Wrapped 120
Strain Variation at 1/2 Height of Columns
FAILURE MODES– CYCLIC LOADING – SQUARE COLUMNS
Failure modes of STAE
Failure modes of STAE
121
FAILURE MODES– CYCLIC LOADING – SQUARE COLUMNS
Failure modes for SGFAC
Cracking Pattern of SGFAC
122
FAILURE MODES– CYCLIC LOADING – SQUARE COLUMNS
Failure modes for SCFAC
Failure modes for SCFAC
123
EVALUATION OF PARAMETERS
Following parameters are evaluated for Cyclic Loaded Columns 1.Ductility 2.Energy Dissipation 3.Specific Damping Capacity 4.Stiffness Degradation
124
DUCTILITY EVALUATION •Area under load deflection curve is correlated as the ductility of RC columns. •Area under load deflection curve is measured in kN mm which directly gives measurement of energy for RC columns •Area of load deflection curve for all three load cases is measured with data interpretation software “Origin 8.0”. 125
DUCTILITY EVALUATION
126
Inserting Data in Origin-8.0
DUCTILITY EVALUATION
127
Integrating Curve to find area
DUCTILITY EVALUATION
Estimation of Area under Load-deflection curve using Origin 8.0 Software
128
DUCTILITY EVALUATION Energy for Axially loaded Circular columns Type of
Energy
Increase in Energy with CTA (%)
Column
(kN-mm)
CTA
583
0
CGFA
680
16.45
CCFA
1493
155.69
Energy for Axially loaded Square columns Type of
Energy
Increase in Energy with
Column
(kN-mm)
STA (%)
STA
895.425
0
SGFA
1198.775
34
SCFA
1848.75
106
129
DUCTILITY EVALUATION Strain Energy for Eccentrically Loaded Circular Columns Type of
Energy
Increase in Energy with CTE (%)
Column
(kN-mm)
CTE
493.275
0
CGFE
695.125
40.92
CCFE
1051.5
113.16
Strain Energy for Eccentrically Loaded Square columns Type of
Energy
Increase in Energy with STE (%)
Column
(kN-mm)
STE
673.875
0
SGFE
758.125
12.50
SCFE
1413.25
109.71 130
ENERGY DISSIPATION & DUCTILITY EVALUATION – CYCLIC LOADING Restoring Force
Eso µo ED
Deformation
ED/Eso is called as Specific Damping Capacity (SDC) Energy Dissipated ED at cycle of harmonic vibration evaluated from experiments 131
ENERGY DISSIPATION & DUCTILITY EVALUATION – CYCLIC LOADING Variation in Parameters at successive cycle for CTAC Cycle
Deflection (mm)
Load (kN)
Energy Dissipated (kN-mm)
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
27.5 37.5 50 65 83.75 102.5 122.5 130 145
13.075 13.75 26.125 43.375 50.875 80.625 91.625 218.25 95
Energy SDC Applied (kN-mm) 13.75 24.375 45 71.5 100.875 164 214.375 273 253.75
0.95 0.56 0.58 0.61 0.5 0.49 0.43 0.8 0.37
Stiffness (kN/mm)
27.50 18.75 16.67 16.25 16.75 17.08 17.50 16.25 16.11
132
ENERGY DISSIPATION & DUCTILITY EVALUATION – CYCLIC LOADING
Variation in Parameters at successive cycle for CGFAC Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13
Deflection (mm)
Load (kN)
1 2 3 4 5 6 7 8 9 10 11 12 13
30 45 63.75 83.75 100 108.75 131.25 148.75 171.25 187.5 212.5 240 257.5
Energy Dissipated (kN-mm) 9.125 12.375 21.375 39.55 53.3125 59.5 87.865 98.56 132.93 181.75 197.81 229.5 179.93
Energy Dissipated (kN-mm) 15 33.75 76.5 129.8125 185 217.5 301.875 371.875 479.5 562.5 648.125 780 901.25
SDC
Stiffness (kN/mm)
0.6083 0.3667 0.2794 0.3047 0.2882 0.2736 0.2911 0.265 0.2772 0.3231 0.3052 0.2942 0.1996
30.00 22.50 21.25 20.94 20.00 18.13 18.75 18.59 19.03 18.75 19.32 20.00 19.81 133
ENERGY DISSIPATION & DUCTILITY EVALUATION – CYCLIC LOADING Variation in Parameters at successive cycle for CCFAC Cycle Deflection Load (kN) Energy Energy SDC Stiffness (mm) Dissipated Applied (kN/mm) (kN-mm) (kN-mm) 1 1 36.25 4.875 18.125 0.27 36.25 2 2 53.75 20.375 45.68 0.45 26.88 3 3 75 29.5 90 0.33 25.00 4 4 96.25 52.1875 149.1875 0.35 24.06 5 5 110 82.375 203.5 0.4 22.00 6 6 123.75 91.75 247.5 0.37 20.63 7 7 140 122.675 322 0.38 20.00 8 8 160 128.625 400 0.32 20.00 9 9 178.75 164 499.8 0.33 19.86 10 10 192.5 224.31 577.5 0.39 19.25 11 11 215 233.25 645 0.36 19.55 12 12 240 270.75 720 0.38 20.00 13 13 267.5 194 829.25 0.23 20.58 134
ENERGY DISSIPATION & DUCTILITY EVALUATION – CYCLIC LOADING 300 250
-m ) m
200 CTAC
150 N (k y rg e n E
CGFAC 100
CCFAC
50 0 0
1
2
3
4
5
6
7
8
9
10 11 12 13 14
Cycle
Energy Dissipated for CTAC, CGFAC & CCFAC 135
SPECIFIC DAMPING CAPACITY – CYCLIC LOADING 1 0.9 0.8
CTAC
0.7
CGFAC
C D S
0.6
CCFAC
0.5 0.4 0.3 0.2 0.1 0 0
2
4
6
Cycle
8
10
12
Variation in SDC for CTAC, CGFAC & CCFAC
14
136
STIFFNESS DEGRADATION – CYCLIC LOADING 40 35
CTAC CGFAC
-k /m N
25
ts S ifn e
30
20
CCFAC
15 10 0
2
4
6
Cycle
8
10
12
14
Variation in Stiffness for CTAC, CGFAC & CCFAC 137
ENERGY DISSIPATION & DUCTILITY EVALUATION – CYCLIC LOADING Variation in Parameters at successive cycle for STAC Cycle Deflection (mm) 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
Load (kN)
Energy Dissipated (kN-mm)
25 43.75 56.25 66.25 78.75 95 115 132.5 158.75 185 212.5 235
11.25 21.5 39.1875 47.81 59.31 77.25 99.31 125.36 153.5 214.87 258.37 295.25
Energy Applied SDC Stiffness (kN-mm) (kN/mm) 12.5 28.43 53.43 66.25 98.43 137.75 189.75 251.75 349.25 444 595 669.75
0.9 0.76 0.73 0.72 0.6 0.56 0.52 0.5 0.44 0.48 0.43 0.44
25.00 21.88 18.75 16.56 15.75 15.83 16.43 16.56 17.64 18.50 19.32 19.58 138
ENERGY DISSIPATION & DUCTILITY EVALUATION – CYCLIC LOADING Variation in Parameters at successive cycle for SGFAC Cycle
Deflection (mm)
Load (kN)
1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13
30 50 70 90 115 150 165 190 215 225 250 260 310
Energy Energy Applied Dissipated (kN(kN-mm) mm) 6.5 15 19 45 25.625 87.5 51.75 144 65.25 212.75 125 322.5 136.5 396 185.425 532 209 623.5 235.25 697.5 203.5 812.5 323.625 884 334 2165
SDC
Stiffness (kN/mm)
0.43 0.42 0.29 0.36 0.31 0.39 0.34 0.35 0.34 0.34 0.25 0.37 0.15
30.00 25.00 23.33 22.50 23.00 25.00 23.57 23.75 23.89 22.50 22.73 21.67 23.85 139
ENERGY DISSIPATION & DUCTILITY EVALUATION – CYCLIC LOADING Variation in Parameters at successive cycle for SCFAC Cycle
Deflection (mm)
Load (kN)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
35 53.75 75 105 130 152.5 188.75 210 227.5 252.5 272.5 295 320 325 360
Energy Dissipation Energy Applied SDC Stiffness (kN-mm) (kN-mm) (kN/mm) 4.75 16.75 39.18 37.3125 65.625 126.875 161.3125 128.875 211.875 203.6785 251.8015 376.25 416.125 433.375 368.25
17.75 48.375 93.75 168 240.5 327.875 453 588 659.75 795.375 885.625 1003 1136 942.5 1080
0.27 0.35 0.42 0.22 0.27 0.39 0.36 0.22 0.32 0.26 0.28 0.38 0.37 0.46 0.34
35.00 26.88 25.00 26.25 26.00 25.42 26.96 26.25 25.28 25.25 24.77 24.58 24.62 23.21 24.00
140
ENERGY DISSIPATION & DUCTILITY EVALUATION – CYCLIC LOADING 500 450 400
N (k y rg e n E
-m ) m
350 300 250
STAC
200
SGFAC
150
SCFAC
100 50 0 0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
Cycle
Energy Dissipated for STAC, SGFAC & SCFAC
141
SPECIFIC DAMPING CAPACITY – CYCLIC LOADING 1 0.9 0.8 0.7
C D S
0.6
STAC
0.5
SGFAC
0.4
SCFAC
0.3 0.2 0.1 0 0
5
10 Cycle
15
Variation in SDC for STAC, SGFAC & SCFAC
20
142
STIFFNESS DEGRADATION – CYCLIC LOADING 40 35
STA SGFAC
-k /m N
25
s e fn ti S
30
20
SCFAC
15 10 0
5
Cycle
10
15
Variation in Stiffness for STAC, SGFAC & SCFAC
143
ANALYTICAL WORK
144
ANALYSIS OF R.C. COLUMN • Analysis of R.C. Column is to be carried out by Confinement model given by Mander et al. • Compressive Strength of Short Column is given by following equations.
Pn = Pcn + Psn • Pcn = Load carried by the concrete. • Psn = Load carried by the steel reinforcement.
145
ANALYSIS OF R.C. COLUMN EVALUATION OF COMPRESSIVE LOAD OF FRC WRAPPED SQUARE COLUMN
P = Pc + Ps
Where, Pc = Load carried by the concrete. Ps = Load carried by the steel reinforcement.
Ps = fs ⋅ As Where, fs = Compressive stress in longitudinal reinforcement. As = Area of longitudinal reinforcement. 146
ANALYSIS OF R.C. COLUMN
fs = ε ⋅ E
Monotonic stress-strain curve
Where, Є= Strain in steel reinforcement. E = modulus of elasticity of steel.
147
ANALYSIS OF R.C. COLUMN
Pc = Pco + Pccj + Pccjs Where, Pco = Load carried by unconfined concrete area. Pccj = Load carried by the area of concrete confined by FRP jacket. Pccjs = Load carried by effective area of concrete confined by both FRP and Steel hoops.
Pco = fco ⋅ Acu
Where, fco = Compressive stress in unconfined concrete (cube strength of the concrete). Acu = Area of unconfined concrete
Pccj = fccj ⋅ Acj Where, fccj = Compressive stress in FRP jacket. Acj = Area of FRP jacket.
148
ANALYSIS OF R.C. COLUMN Pccjs = fccjs ⋅ Acjs Where, fccjs = Effective compressive stress in FRP jacket and steel hoops. Acjs = effective area of concrete confined by FRP and steel hoops.
Areas of confining regions are given by following equations.
Acu = Accj − Aej Acj
=
Acjs
Aej − Aes =
Aes
Where, Accj = Effective area of concrete confined by FRP jacket. Aej = Effective area of concrete effectively confined by FRP jacket. Aes = Effective area of concrete effectively confined by steel hoops.
149
ANALYSIS OF R.C. COLUMN Accj, Aej and Aes can be given by following expressions A ccj = t x ⋅ t y − A s − (4r 2 − ∏ r 2 ) 2
A ej = t x ⋅ t y −
A e, s
w jx + w jy 3
2
tan θ j − A s − (4r 2 − Π r 2 )
2 w s' s 1 − 0.5 = dx ⋅ dy − ∑ 6 dx
s' 1 − 0.5 dy
150
ANALYSIS OF R.C. COLUMN
151
ANALYSIS OF R.C. COLUMN The compressive strength of confined concrete, f’cc is given by f'cc = k c ⋅ f'c kc is the concrete strength enhancement factor
k c = α1 α 2 F1 F1 α1 = 1.25 1.8 1 + 7.94 − 1.6 − 1 f ' f ' c c 2 F f1 f1 α 2 = 1.4 − 0.6 − 0.8 1 + 1 F1 F1 f 'c
F1 and f1 are the maximum and minimum confining lateral stresses, respectively. 152
ANALYSIS OF R.C. COLUMN Lateral confining stresses induced by FRP jacket in the x- and y-directions f1, jy = ρ jy 0.005EP f1, jx = ρ jx 0.005EP
Ep is the elastic modulus of the FRP jacket The reinforcement ratios ρjx and ρjy are defined as ρ jx = 2
tj ty
ρ jy = 2
tj tx
tj is the nominal jacket thickness and tx and ty are the overall column cross-section 153
ANALYSIS OF R.C. COLUMN The lateral confining stresses induced by the steel hoops
f1,sx = ρ sx fsyh
f1,sy = ρ sy fsyh
The confinement reinforcement ratios ρsx and ρsy are defined as below
ρ sx = ρ sy =
A t, x sdy A t, y sdx
154
ANALYSIS OF R.C. COLUMN
155
ANALYSIS OF R.C. COLUMN Combined Effects due to both FRP and Steel hoop are summation of transverse stresses exerted by both FRP Jacket and Steel hoops as shown in below equation.
f1, x = f1,sx + f1, jx
f1, y = f1,sy + f1, jy
156
ANALYSIS OF R.C. COLUMN SQUARE SECTION 4 – 10 mm Dia bars
100 mm 6 mm @ 150 mm c/c 1000
mm
100 mm
CIRCULAR SECTION 8 – 6 mm Dia bars
100 mm
1000 mm
6 mm @ 150 mm c/c
157
ANALYSIS OF R.C. COLUMN Properties of Square Section tx :
100mm
ty :
100mm
Steel Grade For Longitudinal Reinforcement :
415N / mm2
Steel Grade For Transverse Reinforcement :
250N / mm2
Concrete Cover :
15mm
No of Layer of FRP :
1.5
Thickness of FRP : No of Longitudinal Bars :
1.27mm 4
Diameter of Longitudinal Bar :
10mm
Concrete Grade:
25N / mm2
EFRP :
20GPa
Diameter of Transverse Bar : Spacing s :
6mm 150mm
158
ANALYSIS OF R.C. COLUMN Properties of Circular Section Diameter Steel Grade For Longitudinal Reinforcement fy : Steel Grade For Transverse Reinforcement fsyh : Concrete Cover : No of Layer of FRP : Thickness of FRP tj: No of Longitudinal Bars : Diameter of Longitudinal Bar : Concrete Grade: EFRP : Diameter of Transverse Bar : Area of Steel : Area of Concrete : Spacing s : d:
100 415 250 15 1.5 1.27 8 6 25 45 6 226.19 7853.98 150 76
mm N/mm2 N/mm2 mm mm mm N/mm2 GPa mm mm2 mm2 mm 159
ANALYSIS OF R.C. COLUMN
Results Section
Type of Strengthening
Circular
Unwrapped GFRP
143.33 232.70
CFRP Unwrapped GFRP
301 199.97 282.082
CFRP
343.51
Square
Failure Load (kN)
160
ANALYSIS OF R.C. COLUMN 400 350 300
) N (k d a o L
250 200
EXPERIMENTAL
150
ANALYTICAL
100 50 0 CTA
CGFA
CCFA
STA
SGFA
SCFA
Comparison of Analytical & Experimental Results 161
PU-MU INTERACTION CURVE
PU-MU INTERACTION CURVE FOR FRP WRAPPED R.C. COLUMNS
An Attempt has been made by only two researchers in United States by , Bank Lawrance C. Mohamed H. Harajli
162
PU-MU INTERACTION CURVE EFFECT OF ECCENTRICITY ON CONFINED CONCRETE
Є1
1 Є2
2 3
fc
Є3
Confined Concrete Column with Strain Gradient 163
PU-MU INTERACTION CURVE CONSTRUCTION OF Pu-Mu INTERACTION DIAGRAM
ЄC d’ h/2
d
c
0.85 fy
a
Cs Cc
N.A.
h
Ts
b Єs
164
PU-MU INTERACTION CURVE Assumption In Pu-Mu Interaction Curve • The FRP confining effect applies to the compressive strength of concrete regardless to the extent of the compression zone. • As per above assumption P-M diagram can be constructed in same manner as for un strengthen column simply by replacing f’c by f’cc. Above assumption have limitation that it stats that compression zone is fully confined by FRP wrap while in real case FRP doesn’t encircle whole section.
165
PU-MU INTERACTION CURVE SQUARE SECTION
4 – 10 mm Dia bars
1 0 0 m m
6 mm @ 150 mm c/c 1000
mm
100 mm
166
PU-MU INTERACTION CURVE
STRENGTHENED COLUMN POINTS
Єs
c(mm)
Pu(kN)
Mu(kNm)
e(mm)
A
-
-
738.22
0
B
-
-
738.22
5.90
B1
0
90
438.52
12.16
B2
0.0011
70
324.98
12.57
C
0.00207
53.25
176.02
11.67
66.30
D
0.005
23.15
99.40
9.43
94.93
E
0.0314
15.18
0
5.54
-
0.01
167
PU-MU INTERACTION CURVE
UNWRAPPED COLUMN POINTS
Єs
c(mm)
Pu(kN)
Mu(kNm)
e(mm)
A
-
-
336.20
0
B
-
-
336.20
2.68
B1
0
90
136054.8
7.25
B2
0.0011
70
89728.43
6.99
C
0.00207
53.25
8399.49
5.61
66.30
D
0.005
23.15
3620.75
5.39
94.93
E
0.0314
15.18
0
4.86
-
0.01
168
PU-MU INTERACTION CURVE 800
A
700
600
500
400
) (kN u P
B
300
A
B
C
200
100
D C
0
0
5
10
15
M u (kNm)
D
E
169
CONCLUDING REMARKS
Benefits of FRP Wrapping Wrapping of fibers are in hoop direction performed very effectively during application of axial load. Overlap of 150 mm provided for circular and square columns proved sufficient. No de-bonding has been observed due to overlap. It also helped to utilize entire tensile strength of fibers and prevented premature failure of wrapped columns. 170
CONCLUDING REMARKS Test Setup Testing setup specially prepared for experiment has been able to function well during axial, eccentric and cyclic loading application. No movement during application of load has been observed during experiment. Unwrapped Columns Axial load carrying capacity of the unwrapped column is higher compared to eccentrically loaded columns. No change in axial load carrying capacity has been observed during axial cyclic loading. Higher ductility in the columns have been observed more for axially loaded columns compared to eccentrically loaded columns.
171
CONCLUDING REMARKS GFRP Wrapped Columns GFRP enhances ductility and load carrying capacity of RC columns. Fibers in GFRP wrapped columns remain in a hoop direction and behave very efficiently during the application of load. Failures observed in wrapped columns are local failure only and the same can be repaired easily in real structures. For eccentrically loaded columns, very less cracking has been observed and failure is due to rupture of GFRP which make concrete in columns undamaged. CFRP Wrapped Columns CFRP wrapped columns behave better compared to unwrapped and GFRP wrapped columns respectively. CFRP enhances ductility, load carrying capacity and energy dissipation 172 of RC columns.
CONCLUDING REMARKS
Energy Dissipation Energy dissipation observed in CFRP wrapped columns is higher compared to other columns. Increase in energy dissipation shows that CFRP enhance the ductility in RC columns. Energy dissipation in GFRP wrapped column is less compared to CFRP wrapped columns and higher than unwrapped columns respectively. It is clear indication of increase in ductility of RC columns due to FRP composites
173
FUTURE SCOPE OF WORK Experimental work can be extended further by selecting different wrapping techniques of GFRP and CFRP materials Investigations on durability of FRP materials and FRP-reinforced concrete subject to environmental loadings of different types Mechanical durability is also a concern for FRP. Fatigue and impact behavior of FRP materials is required to be studied Fire resistance of FRP materials or FRP-reinforced concrete is required to be studied Further investigation of the physical and chemical behavior of the FRP-to-concrete interface is to be carried out Study of failure modes and ductility capacity for lateral load for compression members, is required for using FRP-reinforced concrete in high seismic zones To propose new confinement model from results of experimental work. Development of the confinement model for FRP reinforced concrete subjected to lateral load Study of long-term costs and/or savings associated with use of FRP materials compared to traditional materials
174
ACKNOWLEDGEMENT
This Project has been funded under research grant by Gujarat Council of Science & Technology (GUJCOST)
175
THANKS
176
RESULTS COMPARISION & CONCLUSION Why Circular Section is the Best
177