Lkpd Matriks 5.docx

  • Uploaded by: De'ieVa Hisbunasar
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Lkpd Matriks 5.docx as PDF for free.

More details

  • Words: 1,569
  • Pages: 4
Perkalian Dua Buah Matriks Ilustrasi : Ani dan Budi pergi ke KOPSIS ingin membeli buku dan pensil yang sama. Sebelum membeli mereka mencatat dulu yang mau mereka beli dalam suatu tabel sbb: Buku

Pensil

5

2

4

3

Ani Budi

Harga Buku

Rp. 2.000 Rp. 500

Pensil

Ani Budi

Uang yng harus dibayar Rp. ………………….. Rp. …………………..

Bila judul baris dan judul kolom dihapus kemudian dibatasi dengan tanda kurung, jadilah matriks. Hitunglah berapa uang yang harus dibayar Ani dan Budi masing-masing?

5  4

2  3  ..... x.....

 2.000   .................................................  ...............           500  ..... x.....  .................................................  ................ ..... x.....

Kalo dirumuskan menjadi

a  c

b  p   a. p  b.q       d  q   c. p  d .q 

Contoh : Hitunglah ! 1. 2.

3.

4.

5.

6.

7.

8.

4  5 7  6

6  3   4.3  6.(1)   .....       2   1  5.3  2.(1)   .....  3  2   ... . ...  ... . ...   .....        4  5   ... . ...  ... . ...   .....

 2   5  3 

7  ... . ...  ... . ...   .....      1   4     ... . ...  ... . ...    ..... 3 6    ... . ...  ... . ...   .....

 5   8  3   1  5 

4  3   .....       2  6   .....

9  .....   4     2     ..... 2 7    .....

  2 2    .....  3     6    .....  1    3 8  1    .....  3   2     7 5    .....  2  4   2   5  3  4  5   .....  1   4  7

5 1

1

a  c

b  p  d  r

q   a. p  b.r  s   c. p  d .r

a.q  b.s   c.q  d .s 

Contoh : Hitunglah !

5  7  3   4.7  5.2 4.(3)  5.(1)   ..... .....         6  2  1   (2).7  6.2 (2).( 3)  6.(1)   ..... .....  7   6  1  ... . ...  ... . ... ... . ...  ... . ...  ..... .....          4  4 3   ... . ...  ... . ... ... . ...  ... . ...  ..... .....  7 .....  ... . ...  ... . ... ... . ...  ... . ...   .....  2   5  1         ... . ...  ... . ... 11.   5 4  ... . ...  ... . ...    ..... ..... 3  2   3 6  .. . ...  ... . ...  ..... .....  ... . ...  ... . ...   5  4  3  1  ..... .....      12.   8  2  6  5   ..... ..... 7  3  ..... .....    4  8     ..... ..... 13.   1  2  5  3   5  4    ..... .....  2 5    ..... 2  ..... 4  5  3  4     14.  1  6  ..... ..... 7     1  3   5  ..... ..... .....     15.  7 4  1 3   ..... ..... .....   2  ..... ..... .....     1  2  hitunglah : 16. Diketahui matriks A    4  3  ..... ..... ..... .....  ..... .....      A.2  A. A   a.  ..... .....  ..... .....  ..... .....   ..... ..... ..... .....  ..... .....      A.3  A 2 . A   b.  ..... .....  ..... .....  ..... .....   4   2  3 10.   5 9.

Sifat-sifat Perkalian Dua Buah Matriks Diketahui matriks :

 2 A    3

1  4  ; B    5  1

Hitunglah! 1. 2. 3. 4. 5.

 ..... ..... ..... .....   .....     A.B    ..... .....  ..... .....   .....  ..... ..... ..... .....  .....     A.C    ..... .....  ..... .....  .....  ..... ..... ..... .....   .....     A.I    ..... .....  ..... .....   .....  ..... ..... ..... .....  .....     B.A    ..... .....  ..... .....  .....  ..... ..... ..... .....  .....     B.C    ..... .....  ..... .....  .....

.....  .....  .....  .....  .....  .....  .....  .....  .....  .....  2

2  3  ; C    3  2

 5 1  dan I   4 0

0  1

 ..... B.I    .....  ..... 7. C.A    .....  ..... 8. C.B    .....  ..... 9. C.I    .....  ..... 10. I .A    .....  ..... 11. I .B    .....  ..... 12. I .C    ..... 6.

13. 14. 15. 16. 17. 18. 19. 20.

..... ..... .....  ..... .....    .....  ..... .....  ..... .....  ..... ..... .....  ..... .....    .....  ..... .....  ..... .....  ..... ..... .....  ..... .....    .....  ..... .....  ..... .....  ..... ..... .....  ..... .....    .....  ..... .....  ..... .....  ..... ..... .....   ..... .....    .....  ..... .....   ..... .....  ..... ..... .....  ..... .....    .....  ..... .....  ..... .....  ..... ..... .....  ..... .....    .....  ..... .....  ..... .....   ..... ..... ..... .....  ..... .....      ( A.B).C    ..... .....  ..... .....  ..... .....   ..... ..... ..... .....  ..... .....      A.( B.C )    ..... .....  ..... .....  ..... .....   ..... .....  ..... .....  ..... .....        A  B    ..... .....   ..... .....  ..... .....   ..... .....  ..... .....  ..... .....        A  B    ..... .....   ..... .....  ..... .....   ..... ..... ..... .....  ..... .....      C.( A  B)    ..... .....  ..... .....  ..... .....   ..... ..... ..... .....  ..... .....      ( A  B).C    ..... .....  ..... .....  ..... .....   ..... .....  ..... .....  ..... .....        C. A  C.B    ..... .....   ..... .....  ..... .....   ..... .....  ..... .....  ..... .....        A.C  B.C    ..... .....   ..... .....  ..... ..... 

Jadi bila diketahui matriks A ; B dan C maka sifat-sifat berikut berlaku : (i) A . B …. B . A (…………………………..) (ii) A.I …. I.A …. …. (……………………..……) (iii) (A.B).C …. A.(B.C) (……………………..……) (iv) C.(A + B) = …………...…. (v) (A + B).C = ………….…… (vi) C.(A – B) = ………………. (vii) (A – B).C = ………….........

   (sifat ........................)  

3

4

Related Documents

Lkpd Matriks 5.docx
April 2020 0
Matriks
June 2020 28
Matriks
May 2020 34
Lkpd
October 2019 62
Matriks Kkn.docx
June 2020 22
Matriks Baru.docx
December 2019 21

More Documents from "nixon hendrik"

Lkpd Matriks 5.docx
April 2020 0
Forum M6 Prof.docx
April 2020 2