LEMBAR KERJA SISWA KELAS 9 (5.1.1)
Tujuan : siswa dapat menemukan sifat-sifat bilangan berpangkat Waktu :15’ Lengkapilah ! Sifat 1 1. 32 x 34 = ( 3x3 ) x ( 3 x 3 x … x …. ) = 36 32 x 34 = 32+4 = 3…. 2. 25 x 23 = ( 2 x … x …. x … x …. ) x ( … x … x …. ) 25 x 23 = 2 … + …. = 2 …. 3. a3 x a4 = a … + … = a… Kesimpulan : am x an = a… + ….
Sifat 2
3x...x...x...x..... = 3… ....x..... 5 2 5-2 3 :3 =3 = 3….
1. 35 : 32 =
2. a7 : a4 = a7 - … = a…. Kesimpulan : am : an = a… - ….
Sifat 3 1. (32)4 = 32 x 32 x …. x …. = ( 3 x 3 ) x ( …. x … ) x ( … x … ) x ( … x … ) = 3… (32)4 = 32x4 = 3…. 2. (a3)2 = a3 x …. =(…x…x…)x(…x…x…) = a….. (a3)2 = a3x.. = a…. Kesimpulan (am)n = a …x ….
Sifat 4 1.
2 3 =
2.
a b =
3
=
2 x …. x ….. 3
23 3.... 4
= …. x ….x ….x ….
a ........ b ........
a Kesimpulan : b
n
=
a ........ b ........
LEMBAR KERJA SISWA 5.1.2
Tujuan : 1. siswa dapat memahami arti bilangan yang berpangkat negative atau Nol 2. Siswa dapat mengubah bilangan yang berpangkat negative menjadi bilangan yang berpangkat positif Waktu : 20’ Arti bilangan berpangkat negative Lengkapilah !
4 x...x... 1 = ..... ………… (1) 4 x....x....x....x.... 4 43 : 45 = 43 - …. = 4….. …………. (2) 1 Dari (1) dan (2) diperoleh = 4-2 2 4
1. 43 : 45 =
....x....x.... 1 = …………… (1) ....x.....x.....x.....x....x.... ............. a3 : a6 = a…. - …. = a….. ……………. (2) 1 Dari (1) dan (2) diperoleh a-3 = ..............
2. a3 : a6 =
Kesimpulan : a-m =
Arti bilangan berpangkat Nol
1 a.....
an : an = 1 ………. (1) n n n-n …. a :a =a =a ……….. (2) Dari (1) dan (2) dapat disimpulkan :
a0 = ….
LATIHAN Ubahlah menjadi bilangan berpangkat positif : 1. .3-4 = …. 2. (-9)-2 = ….. 1 3. 5 = ….. 6 16 4. 3 = …. 4 3 2 5. =… 3 LEMBAR KERJA SISWA 5.1.3 Tujuan : 1. Siswa dapat memahami hubungan antara bentuk akar suatu bilangan bulat dengan bilangan berpangkat pecahan 2. Siswa dapat mengubah bentuk akar suatu bilangan bulat menjadi bilangan berpangkat pecahan dan sebaliknya Waktu : 20’ Hubungan antara bentuk akar suatu bilangan bulat dengan bilangan berpangkat pecahan Coba ingat di kelas VII ! 1. a x a = …… ……… (1) 1
1
1
a2 x a2 = a2
.......
……... (2)
=a
a = a….
Dari (1) dan (2) diperoleh : 2.
3
3
a x
a
1 3
a x
a = a
1 3
x a x … Jadi
3. a
3
3 4
3
4
= a
a = a….
3 4
= a x …. x …. x ….. 3 ...... ...... ........ 4
= a
12 4
= a = a ....... Berarti Kesimpulan :
a
3 4
4
3
= a , jadi a
a
m n
=
n
3 4
=
4
a3
am
Mengubah bentuk akar suatu bilangan bulat menjadi bilangan berpangkat pecahan dan sebaliknya 1. Ubahlah ke bentuk akar : 1 4
a. 81 = ….
3 5
b. 32 = ……
2. Ubahlah menjadi bilangan berpangkat pecahan : a. 3 125
b.
5
256 5
c.
2
625 3