M3

  • Uploaded by: ambedkarbarigala
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View M3 as PDF for free.

More details

  • Words: 1,273
  • Pages: 10
Functions :Additional Problem Set 5(a) f ( x) = a 2 − x2 ⇒ a2 − x2 ≥ 0 x 2 ≤ a2 x2 ≤ a2 ⇒ x≤a −a ≤x≤ a 5(b)

1 3x + 2 ⇒ 3x + 2 ≠ 0 ⇒ 3 x ≠ −2 −2 ⇒x≠ 3  −2  ∴R −   3 f ( x) =

5(c).

f ( x) = x + 2 x − 1 ⇒ x ≥ 0 & 2x −1 ≥ 0 ⇒ x ≥ 0 & 2x ≥ 1 1 ⇒ x ≥ 0& x ≥ 2 1 1  ∴x ≥ ⇒ x∈  ,∞ 2 2 

6. a)

x x − 3x + 2 domain : f ( x) =

2

x 2 − 3x + 2 ≠ 0 x2 − 2x − x + 2 ≠ 0 x ( x − 2 ) − 1( x − 2 ) ≠ 0

( x − 2 ) ( x − 1) ≠ 0 x ≠ 2, x ≠ 1 ∴ R − { 1, 2} Range : let f ( x) = y

x x − 3x + 2 2 ⇒ y ( x − 3x + 2 ) = x ⇒y=

2

⇒ yx 2 − x ( 1 + 3 y ) + 2 y = 0 b 2 − 4ac ≥ 0 ⇒ 1 + 6 y + y2 ≥ 0 ⇒ y2 + 6 y + 9 − 9 +1 ≥ 0 ⇒ y2 + 6 y + 9 − 8 ≥ 0 ⇒ ( y + 3) − 8 ≥ 0 2

⇒ ( y + 3) ≥ 8 2

( y + 3) ≥ 8 ⇒ ( y + 3) ≥ 8 2



⇔ y + 3 ≥ 8, or , y + 3 ≤ − 8 ⇔ y ≥ 8 − 3, or , y ≤ − 8 − 3

(

∴ y ∈ −∞, − hence

(

)) (

(

f ( x) ∈ −∞, −

8 +3 ∪

(

)) (

8 +3 ∪

8 − 3, ∞

)

8 − 3, ∞

)

6.b)

3 2 − x2 domain : f ( x) =

⇒ 2 − x2 ≠ 0 ⇒ x2 ≠ 2 ⇒x≠± 2

{

∴ R − − 2, 2

}

Range : let f ( x) = y 3 2 − x2 ⇒ 2 y − yx 2 = 3 ⇒y=

⇒ yx 2 − 2 y + 3 = 0 b 2 − 4ac ≥ 0 ⇒ 4 y ( 2 y − 3) ≥ 0 3  ⇒ 8y  y −  ≥ 0 2  3  ⇒ y y −  ≥ 0 2  3  ⇒ ( y − 0)  y −  ≥ 0 2  3  ⇔ y ∈ ( −∞, 0] ∪  , ∞  2  but 3  f ( x) ∈ ( −∞, 0 ) ∪  , ∞  2 

6.c)

f ( x) = x − 3 domain : ∀x ∈ R Range : f ( x) ∈ [ 0, ∞ ) 6.d)

x 1 + x2 domain : f ( x) =

∀x ∈ R Range : let f ( x) = y x 1 + x2 ⇒ yx 2 + y − x = 0 ⇒y=

⇒ yx 2 − x + y = 0 b 2 − 4ac ≥ 0 ⇒ 1− 4 y2 ≥ 0 ⇒ 4 y2 ≤ 1 1 ⇒ y2 ≤ 4 1 ⇒ y≤ 2 1 1 ⇒− ≤ y≤ 2 2  1 1 ∴ y ∈ − ,   2 2 hence  1 1 f ( x) ∈ − ,   2 2

6.e)

f ( x ) = 16 − x 2 domain : 16 − x 2 ≥ 0 ⇒ x 2 ≤ 16 ⇒ x ≤4 ⇒ −4 ≤ x ≤ 4 ∴ x ∈ [ −4, 4] f ( x ) = 16 − x 2 range : let f ( x) = y ⇒ y = 16 − x 2 ⇒ y 2 = 16 − x2 ⇒ x 2 = 16 − y 2 ⇒ x = 16 − y 2 ⇔ 16 − y 2 ≥ 0 ⇒ y 2 ≤ 16 ⇒ y ≤4 ⇒ −4 ≤ y ≤ 4 ∴ y ∈ [ −4, 4] hence f ( x ) ∈ [ 0, 4]

6.f)

f ( x) =

1 x−5

domain : x −5 > 0 x>5 ⇒ x ∈ ( 5, ∞ ) Range : let f ( x) = y 1 x−5 1 ⇒ y2 = x −5 . 1 ⇒ 2 = x−5 y 1 ⇒ 2 +5= x y ⇒y=

1+ 5 y2 y2 ⇔ y≠0

⇒x=

⇒ y ∈ R − { 0} but f ( x) ∈ R +

7.a)

(2 x − 3)( x + 3) x+3 ⇒ x+3≠ 0 ⇒ x ≠ −3 ∴ Domain : f ( x) =

x ∈ R − { −3}

7.b)

f ( x) =

4 5 − cosθ

The function is defined for all real numbers. Domain: R (since cosine function is never equalto 5)

8.

f1 ( x) = 2 x + 1, 0 ≤ x < 2 f 2 ( x ) = x − 2, 2 ≤ x ≤ 5 a. for 0≤ x<2 ⇒ 0 ≤ 2x < 4 ⇒ 1 ≤ 2x +1 < 5

∴ f1 ( x) ∈ [ 1,5)

b. for 2≤ x≤5 ⇒ 0≤ x−2≤3 ∴ f 2 ( x) ∈ [ 0,3] hence range f ( x ) ∈ [ 1,5) ∪ [ 0,3]

∴ f ( x) ∈ [ 1, 5 ) 8.b. for

0≤ x≤2 F(x)=2x+1 ½=2x+1 X=-1/4

for 2≤ x≤5 f ( x) = x − 2 1 ⇒ x −2 = 2 1 ⇒ x = +2 2 5 ⇒x= 2 ⇒ x = 2.5 ∴ x = 2.5 8.c)

Domain : for x ∈ [ 0,5] for x=0 f (0) = 1 and for x=3 f (3) = 1 ∴0 → 1 3 →1 hence many − one

9.

f1 ( x) = x + 1,1 ≤ x < 2 f 2 ( x) = 2 x − 1, 2 ≤ x < 4 f 3 ( x ) = 3 x − 10, 4 ≤ x < 6 a. for 1≤ x < 2 ⇒ 2 ≤ x +1 < 3 ⇒ 2 ≤ f1 ( x) < 3

∴ f1 ( x) ∈ [ 2,3)

b. for 2≤ x<4 ⇒ 4 ≤ 2x < 8 ⇒ 3 ≤ 2x −1 < 7 ⇒ 3 ≤ f 2 ( x) < 7

∴ f 2 ( x) ∈ [ 3, 7 )

c. for 4≤ x<6 ⇒ 12 ≤ 3 x < 18 ⇒ 2 ≤ 33 x − 10 < 8 ⇒ 2 ≤ f3 ( x) < 8

∴ f 3 ( x) ∈ [ 2,8 )

hence range : f ( x ) = f1 ( x) ∪ f 2 ( x) ∪ f3 ( x) f ( x ) ∈ [ 2,3 ) ∪ [ 3, 7 ) ∪ [ 2,8 ) f ( x ) ∈ [ 2,8 ) b.

f (4) = 3 × 4 − 10 f (4) = 2 c.

domain : for x ∈ [ 1, 6 ) for x =1 f ( x) = 2 and for x=4 f ( x) = 2 ∴1 → 2 4→2 hence many − one

Related Documents

M3
June 2020 31
M3
May 2020 31
M3
December 2019 48
M3
April 2020 25
M3
November 2019 48
M3
October 2019 54

More Documents from "Roman Targosz"

M3
June 2020 31