ANGGOTA KELOMPOK : 1................................................................................................................................................ 2................................................................................................................................................ 3................................................................................................................................................ 4................................................................................................................................................ .
LUAS SEGITIGA 1. Tujuan Kegiatan a. Siswa dapat menentukan luas segitiga jika diketahui unsur-unsur nya. 2. Langkah Kegiatan a. Bacalah dan pahami langkah-langkah pada masing-masing kegiatan b. Kerjakanlah setiap perintah secara berkelompok dan tuliskan jawaban kalian pada lembar yang telah disediakan. 3. Kegiatan Siswa B
a. Luas Segitiga I a πΌ C
A
b
Tentukanlah luas segitiga ABC diatas ! Untuk menyelesaiakan masalah diatas lakukan langkah berikut : Jawab : Luas segitiga dirumuskan sebagai berikut : πΏπ’ππ π ππππ‘πππ =
1 π₯ ππππ π₯ π‘πππππ 2
Pada segitiga ABC diatas, tinggi segitiga tidak diketahui sehingga perlu dibuat garis tinggi BD segitiga sebagai garis bantu sehingga diperoleh segitiga sebagai berikut : B
a πΌ C
D
Sehingga luas segitiga diatas menjadi :
A b
1
πΏπ’ππ π ππππ‘πππ = 2 π₯ ππππ π₯ π‘πππππ 1
ο° πΏπ’ππ π ππππ‘πππ = 2 π₯ (β¦ β¦ . ) π₯ π΅π· Karena nilai BD belum diketahui maka nilai BD perlu dicari terlebih dahulu. Perhatikan segitiga BCD merupakan segitiga siku-siku,sehingga diperoleh sin πΌ = π΅π·
Sehingga dari sin πΌ =
π΅πΆ
πππππ β¦ β¦ β¦ . = ππππππ π΅πΆ
=> π΅π· = (β¦ β¦ . )π₯ sin(β¦ β¦ . . )
Akibatnya luas segitiga ABC diperoleh 1
πΏπ’ππ π ππππ‘πππ = 2 π₯ π΄πΆ π₯ π΅π· 1
ο° πΏπ’ππ π ππππ‘πππ = 2 π₯ π΄πΆ π₯ (β¦ β¦ β¦ β¦ β¦ β¦ . . ) =........................ Jadi, luas segitiga ABC adalah ........................ b. Luas Segitiga II
Perhatikan segitiga diatas : Dari gambar diperoleh : Alas ............... Sehingga luas segitiga ABC adalah
Tinggi CD
1
πΏπ’ππ π ππππ‘πππ = 2 π₯ ππππ π₯ π‘πππππ 1
ο° πΏπ’ππ π ππππ‘πππ = 2 π₯(β¦ β¦ β¦ β¦ )π₯(β¦ β¦ β¦ β¦ )
(1)
Perhatikan segitiga ACD diperoleh sin π΄ =
πΆπ· β¦β¦β¦..
=
β¦β¦β¦β¦ π
=> πΆπ· = π π₯ (β¦ β¦ β¦ β¦ β¦ . )
(2)
Menurut aturan sinus diperoleh π β¦β¦β¦β¦..
=
β¦β¦β¦β¦ sin πΆ
=> π =
(β¦β¦β¦.)π₯ sin π΄ sin πΆ
(β¦ β¦ β¦ β¦ )
(3)
Dari (2) dan (3) diperoleh β¦β¦β¦β¦β¦β¦β¦β¦β¦.β¦β¦β¦β¦.
πΆπ· = π sin π΄ = (β¦β¦β¦β¦β¦β¦β¦β¦β¦..β¦β¦β¦β¦) π₯ sin π΄ Akibatnya, dengan mensubsitukan (4) pada (1) diperoleh 1
πΏπ’ππ π ππππ‘πππ = 2 . π. πΆπ·
(4)
1
β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦.
ο° πΏπ’ππ π ππππ‘πππ = 2 . π. (β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦..) =
π 2 .(β¦β¦β¦β¦..).sin π΅ 2 sin(β¦β¦.)
Jadi, luas luas segitiga ABC adalah ............................................................................................................................................... ............................................................................................................................................... a. Dari hasil pada poin (a) ,selesaikan permasalahan berikut : Tentukan luas segitiga ABC jika diketahui panjang sisi AC=4 cm , BC=5 cm dan besar sudut C adalah 30Β° ! Jawab : ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... .........................................................................................................................................
****SELAMAT MENGERJAKAN !****