M2413 Review1 Fall04 (1).doc

  • Uploaded by: Jhemson ELis
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View M2413 Review1 Fall04 (1).doc as PDF for free.

More details

  • Words: 2,465
  • Pages: 11
MATH 2413 CALCULUS I Review for test 1, Fall 2004

Date of test

Wednesday, Sept 22 to Monday, Sept 27

Material covered

Chapter 1, sections 1 through 6 Chapter 2, sections 1 through 5

Allowable materials

Calculator (no TI-89 or 92)

Sample problems 1.

The graph of f is drawn below. Sketch the graph of g  x    f  x  2  3 2 1 -3

-2

-1

1

2

3

-1 -2 -3

2.

2 If f  x    x  2 x  1 , find f  3

3.

Write a formula for a linear function f with slope 1.4, passing through the point  1,3.3

4.

Write a formula for the linear function whose graph is shown: f

          















    

5.

The graph of f below can be obtained by transformations of the graph of g  x   x . Find a formula for f  x  .       















 

Page 1 of 11

MATH 2413 CALCULUS I Review for test 1, Fall 2004 6.

Evaluate f  1 based on the graph of f below   













  

7.

Evaluate the following based on the graphs of f and g below



f



a.



f + g   0

b.

 fg   4 

c.

g o f  1

d.

draw a graph of f  g

    







 







g



8.

Determine whether the relation defined by the graph is a function a.

9.

b.

Federal income tax is calculated an individual’s annual income. Tax for an annual income of up to $63,550 is given by the piecewise function below, where T and x are both in dollars. Use this function to calculate the tax for the incomes given.  .10 x  T  x    600 + .15  x  6000  3637.50 + .27  x  26, 250  

0  x  6000 6000  x  26, 250 26, 250  x  63,550

Page 2 of 11

MATH 2413 CALCULUS I Review for test 1, Fall 2004

10.

a.

An annual income of $5200

b.

An annual income of $22,500

Determine whether the graph represents an odd function, an even function, or neither. a.

11.

b.

Refer to the graph of f below: a.

What is the domain of f?

b.

Approximate the zeros of f.

c.

Over what intervals is f increasing? decreasing?

-2

12.

-1

1

2

3

Complete the table if f is an even function x f(x)

13.

c.

-2 5

-1 3

0 2

1

2

Complete the graph of f below if f is an odd function         

    

 

Page 3 of 11

MATH 2413 CALCULUS I Review for test 1, Fall 2004 14.

Find the inverse of the function f ( x)  x + 1

15.

Sketch the graph of the inverse of the function below, on the same grid:     

 













   

16.

17.

18.

For each of the following pairs of functions, state whether they are inverses of each other. a.

f  x 

x +1 , g  x   2x 1 2

b.

f  x 

x 1 , g  x   2  x + 1 2

Give a numeric representation of f 1 x

-2

-1

0

1

2

f(x)

-10

-4

2

3

5

Determine whether an inverse exists for the function whose graph is drawn. a.

19.

b.

Find a function of the form f  x   Ca that fits the data exactly x

a.

x f(x)

0 2

1 6

2 18

3 54

4 162

b. Page 4 of 11

MATH 2413 CALCULUS I Review for test 1, Fall 2004

x f(x) 20.

0 8

1 4

2 2

3 1

4 1/2

State that the function is odd, even, or neither: a.

f  x  2x5  1

c.

h x   2 x 3  x

b.

g  x  2x 2 + 5

d.

m  x   x2 + 2

x

21.

22.

1 Sketch a graph of the function f  x   4   . Clearly label scale on axes, and indicate  3 intercepts, if any. State the domain a.

f  x   log 6  2 x  1

c.

h  x  x  3

b.

g  x  ex

d.

m  x 

2

1

x 1 x+2

23. The table gives Revenue for a tire company each year from 1990 to 1995.

Year Revenue ($m) a. b.

c. 24.

1990 25.6

1991 28.3

1992 31.9

1993 34.8

1994 37.1

1995 40.5

Make a scatter plot of the data. Find the regression line. You may use a calculator algorithm or come up with an approximation by hand. Explain what you did. Draw the regression line on your scatter plot.

Match each of the graphs with a function from the list

I

II

III

IV

Page 5 of 11

MATH 2413 CALCULUS I Review for test 1, Fall 2004

25.

26.

27.

a.

f  x   ax 3 + bx 2 + cx + d

c.

h  x  ax, a > 1

b.

g  x   log a x

d.

m  x  ax, a  1

Evaluate the logarithms. Approximate with a calculator if necessary. a.

ln e 7

c.

log 3 27

b.

 1  log    1000 

d.

ln15

e.

log 3 6

Write as a single logarithm and simplify. Do not evaluate with a calculator. a.

2 ln 3 + ln 4  ln 6

b.

log12  2 log 2  log 3

29.

e

2ln  x 1

b.

log  10 x 102 

Solve the equations. Give a simplified answer and a decimal approximation for each. a.

e 2 x 1  5

c.

5e x +1  100

b.

33 p1  25

d.

ln x  4

Krypton-85 is a radioactive isotope of Krypton, with a half-life of 10 years. a.

b.

30.

ln  x + 1 + ln  x  1  2 ln x

Simplify the expression a.

28.

c.

If 12 grams of Krypton-85 leak into a laboratory, give an equation for the amount of Krypton that will be present after t years. How much will be present after 25 years?

The estimated population of the city of Austin is given by the equation P  650, 000e.07 t where t is the number of years from now. a.

What will the population be in 10 years?

b.

How long will it take the population to reach 1 million? Page 6 of 11

MATH 2413 CALCULUS I Review for test 1, Fall 2004 31.

The height of an object t seconds after it is thrown into the air is described by the graph below.

Height (meters)

    









Time (seconds)

32.

a.

What is the average velocity for the first second after the ball is thrown? Draw the secant line whose slope is this average velocity.

b.

What is the instantaneous velocity one second after the ball is thrown? Draw the tangent line whose slope is this instantaneous velocity.

The temperature in degrees Fahrenheit in Austin at each hour of a given day in March is �t � described by the function F  t   56.6 + 18.2sin � p � where t is the number of hours past �12 � 10:00 AM. a.

What is the average rate of change of the temperature over the following timer intervals? i. from 11:00 AM and 2:00 PM? ii. from 11:00 AM to 12:00 noon

b.

What is the instantaneous rate of change at 11:00 AM

� 1 � 33. For the piecewise-defined function f  x   � 2  x � � x2 a. Sketch a graph of f b.

x0 0�x2 x �2

At what values of x is f discontinuous?

Page 7 of 11

MATH 2413 CALCULUS I Review for test 1, Fall 2004 34.

Evaluate the following limits if they exist, based on the graph of f drawn below.

3 2 1    

a.

b.

f. 35.









lim f  x 

c.

lim f  x 

lim x 2 f  x 

d.

lim f  x 

x � 2

x � 2 +

x� 2

e.

x� 0

Over what intervals is f continuous?

Evaluate the limits if they exist a.

lim

x2  4 x2

d.

b.

lim

x 1 x 1

e.

c.

4 x3  x lim x� � 3  2 x 3

x� 2

x� 1

f.

x 1 x2 + 1

lim+

x 4 x

g.

lim

lim

x 4x

h.

lim e  x

x� 4

x� 4

2 x3 + 1 lim x � � x 2  2

i.

j.

36.

lim � �2 + f  x  � �

x � 2 

x� �

2

x� �

lim

x � 0

2x x

lim sin x x� �

e x sin x and prove your result. Use the squeeze theorem to evaluate xlim � �

Page 8 of 11

MATH 2413 CALCULUS I Review for test 1, Fall 2004 ANSWERS:

Page 9 of 11

MATH 2413, CALCULUS I Review for test 1, Fall 2004

b. funct -1 1 2 -1 io -2 n -3 2 1

-4 -3 -2

2.

a. $520

3.

3

b.      no     i  n  v 14. e 2 1 f  x    x  1 r s , e x 1

11.

15.

a. [ 1,3]

c. 4

2



c. even

a. 5

3

   

d.     









   

8.

a. not a f u n ct

b. x  1 a n 16. d x2 a. yes c. 





 



19.

a. f  x

 







b. f  x



incre b. as no in 17. g:  1, 0-10  -4



 

20.

2

-1 0 & -2  2,3 18. a. d yes, e a

a. neit h e r b. eve n

 

 





b. odd

7.

1



a. neith f  x  2 x + 3 er f  1  2

0

b. e. m o y  2.97 x + 25.6 s n ln 6  1.63 d d ( ln 3 30. L d. 26. a. i ev 1.3 a. n e m ln 6 R n ill e b. 21. io g Time (seconds) 0 n 7 32. 6 c. o b. 5 4 a. n  x 2  1  6.15 3 ln  2  2 y i.  x  1 T e -3 -2 -1 1 2 3 4 5 6 7 3.6837 -1 I 27. ar -2 de -3 s gr a. 8 22. ee 1 31. 3 2  s a.  x  1 ) a. pe 1  12 x x >   r b. 2  m ho x2 et ur b. 28. er 24. � ii. s a. a. 4.3895 c. p 1 II de x   1 + ln 5  er  1.30 { x x �3} 2 gr se b. ee d. c b. IV s 1 �ln 25 o� { x x �2c.} p � + 1n� 1.31 pe 3 �ln 3 � I 23. 2  3x r d ho c. d. a. ur x  ln 20  1  2.00 III (ax 1 b.  8   & 25. d. 2 4 4.60 x  e  54.60 a. 2 c –7 29. 4 Time (seconds) ) d b. a. b. t 10 e –3  16.7  g K  t   12   m c. 2 r et 3 e b. er d. e 2.12 s 2.7 s g p 0 p r er 8 e a se r c 

e x i s t s

13.

5.

6.

-1

c. od

i n v e r s e

12.

b. f  x   1.4 x + 1.9 -2 $307 5 5 4. f  x   510. x 3

b. 0

4

-4

9.

– 4

3

n

Height (meters)

3

c r e a si n g :  0, 2 





Height (meters)

4

 

 



45

Revenue ($m)

io n

1.

40

35

30

25 1990

1991

1992

1993

1994

1995











MATH 2413, CALCULUS I Review for test 1, Fall 2004

h o u r

e. 4

j. z does e n f. o T [ 4, 2 ] ,  2, 2 t ,  2, 4] h 33. e e 35. a. x o a. is r 4 t e  ( m b.  o  does s         lim e x sin x  0 n  x �� ci  ot .  ll e  at xi i st b. o (j disc n u o ) m n p ti 36. di n  e x �e x sin x �e x sc u a o o n nt u d in s ui at lim  e x  0  lim e x ty x � � x �� x ) . = T 0 c. h –2 34. e d. r a. � e 2 f e. b. o +� 4 r f. c. e � does b n y g. o t 0 t h h. e e 0 x S is q i. t u –2 e d. e 0

Related Documents

Book Review1
November 2019 5
Benchmarking 1doc
June 2020 45
Homework.1doc
October 2019 76
The Defence Review1
October 2019 4
Mid Year Review1
April 2020 10

More Documents from ""

Appstatus (1).pdf
December 2019 9
26694.docx
November 2019 23
Cv Bce 2019 - Elis.docx
November 2019 19