Lk 3 Penyajian Data Menggunakan Tabel Dan Grafik.docx

  • Uploaded by: Sarah Hasna Aulia
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Lk 3 Penyajian Data Menggunakan Tabel Dan Grafik.docx as PDF for free.

More details

  • Words: 4,407
  • Pages: 28
MAKALAH STATISTIK KESEHATAN PENYAJIAN DATA MENGGUNAKAN TABEL DAN GRAFIK DOSEN PEMBIMBING :

Endang Uji Wahyuni, SKM., M.KM Catur Puspawati, ST., M.KM.

Disusun Oleh:

KELOMPOK 3 1. Annisa Adila

P23133116002

2. Mentari Nurfaya Jaelani

P23133116023

3. Nabila Farhanah

P23133116026

4. Rafi Fahdlurrahman Praba

P23133116031

5. Sarah Hasna Aulia

P23133116033

TINGKAT 3 PROGRAM STUDI DIV KESEHATAN LINGKUNGAN POLITEKNIK KESEHATAN KEMENKES JAKARTA II Jln. Hang Jebat III/F3 Kebayoran Baru Jakarta 12120 Telp. 021.7397641, 7397643 Fax. 021. 7397769 E-mail : [email protected] Website : http://poltekkesjkt2.ac.id TA. 2019

PENYAJIAN DATA MENGGUNAKAN TABEL DAN GRAFIK A. PENGERTIAN PENYAJIAN DATA Penyajian data merupakan satu kegiatan dalam pembuatan laporan hasil penelitian yang telah dilakukan agar dapat dipahami dan dianalisis sesuai dengan tujuan yang diinginkan. Data yang disajikan harus sederhana dan jelas agar mudah dibaca. Penyajian data juga dimaksudkan agar para pengamat dapat dengan mudah memahami apa yang kita sajikan untuk selanjutnya dilakukan penilaian atau perbandingan, dan lain-lain. B. JENIS – JENIS PENYAJIAN DATA UNTUK DATA TUNGGAL DAN DATA KELOMPOK 1. Data Tunggal Data tunggal adalah data belum tersusun atau dikelompokkan ke dalam kelas – kelas interval. Berikut contoh penyajian data tunggal: Data hasil pengukuran diameter pipa-pipa yang dibuat oleh sebuah mesin (dalam mm terdekat), diperoleh data sebagai berikut. 78

72

74

79

74

71

75

74

72

68

72

73

72

74

75

74

73

74

65

72

66

75

80

69

82

73

74

72

79

71

70

75

71

70

70

70

75

76

77

67

2. Data Kelompok Data kelompok adalah data yang sudah tersusun atau dikelompokkan ke dalam kelas – kelas interval. Data kelompok disusun dalam bentuk distribusi frekuensi atau tabel frekuensi. Berikut contoh penyajian data kelompok: Data hasil pengukuran diameter pipa-pipa yang dibuat oleh sebuah mesin (dalam mm terdekat), diperoleh data sebagai berikut. Diameter

Turus

Frekuensi

65 – 67

III

3

68 – 70

IIII I

6

71 – 73

IIII IIII II

12

74 – 76

IIII IIII III

13

77 – 79

IIII

4

80 – 82

II

2

Jumlah

40

C. PENYAJIAN DALAM BENTUK TULISAN Penyajian dalam bentuk tulisan sebenarnya merupakan gambaran umum tentang kesimpulan hasil pengamatan. Dalam bidang kedokteran, penyajian dalam bentuk tulisan hanya digunakan untuk memberi informasi. Penyajian dalam bentuk tulisan banyak digunakan dalam bidang sosial, ekonomi, psikologi, dan lain-lain dan berperan sebagai laporan hasil penelitian kualitatif. Misalnya, untuk mengetahui persepsi masyarakat tentang suatu produk yang telah dipasarkan atau penerimaan, pendapat serta kepercayaan masyarakat terhadap suatu program pelayanan kesehatan pada masyarakat atau keberadaan petugas kesehatan yang terdapat di daerah.

D. PENYAJIAN DALAM BENTUK TABEL Penyajian dalam bentuk tabel merupakan penyajian data dalam bentuk angka yang disususn secara teratur dalam kolom dan baris. Penyajian dalam bentuktabel banyak digunakan pada penulisan laporan hasil penelitian dengan maksud agar orang mudah memperoleh gambaran rinci tentang hasil penelitian yang telah dilakukan. Suatu tabel yang lengkap terdiri dari (1) nomor tabel, (2) judul tabel, (3) catatan pendahuluan, (4) badan tabel, (5) catatan kaki, (6) sumber data. 1. Nomor Tabel Bila tabel yang disajikan lebih dari satu maka hendaknya diberi nomor agar mudah untuk mencari kembali bila dibutuhkan. Nomor tabel biasanya ditempatkan di atas sebelah kiri sejajar dengan judul tabel. 2. Judul Tabel Setiap tabel yang disajikan harus diberi judul karena dari judul tabel orang dapat mengetahui tentang apa yang disajikan. Kalimat pada judul tabel harus singkat, jelas, dan berisi keterangan tentang apa, dimana, dan bagaimana. Judul harus konsisten dan menggambarkan isi tabel.

Tabel 6.1 Contoh tabel : No. Judul tabel Catatan Pendahuluan Judul kompartemen

Judul kolom

Jumlah

Sel

Catatan kaki Sumber

: :

3. Catatan pendahuluan Catatan pendahuluan biasanya diletakkan di bawah judul dan berfungsi sebagai keterangan tambahan tentang tahun pembuatan tabel atau jumlah pengamatan yang dilakukan. 4. Badan tabel Badan tabel terdiri dari judul kolom, judul baris, judul kompartemen, dan sel. 5. Catatan kaki Catatan kaki dimaksudkan untuk memberi keterangan terhadap singkatan atau ukuran yang digunakan. Biasanya dengan memberi tanda yang sesuai dengan tanda yang terdapat di kanan atas singkatan yang digunakan. Tanda yang biasa digunakan dapat berupa * x dan lain-lain. Catatan kaki diletakkan di bawah kiri tabel. 6. Sumber data Sumber data diletakkan di bagian kiri bawah (di bawah catatan kaki). Sumber data ini mempunyai arti penting bila data yang kita sajikan berupa data sekunder. Penulisan sumber data harus jelas dan lengkap, seperti dari mana data tersebut diambil, oleh siapa, judul penyusunan dan penertbitnya serta penerbitan. Misalnya diambil dari hasil penelitian berjudul Penigkatan Peran Petugas Kesehatan dalam Memberikan Penerangan, dilakukan oleh bagian ketenagakerjaan Rumah Sakit X, diterbitkan dalam buletin kesehatan vol. 3, No. 2, Maret 1998 halaman 32. Hal ini dimaksudkan agar orang dapat mencari tabel aslinya.

 Bentuk-Bentuk Tabel Bentuk tabel bermaam-macam, tetapi yang banyak digunakan adalah (1) tabel berdasarkan fungsinya, (2) tabel kontingensi, (3) tabel berdasarkan penyusunan judul baris. 1. Tabel berdasarkan fungsinya Tabel dapat digunakan untuk menyusun perencanaan dan dapat pula berfungsi sebagai referensi atau memberikan penjelasan dalam penulisan laporan. Tabel berdasarkan fungsinya bermacam-macam, antara lain adalah a. Tabel sinopsis Tabel ini berisi semua variabel yang akan dikumpulkan dan ditulis dalam kolom dan baris dengan urutan yang sama. Tabel ini mempunyai arti penting dalam perencanaan suatu penelitian karena dengan tabel sinopsis dapat diketahui jumlah tabel yang dihasilkan dan variabel yang akan dicari hubungannya sehingga memudahkan penulisan laporan. Contoh : Variabel-variabel dalam suatu penelitian yang akan dikumpulkan adalah sebagai berikut. 1) Tingkat pendidikan 2) Jenis pekerjaan 3) Jumlah anak 4) Pertolongan persalinan 5) Pembuangan sampah 6) Kepemilikan rumah 7) Penghasilan keluarga Dari tabel sinopsis di atas diperoleh sebanyak 21 buah tabel dan dari 21 tabel tersebut dapat ditentukan variabel mana yang diperkirakan berhubungan. Misalnya, hubungan antara variabel 1 dan 2, variabel 1 dan 3, dan seterusnya. b. Tabel induk Tabel ini berfungsi sebagai referensi. Oleh karena itu, tabel induk sering disebut tabel referensi yang dapat diambil sebgaian dan disisipkan dalam penulisan laporan. Tabel 6.2 Tabel sinopsis 1 1 2 3 4

2

3

4

5

6

7

5 6 7 Pada tabel induk ini terdapat semua variabel yang dikumpulkan. Oleh karena itu tabel ini tidak dapat digunakan untuk mengadakan perbandingan. Tabel induk biasanya ditempatkan di belakang sebagai lampiran. Bentuk tabel induk secara skematis dapat dilihat pada tabel dibawah ini Tabel 6.3 Tabel induk Jenis kelamin Pekerjaan Pendidikan Golongan Dsb Lakiumur Perempuan Tani Buruh Dagang Sd Smp Smu laki

Jumlah c. Tabel kerja Tabel kerja ialah tabel yang menggambarkan beberapa variabel secara rinci. Tabel ini berguna untuk mengadakan pembahasan lebih mendalam terhadap hasil penelitian, mengadakan perbandingan antar variabel atau untuk memberikan gambaran tentang adanya hubungan antara dua variabel. Tabel ini diambil dari tabel induk atau gabungan dari beberapa tabel kerja. Sesuai dengan fungsinya, tabel ini disisipkan dalam teks penulisan laporan sesuai dengan topik bahasannya. Biasanya tabel ini disusun berdasarkan progresivitas, tahun atau bergantung pada kebutuhan. Dari tabel teks ini dapat dibuat tabel silang (cross table) untuk mengetahui adanya hubungan antara dua variabel. Contoh : Tabel teks berupa tabel silang berfungsi untuk mengetahui adanya hubungan antara tingkat pendidikan dengan jenis pekerjaan. Tabel 6.4 Tabel teks Tingkat

Jenis pekerjaan Buruh

Tani

Dagang

Pengusaha

Tidak sekolah SD SMP SMU Perguruan Tinggi lainlain Jumlah d. Tabel kontingensi Tabel kontingensi disusun berdasarkan banyaknya baris dan kolom. Tabel ini disajikan untuk memberikan gambaran hasik penelitian. Tabel ini juga banyak digunakan dalam perhitungan statistik inferensial untuk pengujian hipotesis, misalnya perhitungan menggunakan uji “t” atau X2 , dll. Tabel ini dapat dinamakan sesuai dengan banyaknya baris dan banyaknya kolom sehingga dikenal tabel 2x2 atau 3x3, dan lain-lain. Dibawah ini akan diberikan beberapa contoh bagan tabel kontingensi. Contoh : 1) Tabel dengan 2 baris dan 2 kolom disebut tabel 2x2 2) Tabel dengan 2 baris dan 3 kolom disebut tabel 2x3 3) Tabel dengan 3 baris dan 3 kolom disebut tabel 3x3

2. Tabel berdasarkan penyusunan judul baris Tabel ini bermacam-macam dan tergantung data yang tersedia dan kebutuhan penyajian data. Tabel dapat disusun sebagai berikut. a. Menurut abjad b. Menurut geografis c. Berdasarkan perkembangan waktu d. Berdasarkan besarnya angka e. Berdasarkan kelaziman f. Berdasarkan tingkatan Tabel 6.5 Tabel kontingensi 2 x 2 Judul Kolom

Jumlah

Jumlah

Tabel 6.6 Tabel kontingensi 2 x 3 Judul Kolom

Jumlah

Jumlah Tabel 6.6 Tabel kontingensi 3 x 3 Judul Kolom

Jumlah

Jumlah

a. Penyusunan judul baris menurut abjad Table yang disusun menurut abjad dimaksudkan untuk memudahkan pencarian kembali table yang dibutuhkan. Oleh karena itu, table ini banyak terdapat pada table induk. Tabel ini dapat digunakan sebagai referensi, tetapi tidak dapat digunakan untuk perbandingan. b. Penyusunan judul baris menurut geografis Tabel ini bertujuan untuk mengetahui keadaan berbagai daerah. Oleh karena itu, table yang disusun menurut geografis banyak dikeluarkan oleh instansi pemerintah, seperti biro pusat statistic. Dari uraian tersebut dapat disimpulkan bahwa table ini tidak efisien untuk digunakan sebagai table induk maupun table kerja.

c. Penyusunan tabel berdasarkan perkembangan waktu Tabel ini disusun dengan tujuan untuk mengetahui perkembangan yang terjadi bersamaan berjalannya waktu. Perkembangan tersebut dapat berupa perubahan alami atau perubahan yang disebebkan oleh intervensi manusia. Misalnya, untuk mengetahui perkembangan atau pertumbuhan penduduk kota atau untu mengetahui hasil program kesehatan.

Tabel perkembangan ini banak disisipkan dalam teks penulisan laporan. Misalnya, untuk mengetahui perkembangan program KB selama 5 tahun yang terjadi di suatu daerah. Tabel 6.8 Jumlah Akseptor KB di daerah A 1990 – 1994 Tahun Jumlah akseptor 1990 245 1991 267 1992 578 1993 498 1994 324 2.012 Jumlah Dari tabel diatas terlihat bahwa penekanan terletak pada waktu (tahun). Oleh karena itu, tahun ditulis di sebelah kiri tabel. d. Penyusunan tabel berdasarkan besarnya angka Penyusunan angka dapat dilakukan dari angka terkecil sampai angka terbesar atau sebaliknya bergantung pada focus pembahasan. Penulisan angka diletakkan di kiri table. Dalam bidang kedokteran, bentuk table ini dapat digunakan untuk mendapatkan gambaran distribusi penyakit. Misalnya, distribusi penyakit menurut jenis kelamin. Tabel 6.9 Distribusi Penyakit Menurut Jenis Kelamin Jenis kelamin

Jumlah

Saluran napas Saluran pencernaan Penyakit kulit Penyakit mata Jumlah Penilaian :

825 730 254 100 2.089

Jenis kelamin Laki-laki 415 400 200 85 1.260

Wanita 410 330 54 15 829

Dari tabel di atas dapat diketahui jenis penyakit yang terbanyak adalah penyakit saluran napas dan penderita terbanyaknya adalah laki-laki. Tabel ini dapat digunakan untuk hal-hal berikut ini. 

Penyusunan prioritas



Mengajukan usulan kebutuhan obat atau alat yang dibutuhkan

e. Penyusunan berdasarkan kelaziman Penyusunan ini didasarkan atas kezaliman. Oleh karena itu, tidak terdapat ketentuan yang baku, misalnya untuk penulisan jenis kelamin laki-laki ditempatkan dahulu daripada wanita.

f. Penyusunan berdasarkan tingkatan Misalnya, penyusunan tingkat pendidikan diawali dari pendidikan yang terendah sampai yang tertinggi.

E. PENYAJIAN DATA DALAM BENTUK GRAFIK Grafik merupakan salah satu bentuk penyajian data statistic yang banyak dilakukan dalam berbagai bidang karena penyajiannya lebih menarik dan lebih mudah dipahami. Hal-hal yang kurang jelas dalam tabel akan lebih jelas bila disajikan dalam bentuk grafik. Misalnya untuk mengetahui kecenderungan dan mengadakan perbandingan.  Manfaat Grafik 1. Membandingkan beberapa variabel, beberapa kategori dalam variabel atau satu variabel pada waktu dan tempat yang berbeda. 2. Meramalkan perubahan yang terjadi dengan berjalannya waktu. 3. Mengetahui adanya hubungan dua variabel atau lebih. 4. Memberikan penerangan pada masyarakat.  Kerugian 1. Penyajian dalam bentuk grafik harus menarik karena pembuatan grafik merupakan seni hingga tidak semua orang dapat membuat grafik yang menarik. 2. Grafik memberikan keterangan yang tidak rinci. 3. Grafik harus dibuat dengan benar karena pembuatan grafik yang salah atau perhitungan yang salah mengakibatkan penilaian yang salah. 4. Informasi yang disajikan terbatas. 5. Kehilangan informasi secara rinci. Untuk mengatasinya, dapat dilakukan dengan menyediakan tabel sebagai referensi.

F. CARA MEMBUAT GRAFIK 1. Grafik terdiri dari dua sumbu, yaitu sumbu horizontal yang disebut absis atau sumbu X dan sumbu vertikal yang disebut ordinat atau sumbu Y. Variabel independen diletakkan pada sumbu X dan variabel dependen pada sumbu Y. 2. Jenis kertas yang digunakan untuk menggambar grafik sebaiknya kertas biasa atay semilogaritme, bergantung pada data yang ada.

3. Ukuran kertas yang digunakan tidak ada ketentuan yang baku, tetapi hendaknya dipilih sedemikian rupa agar grafik yang digambar menjadi menarik. 4. Penggambaran absis dan ordinat. Lazimnya panjang ordinat 60 – 70% panjang absis atau absis sama panyang dengan ordinat. Bila ukuran tersebut terbalik, dapat menimbulkan kesan yang salah. Demikian pula dengan skala yang digunakan haruslah seimbang karena data yang sama dapat menghasilkan grafik yang berbeda. 5. Sebaiknya tidak menuliskan angka dalam grafik, kecuali bila angka yang dihasilkan terlalu besar hingga gambar ordinat terlalu panjang maka tinggi ordinat dapat dipatahkan kemudian ditulis angka. 6. Grafik harus diawali dari titik nol agar tidak terjadi kesalahan interpretasi.

G. Beberapa Ketentuan dalam Penyajian Grafik 1. Judul grafik hendaknya ditulis dengan jelas, singkat, dan sederhana. Judul grafik dapat diletakkan di bagian atas atau bagian bawah grafik. 2. Bentuk grafik. Disesuaikan dengan data yang ada. Kalau terdapat dua bentuk yang dapat digunakan, pilih yang hasilnya menarik. 3. Pembuatan grafik harus menarik dan bila perlu dapat diberi warna, diarsir atau titik-titik. 4. Pemberian warn ajangan terlalu banyak hingga akan membingungkan dan menjadi kurang menarik. 5. Keterangan. Bila terdapat keterangan yang diperlukan maka dapat dituliskan di bawah grafik atau di dalam grafik, asalkan tidak mengganggu keutuhan grafik. H. MACAM – MACAM GRAFIK Dalam penyajiannya, bentuk grafik dapat bermacam-macam, yaitu berdasarkan bentuknya dan berdasarkan fungsinya. Berdasarkan bentuknya, grafik dapat dibagi menjadi 1. grafik batang (bar diagram), 2. grafik lingkaran (pie diagram), 3. grafik garis (line diagram), 4. grafik titik-titik (diagram pencar = scattered diagram), 5. grafik model (piktogram), dan 6. grafik peta (map diagram). Berdasarkan fungsinya, grafik dapat dibagi menjadi 1. perbandingan,

2. kecenderungan, dan 3. penerangan.

1. Grafik Batang (Bar Diagram) Grafik batang ialah grafik yang berbentuk batang yang penilaiannya dilakukan berdasarkan tinggi batang. Banyak digunakan di sarana pelayanan kesehatan karena pembuatannya mudah dan sederhana. Grafik batang dapat digunakan untuk mengadakan perbandingan beberapa variabel dalam waktu dan tempat yang sama atau satu variabel dalam waktu dan tempat yang berbeda. Dalam pembuatan grafik batang terdapat beberapa hal yang harus diperhatikan, seperti berikut. a) Batang dapat digambar tegak atau melintang. Pada umumnya, grafik batang digambarkan tegak (vertikal) bila variabel akan yang akan digambar merupakan kata yang pendek dan sebaliknya, bila variabel dengan kata yang panjang maka grafik batang digambar melintang (horisontal). Contoh 1: Angka kelahiran per 1000 penduduk di daerah A dan B. Grafik 6.1 Angka kelahiran di desa A dan desa B 0/00 40 30 20 10 0 A

B

Grafik 6.2 Distribusi penyakit hepar di RS X Frekuensi Hepatitis akut

Hepatitis kronik

Sirosis hepatis

b) Antara dua batang terdapat ruang antara. Sebaiknya ruang antara lebih sempit daripada batang. c) Lebar batang harus sama dan seimbang agar tidak menimbulkan interpretasi yang salah. d) Penggambaran batang harus dimulai dari titik nol. e) Keterangan atau frekuensi sebaiknya tidak dicantumkan di dalam atau di atas batang kecuali bila frekuensi terlalu besar hingga gambar batang menjadi terlalu panjang maka gambar batang dapat dipatahkan dan dicantumkan frekuensi atau jumlah di atas batang. Contoh: Jumlah penderita yang dirawat selama satu tahun. Grafik 6.3 Distribusi penderita yang dirawat selama satu tahun

f) Batang dapat digambar berimpitan untuk menggambarkan kategori dalam satu variabel atau batang, berikutnya merupakan data kontinu. Dalam kondisi seperti di atas, batang dapat digambar bersusun. Untuk kategori yang berbeda dapat diberi warna, diarsir atau titik-titik, seperti pada grafik 6.4. Grafik 6.4 Status gizi balita desa A (n = 100) 35 30

0/0 25

gizi baik 20

gizi sedang

15 10

25 20 15 10

5

5

0 1979 - 1980

0

a. Grafik Batang Proporsional Bila data yang akan digambarkan grafiknya dinyatakan dalam proporsi atau persen maka grafik batang demikian disebut Grafik Batang Proporsional (Proportional bar diagram). Grafik ini digunakan untuk mengadakan perbandingan secara relatif. Contoh : Kita ingin membandingkan angka kelahiran desa A dan B. pada tahun 1988 angka kelahiran di desa A sebanyak 20 orang dan 5 di antaranya adalah wanita, sedangkan angka kelahiran di desa B sebanyak 40 orang dan 10 diantaranya adalah wanita. Bila perbandingan dilakukan dengan grafik batang biasa dan kita membandingkan secara absolut maka tampak seolah-olah kelahiran bayi wanita di desa B lebih banyak daripada di desa A. Bila digambar dalam bentuk grafik batang proporsional maka akan tampak bahwa kelahiran bayi wanita di desa A sama dengan di desa B. Grafik 6.5 Proporsi kelahiran bayi wanita di desa A dan B

Penggambaran grafik batang proporsional diawali dengan titk yang sama yaitu 100%. Oleh karena itu, dalam pembacaan harus teliti agar tidak menimbulkan kesalahan seolah-olah jumlah kelahiran di desa A sama dengan jumlah kelahiran di desa B.

b. Histogram Histogram merupakan grafik batang yang disusun secara teratur dan berimpitan satu dengan yang lain tanpa ruang antara. Grafik ini diperoleh dari data kuantitatif yang kontinu dalam bentuk distribusi frekuensi. Lebar setiap batang merupakan proporsi dari seluruh batang. Tinggi batang menyatakan frekuensi yang terdapat dalam kelas interval yang bersangkutan hingga luas setiap batang merupakan proporsi dari seluruh luas histogram, di mana luas seluruh histogram sama dengan 1.0 atau 100%. Oleh karena itu, histogram disebut sebagai diagram luas. Bila distribusi frekuensi dinyatakan dalam frekuensi relatif pada setiap batang maka disebut histogram frekuensi relatif.

Bentuk histogram frekuensi relatif sama dengan histogram frekuensi absolut karena setiap batang pada kedua histogram tersebut merupakan proporsi dari seluruh luas batang histogram. Histogram banyak digunakan untuk membandingkan frekuensi yang terdapat dalam interval kelas dan untuk mengetahui pada interval kelas mana terdapat frekuensi terbesar dan terkecil.  Pedoman pembuatan histogram 1) Dalam menggambar batang sebaiknya digunakan tepi kelas agar semua nilai dapat masuk ke dalam kelas interval tersebut. 2) Batang dalam histogram dapat pula digambar berdasarkan nilai tengah setiap interval kelas. 3) Tidak ada kelas terbuka dalam distribusi frekuensi. Contoh: Distribusi frekuensi menurut golongan umur Tabel 6.10 Distribusi frekuensi golongan umur Umur 15 – 19

14,5 – 19,5

Frekuensi 2

20 – 24

19,5 – 24,5

5

25 – 29

24,5 – 29,5

11

30 – 34

29,5 – 34,5

6

35 – 39

34,5 – 39,5

3

40 – 44

39,5 – 44,5

3

Jumlah Grafik 6.6 Histogram distribusi frekuensi menurut golongan umur

30

c. Frekuensi Poligon Bila titik-titik tengah dari batang dalam histogram dihubungkan satu dengan yang lain maka akan menghasilkan frekuensi poligon. Frekuensi poligon digunakan untuk membandingkan beberapa grafik . oleh karena itu, grafik frekuensi poligon tidak disertai dengan grafik histogramnya. Grafik 6.7 Frekuensi poligon

2. Grafik Lingkaran (Pie Diagram) Merupakan grafik yang disajikan dalam bentuk lingkaran. Lingkaran dapat digambar dalam 3 dimensi sehingga menyerupai kue, karena itu disebut pie diagram. Grafik lingkaran digunakan untuk membandingkan secara relatif kategori-kategori dalam satu variabel. Ketentuan dalam pembuatan gambar a) Besar lingkaran harus dibuat sedemikian rupa sehingga tidak terlalu besar dan tidak terlalu kecil agar enak dipandang. b) Kategori yang dibandingkan tidak banyak, biasanya 4-6 kategori. c) Sudut segmen tidak terlalu kecil agar dapat dibedakan dengan jelas. d) Tiap segmen dapat diberi warna. e) Besarnya segmen harus menggambarkan presentase yang sesuai. Contoh: Tabel 6.11 Distribusi frekuensi penyakit Jenis Penyakit Penyakit saluran napas

Jumlah 500

Penyakit saluran pencernaan

200

Penyakit kulit

200

Penyakit mata

50

Lain-lain

50

Jumlah

1000

Cara menggambar grafik lingkaran a) Ubahlah frekuensi tiap penyakit menjadi persen. b) Ubahlah persentase menjadi derajat dengan cara: persen x 360 c) Gambarkan setiap penyakin sesuai dengan derajat yang dihasilkan Perhitungan: Peyakit saluran napas

: 500/1000 x 100 = 50%

Penyakit saluran pencernaan : 200/1000 x 100 = 20% Penyakit kulit

: 200/1000 x 100 = 20%

Penyakit mata

: 50/1000 x 100 = 5%

Lain-lain

: 50/1000 x 100 = 5%

Hasil persen diubah menjadi derajat Peyakit saluran napas

: 50/100 x 360˚ = 180˚

Penyakit saluran pencernaan : 20/100 x 360˚ = 72˚ Penyakit kulit

: 20/100 x 360˚ = 72˚

Penyakit mata

: 5/100 x 360˚ = 18˚

Lain-lain

: 5/100 x 360˚ = 18˚

Grafik 6.8 Distribusi frekuensi relatif berbagai penyakit 5%

5%

20%

50%

1 2 3 4 5

20%

3. Grafik Garis (Line Diagram) Penyajian data dalam bentuk garis. Berikut adalah contoh-contoh tentang macam-macam grafik garis. a. Grafik Garis Proporsional

Grafik garis yang dinyatakan dalam persen. Grafik ini dapat digunakan untuk mengadakan perbandingan beberapa variabel atau perubahan satu variabel yang terjadi dengan berjalannya waktu. Dengan grafik ini perbandingan akan tampak lebih jelas daripada perbandingan secara absolut. Contoh: Perbandingan persentase penurunan angka angka kematian ibu dan angka kematian bayi di bawah ini merupaka contoh grafik garis lurus. Grafik 6.9 Persentase penurunan kematian ibu dan anak 0/0 100 90 80 70 60 50 40 30 20 10 0

kematian bayi kematian ibu Tahun 1990

1991

1992

1993

1994

Dari grafik di atas tampah bahwa penurunan angka kematian ibu lebih besar daripada penurunan angka kematian bayi. Perhatian: Kedua variabel digambar pada titik awal yang sama (100%) hingga dapat menimbulkan kesan seolah-olah angka kematian ibu sama dengan angka kematian bayi.

b. Grafik Frekuensi Kumulatif Grafik ini disebut “Ogive”. Ogive dihasilkan dari data frekuensi distribusi kumulatif dan digunakan untuk mengetahui posisi individu dalam suatu kelompok. Contoh: Distribusi frekuensi kumulatif tekanan darah sistolik dari 50 orang. Tabel 6.12 Distribusi frekuensi kumulatif tekanan darah sistolik (n = 50) Tekanan darah Sistolik (mmHg) Penyakit saluran napas

Frekuensi

Frekuensi kumulatif < batas atas 500

Penyakit saluran pencernaan

200

Penyakit kulit

200

Penyakit mata

50

Lain-lain

50

Jumlah

1000

Grafik berikut ini merupakan contoh grafik garis ogive dari table di atas. Grafik 6.10 Distribusi frekuensi kumulatif tekanan darah sistolik

c. Grafik Garis Patah-patah Banyak dijumpai pada grafik deret berkala yang digunakan untuk mengetahui perubahan yang terjadi dengan berjalannya waktu. Contoh: Jumlah kasus gastroenteritis per bulan yang terjadi di suatu daerah. Grafik 6.11 Distribusi kasus gastroenteritis di daerah X per bulan selama satu tahun

Penilaian Dengan grafik patah-patah maka perubahan yang terjadi setiap bulan akan tampak lebih jelas jika dibandingkan dengan garis lurus atau lengkung, tetapi bila kita ingin mengetahui

perubahan secara menyeluruh maka grafik garis lurus akan tampak lebih jelas dari pada garis patah-patah.

d. Grafik garis lengkung (Kurva) Kurva merupakan grafik yang dihasilkan secara teoritis. Dalam praktiknya, kurva yang ada merupakan hasil penghalusan, misalnya suatu histogram dengan kelas interval yang sangat kecil hingga membentuk suatu kurva. Bentuk kurva bermacam-macam, secara garis besar dapat dibagi berdasarkan simetrisitas, berdasarkan tinggi puncak, berdasarkan banyak puncak, dan berdasarkan bentuk. 

Berdasarkan Simetrisitas 1) Kurva simetris 2) Kurva asimetris



Berdasarkan Tinggi Puncak 1) Kurva normal (mesokurtik) 2) Kurva Leptokurtik 3) Kurva Platikurtik



Berdasarka Jumlah Puncak 1) Kurva unimodal 2) Kurva bimodal 3) Kurva multimodal



Berdasarkan Bentuk 1) Kurva Bentuk J 2) Kurva Bentuk L  Berdasarkan Simetrisitas a.

Kurva simetris Dikatakan kurva simetris bila kurva dapat dibagi menjadi dua bagian yang sama dan sebangun. Kurva ini dihasilkan dari distribusi teoritis atau dihasilkan dari pengamatan yang sangat banyak.

Contoh : Kurva normal, kurva leptokurtik dan kurva platikurtik. b. Kurva asimetris Kurva asimetris disebut juga kurva miring. Kemiringannya ditentukan oleh kaki kurva. Bila kaki kurva terletak disebelah kanan maka dikatakan miring kekanan

atau skew positive, sedangkan bila kaki kurva terletak dikiri maka disebut kurva miring ke kiri atau skew negative. Kurva miring ke kanan terjadi bila dalam suatu distribusi frekuensi dimana nilai yang kecil memiliki frekuensi yang besar dan semakin besar nilai yang dihasilkan maka semakin kecil frekuensinya. Sebaliknya, kurva dengan kemiringan ke kiri terjadi bila nilai yang kecil mempunyai frekuensi yang kecil dan semakin besar nilai yang dihasilkan semakin besar pula frekuensinya.

Grafik 6.12a Kurva Miring ke kanan (skew positive)

Grafik 6.12b Kurva Miring ke kiri (skew negative)

 Berdasarkan Tinggi Puncak a.

Kurva normal = Mesokurtik Kurva nomal disebut juga kurva Gauss karena bentuk kurva ini mula-mula dipopulerkan oleh Fredrich Gauss. Kurva normal mempunyai ciri-ciri sebagai berikut ; 1.

Grafik terletak diatas absis

2.

Simetris berbentuk lonceng

3.

Dihasilkan dari jumlah observasi yang sangat banyak

4.

Mempunyai satu puncak

5.

Dihasilkan dari data kontinu

6.

Luas seluruh kurva sama dengan 1,0 atau 100%

7.

Grafik mendekati sumbu X pada penyimpangan 3 SD

8.

Bila kaki kurva diperpanjang maka tidak akan menyentuh absis

9.

Luas 1 SD = 68%, 2 SD = 95,5% dan 3 SD = 99,7% dari seluruh luas kurva

Grafik 6.13 Kurva normal = mesokurtik

b.

Kurva Leptokurtik Kurva ini merupakan kurva simetris dengan puncak yang tinggi. Biasanya kurva ini diperoleh dari distribusi dengan rentang yang kecil atau dari distribusi dengan nilai ekstrem pada nilai kecil atau besar.

Grafik 6.14 Kurva leptokurtik

c.

Kurva Platikurtik Kurva ini merupakan kurva yang simetris dengan puncak yang rendah.

Grafik 6.15 Kurva platikurtik

 Berdasarka Jumlah Puncak Grafik unimodal, Bimodal, dan Multimodal

Dikatakan kurva unimodal bila kurva hanya mempunyai satu puncak dan bila mempunyai dua puncak disebut bimodal dan kurva dengan banyak puncak dinamakan kurva multi modal Grafik 6.16 Unimodal

Grafik 6.17 Bimodal

Grafik 6.18 Multimodal

 Berdasarkan Bentuknya Berdasarkan bentuknya. Kurva dibagi menjadi dua, yaitu bentuk J dan bentuk I. Grafik 6.19 Kurva berbentuk J

Grafik 6.20 Kurva berbentuk L

4. Diagram Pencar (Scattered Diagram) Grafik pencar atau scattered diagram dihasilkan dari titik-titik koordinat dan merupakan grafik kolerasi atau grafik kecenderungan karena digunakan untuk mengetahui hubungan antara dua variabel yang berpasangan.

a. Cara menggambar Untuk menggambar grafik pencar dapat dilakukan dengan menentukan titik-titik pertemuan antara dua variabel yang berpasangan yang disebut titik koordinat dan berbagai titik koordinat tersebut dihubungkan sehingga membentuk grafik garis. b. Penilaian Bila garis yang terbentuk berupa garis lurus maka dikatakan grafik korelasi sederhana atau korelasi linier. Garis linier yang bergerak dari kiri bawah ke kanan atas disebut korelasi positif dan garis korelasi bergerak dari kiri atas ke kanan bawah disebut korelasi negatif. Bila garis korelasi merupakan garis horisontal maka dikatakan bahwa kedua variabel tidak mempunyai hubungan linier atau korelasi linier sama dengan nol. Grafik 6.21 Grafik korelasi positif

Grafik 6.23 Grafik korelasi 0

Grafik 6.22 Grafik korelasi negative

Bila pada grafik pencar perubahan pada absis diikiuti perubahan ordinat yang sama atau perubahan dengan proporsi yang tetap maka semua titik-titik ordinat yang dihasilkan akan terletak pada satu garis lurus yang disebut korelasi sempurna.

Grafik 6.24 Grafik korelasi sempurna

Bila titik-titik koordinat tidak membentuk pola tertentu mungkin variabel-variabel tersebut tidak mempunyai korelasi.

Grafik 6.25 Tidak mempunyai korelasi

5. Grafik Model (Piktogram) Grafik ini berbentuk gambar yang menyerupai bentuk aslinya. Oleh karena itu disebut dengan grafik model.

Grafik model banyak digunakan untuk memberi penerangan kepada masyarakat. Misalnya, untuk menggambarkan jumlah penduduk maka dgambar bentuk orang.\grafik ini harus dibuat sedemikian rupa agar menarik perhatian orang. Contoh : Jumlah penduduk desa A yang terdiri dari 5.000 orang wanita dan 6.000 orang laki.laki.

Grafik 6.26 Jumlah penduduk desa A

6. Grafik Peta (Map Diagram) Grafik ini berupa peta, biasa terdapat pada instansi yang mempunyai wilayah kerja, seperti puskesmas, desa, dan kecamatan. Grafik ini digunakan untuk mengetahui hal-hal berikut : a) Batas desa b) Lokasi, misalnya puskesmas, kantor desa atau kantor kecamatan c) Grafik peta ini juga digunakan untuk menyatakan letak suatu produksi daerah atau tempat permukiman penduduk d) Dan lain-lain Contoh : Gambar Peta Wilayah Kerja Puskesmas desa X

Gambar 6.1 Peta Wilayah Kerja Puskesmas desa X

DAFTAR PUSTAKA Budianto, Eko., 2001; Biostatistik Kedokteran Dan Kesehatan Masyarakat; cetakan pertama, Penerbit Buku Kedokteran, Jakarta. Hasan, Iqbal. 2003. Pokok – Pokok Materi Statistik 1 (Statistik Deskriptif). PT Bumi Aksara: Jakarta.

Related Documents


More Documents from "mayasari"