Limit Continuity

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Limit Continuity as PDF for free.

More details

  • Words: 7,717
  • Pages: 20
Example : 1 Find the domain and the range of the following functions (a) Solution (a)

y=

(b)

1− x 2

(c)

(c)

y=

1 x−2

1 – x2 ≥ 0 ⇒ x2 ≤ 1 ⇒ –1≤x≤1 Hence the domain is x set [–1, 1]. For range : As –1≤x≤1 ⇒ 0 ≤ x2 ≤ 1 ⇒ 0 ≤ 1 – x2 ≤ 1

For domain :



(b)

y = 2 sin x

0≤

1− x 2 ≤ 1 ⇒ 0≤y≤1 Hence the range is set [0, 1] y = 2 sin x For domain : x ∈ R i.e. x (–∞, ∞) For range : – 1 ≤ sin x ≤ 1 – 2 ≤ 2 sin x ≤ 2 –2≤y≤2 Hence the range is y ∈ [–2, 2] As denominator cannot be zero, x can not be equal to 2 domain is x ∈ R – {2} i.e. x ∈ (–∞ , 2) (2, ∞) Range : As y can never become zero, the range is y ∈ R – {0} i.e. y ∈ (–∞, 0) (0, ∞)

Example : 2 Find the domain of the following functions : (a)

1 3 − x + log x 10

(b)

1 x+ | x |

(c)

1 − log10 x

Solution (a)

3 − x is defined if 3 – x ≥ 0 ⇒

x≤3

............(i)

1 log10 x is defined if x > 0 and x ≠ 1

(b)

(c)

⇒ x > 0 – {1} ............(ii) Combining (i) and (ii), set of domain is : x ∈ (0, 1) ∪ (1, 3] f(x) is defined if : x + |x| ≠ 0 ⇒ |x| ≠ – x ⇒ x>0 Hence domain is x ∈ (0, ∞) f(x) is defined if 1 – log10x ≥ 0 and x>0 ⇒ log10x ≤ 1 and x>0 ⇒ x ≤ 10 and x>0 ⇒ domain is x ∈ (0, 10]

Example : 3 (Using factorisation) Evaluate the following limits : (a)

3 lim x − 2 x − 4 x →2 x 2 − 3 x + 2

(b)

3 3 lim x − a x →a x 2 − ax

(c)

4 lim x − 625 x →5 x 3 − 125

Page # 1.

Solution (a)

2 3 2 lim x − 2 x − 4 = lim ( x − 2)( x + 2x + 2) = lim x + 2x + 2 = 10 x →2 x 2 − 3 x + 2 x →2 x →2 ( x − 2)( x − 1) x −1

(b)

2 2 3 3 2 2 lim x − a = lim ( x − a)( x + ax + a ) = lim x + ax + a = 3a x →a x 2 − ax x →a x →a x( x − a ) x

(c)

x 4 − 54 4 4 .5 3 20 x−5 lim x − 625 = lim = = 3 3 3 x →5 x − 125 x →5 x − 5 3 3 .5 2 x−5

[using section 2.2 (ix)]

Example : 4 (Using rationalisation) Evaluate the following limits : (a)

3x + 7 − 4

lim

x →3

(b)

x +1− 2

lim

x →a

a + 2x − 3 x 3a + x − 2 x

(c)

lim

x →1

3

x −1

x2 − 1

Solution (a)

3x + 7 − 4

lim

x →3

x +1− 2

Rationalising the numerator and denominator, 3 x + 7 − 16 = xlim →3 x + 1− 4 3( x − 3 ) = xlim →3 x−3

= 3 xlim →3 (b)

⎛ x +1+ 2 ⎞ ⎟ ⎜ ⎜ 3x + 7 + 4 ⎟ ⎠ ⎝

⎛2+2⎞ 3 ⎟ = =3 ⎜ 4 + 4 ⎝ ⎠ 2 3x + 7 + 4

x +1 + 2

Rationalising numerator and denominator we get, a + 2x − 3 x = xlim →a 3a + x − 4 x

= xlim →a

(c)

⎛ x +1+ 2 ⎞ ⎟ ⎜ ⎜ 3x + 7 + 4 ⎟ ⎠ ⎝

a−x 3(a − x )

⎛ 3a + x + 2 x ⎞ ⎟ ⎜ ⎜ a + 2x + 3 x ⎟ ⎠ ⎝

⎛ 3a + x + 2 x ⎞ 1 ⎟ ⎜ ⎜ a + 2x + 3 x ⎟ = 3 ⎠ ⎝

⎛2 a +2 a ⎞ 2 ⎟ ⎜ ⎜ 3a + 3a ⎟ = 3 3 ⎠ ⎝

1 ⎛ 1 ⎞⎛ 2 ⎞ ⎜ x 3 − 1⎟⎜ x 3 + x 3 + 1⎟ 1 ⎜ ⎟⎜ ⎟ ⎠⎝ ⎠ lim x 3 − 1 = lim ⎝ x →1 x →1 2 1 2 ⎛ ⎞ x −1 ( x 2 − 1)⎜ x 3 + x 3 + 1⎟ ⎜ ⎟ ⎝ ⎠

lim

x →1

( x − 1) 1 = 2 1 ⎛ ⎞ 6 ( x − 1)( x + 1)⎜ x 3 + x 3 + 1⎟ ⎜ ⎟ ⎝ ⎠

Page # 2.

Example : 5 (x → ∞ type problems) Evaluate the following limits : (a)

3 2 lim x − 2x + 3 x + 1 x →∞ 5 x 3 + 7x + 2

(b)

2 2 2 2 lim 1 + 2 + 3 + ........ + n n→ ∞ n3

(c)

lim

x →∞

x 2 + 3 x + 1 + 5x 1 + 4x

Solution In these type of problems, divide numerator and denominator by highest power of x. (a) Dividing numerator and denominator by x3

2 3 1 + 2 + 3 x x x 1 = 7 2 5 5+ 2 + 3 x x

1− = xlim →∞

[because as x → ∞,

(b)

2 2 2 2 lim 1 + 2 + 3 + ........ + n n→ ∞ n3

= nlim →∞

(c)

1 1 1 , , ......... → 0] x x2 x3

n(n + 1)(2n + 1) 6n3

=

1⎞ ⎛ 1⎞ 1 lim ⎛ ⎜1 + ⎟ ⎜ 2 + ⎟ n → ∞ n⎠ 6 ⎝ n⎠ ⎝

=

1 1 (1 + 0) (2 + 0) = 6 3

The highest power of x is 1. Hence divide the numerator and denominator by x. x 2 + 3 x + 1 + 5x 1 + 4x

lim

x →∞

1+ = xlim →∞

3 1 + +5 x x2 1+5 3 = = 1 0+4 2 +4 x

Example : 6 (∞ – ∞ form) Evaluate the following limits :

lim (a)

x→

π 2

(sec x – tan x)

(b)

lim

x →∞

( ( x + 2a)(2x + a) − x 2 )

(c)

lim ⎛⎜ x − x 2 + x ⎞⎟ ⎝ ⎠

x →∞

Solution

lim

(a)

π x→ 2

lim x→

(b)

π 2

lim

x →∞

(sec x – tan x) =

lim sec 2 x − tan 2 x π x→ 2 sec x + tan x

1 =0 sec x + tan x

( ( x + 2a)(2x + a) − x 2 )

Rationalising the expression, we get

lim

x →∞

( x + 2a)(2x + a) − 2x 2

( (x + 2a)(2x + a) + x 2 ) Page # 3.

5ax + 2a 2

= xlim →∞

2x 2 + 5ax + 2a 2 + x 2

Dividing numerator and denominator by x, we get 5a +

= xlim →∞

(c)

2+

2a 2 x

5a

2

5a 2a + 2 + 2 x x

=

2 2

lim ⎛⎜ x − x 2 + x ⎞⎟ ⎝ ⎠

x →∞

On rationalising the expression, we get x 2 − (x 2 + x)

= xlim →∞

= xlim →∞

x + x2 + x

−x x + x2 + x

Divide by the highest power of x i.e. x1

−1

= xlim →∞

=

1 1+ 1+ x

−1 1 =– 1+ 1 2

Example : 7 sin x ⎛ ⎞ = 1⎟ Evaluate the following limits : ⎜ u sin g lim x →0 x ⎝ ⎠

lim tan x − 3 π

(a)

x→

(c)

x →a

3

9x − π 2

2

lim cos x − cos a x−a

lim sin(cos x ) cos x π 2 sin x − cos ecx

(b)

x→

(d)

x →a

lim

a sin x − x sin a ax 2 − a 2 x

Solution

(a)

lim tan x − 3 π

x→

3

9x 2 − π2

Using tan A – tan B =

lim x→

(b)

π 3

π 3 9x 2 − π2

lim tan x −

=

π x→ 3

sin( A − B) we get, cos A cos B

π⎞ ⎛ sin⎜ x − ⎟ sin θ 1 ⎛ ⎞ 1 2 3 ⎝ ⎠ = 1⎟ = ⎜ u sin g lim = θ → 0 π π θ π 3 cos cos ( π + π) ⎝ 3π ⎠ cos x cos (3x − π)(3x + π) 3 3 3

lim sin(cos x ) cos x lim sin(cos x ) π = x→ π cos x 2 sin x − cos ecx 2

x→

lim

π x→ 2

lim cos 2 x sin x cos 2 x = 1 × x→ π 2 sin x − cos ecx sin 2 x − 1

sin θ ⎛ ⎞ = 1⎟ ⎜ u sin g lim θ → 0 θ ⎝ ⎠

lim =–

x→

π 2

(sin x) = – 1

Page # 4.

(c)

⎛ x+a⎞ ⎛x−a⎞ − 2 sin⎜ ⎟ sin⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ lim cos x − cos a lim x →a x →a x−a ⎛x−a⎞ 2×⎜ ⎟ ⎝ 2 ⎠ ⎛ x−a⎞ sin⎜ ⎟ ⎝ 2 ⎠ ⎛x+a⎞ ⎟ lim ⎛ x − a ⎞ = – sin a = – xlim sin ⎜ →a ⎝ 2 ⎠ x →a ⎜ ⎟ ⎝ 2 ⎠

(d)

lim

a sin x − x sin a

x →a

ax 2 − a 2 x

= xlim →a

a sin x − x sin x + x sin x − x sin a (a − x ) sin x + x(sin x − sin a) = xlim →a ax( x − a) ax( x − a)

⎛x+a⎞ 2 cos⎜ ⎟ (a − x ) sin x sin x − sin a sin a ⎝ 2 ⎠ lim lim = xlim + = – + →a x →a x →a ax( x − a) a( x − a) 2a a2

=

sin a a2

+

( x − a) ⎤ ⎡ ⎢ sin 2 ⎥ ⎢ ⎥ ⎢ ( x − a) ⎥ 2 ⎣⎢ ⎦⎥

cos a a

Example : 8 x ⎛ ⎞ ⎜ u sin g lim a − 1 = log a ⎟ ⎜ ⎟ Evaluate the following limits : x →0 x ⎝ ⎠

−e x−a

(a)

x lim 2 − 2 x →1 x −1

(b)

x →a

(c)

x x x lim 6 − 2 − 3 + 1 x →0 sin 2 x

(d)

x x lim 3 − 5 x →0 x

lim e

x

a

Solution (a)

(b)

x x −1 lim 2 − 2 = 2 lim 2 − 1 = 2 log 2 x →1 x →1 x −1 x −1

lim e

x →a

= e

a

= e

a

−e x−a

x

a

lim e

x →a

(1) xlim →a

e

= xlim →a

a⎛

x− a

− 1 lim x − a x →a

⎜ e x − a − 1⎞⎟ ⎝ ⎠ x −a x− a x−a

( x − a) ( x − a)

(

x+ a

)

=

e

a

2 a

Page # 5.

(c)

x x x lim 6 − 2 − 3 + 1 x →0 sin 2 x

x2 (2 x − 1)3 x − 1) lim = x →0 sin2 x x2 2

2 x − 1 lim 3 x − 1 lim ⎛ x ⎞ ⎜ ⎟ = loge2 loge2 = xlim →0 x →0 x →0 ⎝ sin x ⎠ x x

(d)

⎡ 3 x − 1 5 x − 1⎤ x x 3 lim 3 − 5 = lim ⎢ − ⎥ = log 3 – log 5 = log x →0 x →0 ⎢ x x 5 x ⎣ ⎦⎥

Example : 9 1 ⎡ ⎤ ⎢u sin g lim (1 + x ) x = e⎥ Evaluate the following limits : x →0 ⎢⎣ ⎥⎦

(a)

lim

1

x →0

lim xcotπx

(b)

(1 − 2x ) x

x →1

Solution

(a)

(b)

1 lim x →0 (1 − 2x ) x

lim xcotπx

x →1

= e

−1 ⎞ ⎛ ⎜ (1 − 2x ) 2 x ⎟ lim = x →0 ⎜ ⎟ ⎝ ⎠

1 ⎤ ⎡ x −1 ⎥ ⎢ lim 1 x 1 ) + − = x →1 ⎢⎣ ⎥⎦

lim ( x −1) cot πx

x →1

lim

= e

x →1

1− x tan( π − πx )

−2

( x −1) cot πx

lim

= e

x →1

1 π − πx π tan( π − πx )

=

1 π e

tan θ ⎛ ⎞ = 1⎟ ⎜ u sin g lim θ → 0 θ ⎝ ⎠

Example : 10 Show that the limit of : ⎧2 x − 1 ; x ≤ 1 f(x) = ⎨ ; x >1 ⎩ x

at x = 1 exists

Solution f(x) = xlim (2x – 1) = 2 – 1 = 1 Left hand limit = xlim →1− →1− (we use f(x) = 2x – 1

Q while calculating limit at x = 1, we approach x = 1 from LHS i.e. x < 1)

Right hand limit = xlim f(x) = xlim (x) = 1 →1+ →1+ ⇒

L.H.L. = R.H.L. = 1. Hence limit exists

Page # 6.

Example : 11 Find whether the following limits exist or not : (a)

lim sin 1 x

x →0

(b)

lim x sin 1 x

x →0

Solution (a)

1 →∞. x As the angle θ approaches ∞ , sin θ oscillates by taking values between – 1 and + 1.

As x → 0,

1 Hence xlim sin is not a well defined finite number. →0 x ⇒ limit does not exist

(b)

lim x sin 1 = lim x lim sin 1 x →0 x →0 x x = 0 × (some quantity between – 1 and + 1) = 0 x →0

1 1 It can be easily seen that xlim x sin = xlim x sin =0 →0 + →0 − x x Hence the limit exists and is equal to zero (0)

Example : 12 Comment on the following limits : (a)

lim [x – 3]

x →1

(b)

lim | x | x

x →0

Solution (a)

Right Hand limit = xlim [x – 3] →1+ = hlim [1 + h – 3] = hlim [h – 2] →0 →0 = – 2 (because h – 2 is between – 1 and – 2) Left hand limit = xlim [x – 3] →1− = hlim [1 – h – 3] = hlim [–2 – h] →0 →0 = – 3 (because – h – 2 is between – 2 and – 3) Hence R.H.L. ≠ L.H.L. ⇒ limit does not exist.

(b)

|x| −x Left hand limit = xlim = xlim =–1 →0 − →0 − x x |x| x Right hand limit = xlim = xlim =+1 →0 + →0 + x x Hence R.H.L. ≠ L.H.L. ⇒ limit does not exist

Example : 13 Find a and b so that the function :

π ⎧ ; 0≤x< ⎪ x + a 2 sin x 4 ⎪⎪ π π ; ≤x≤ f(x) = ⎨ 2x cot x + b 4 2 ⎪ ⎪a cos 2x − b sin x ; π < x ≤ π 2 ⎩⎪

Page # 7.

is continuous for x ∈ [0, π] Solution At x = π/4 Left hand limit = lim− f(x) = lim− (x + a 2 sin x) =

π +a 4

Right hand limit = lim+ f(x) = lim+ (2x cot x + b) =

π +b 2

π x→ 4

x→

π x→ 4

π 4

x→

π 4

⎛π⎞ ⎛π⎞ π π f ⎜ ⎟ = 2 ⎜ ⎟ cot +b= +b 4 4 ⎝ ⎠ ⎝ ⎠ 4 2

for continuity, these three must be equal π π +a= +b ⇒ 4 2 At x = π/2



a–b=

π 4

.............(i)

Left hand limit = lim− (2x cot x + b) = 0 + b = b x→

π 2

Right hand limit = lim+ (a cos 2x – b sin x) = – a – b x→

π 2

⎛π⎞ f ⎜ ⎟ =0+b ⎝2⎠

for continuity, b = – a – b ⇒ a + 2b = 0

............(ii)

Solving (i) and (ii) for a and b, we get : b = –

π π ,a= 6 12

Example : 14 A function f(x) satisfies the following property f(x + y) = f(x) f(y). Show that the function is continuous for all values of x if it is continuous at x = 1 Solution As the function is continuous at x = 1, we have

lim f(x) = lim− f(x) = f(1) x →1

x →1−



lim f(1 – h) = lim f(1 + h) = f(1) h→0

h→0

using f(x + y) = f(x) f(y), we get

lim f(1) f(–h) = lim f(1) f(h) = f(1) h→0



h→0



h→0

lim f(–h) = lim f(h) = 1 h→0

..............(i)

Now consider some arbitrary point x = a Left hand limit = hlim f(a – h) = hlim f(a) f(–h) →0 →0 = f(a) hlim f(–h) = f(a) →0

............. using (i)

Right hand limit = hlim f(a + h) = hlim f(a) f(h) →0 →0 = f(a) hlim f(h) = f(a) →0

............. using (i)

Hence at any arbitrary point (x = a) L.H.L. = R.H.L. = f(a) ⇒ function is continuous for all values of x.

Page # 8.

Example : 15 ⎧1 + x ; 0 ≤ x ≤ 2 f(x) = ⎨ ⎩3 − x ; 2 < x ≤ 3

Determine the form of g(x) = f(f(x)) and hence find the point of discontinuity of g, if any Solution

⎧ f (1 + x ) ; 0 ≤ x ≤ 1 ⎧1 + x ; 0 ≤ x ≤ 2 ⎪ g(x) = f(f(x)) = ⎨ = ⎨ f (1 + x ) ; 1 < x ≤ 2 3 − x ; 2 < x ≤ 3 ⎩ ⎪f ( 3 − x ) ; 2 < x ≤ 3 ⎩ Now

x ∈ [0, 1] x ∈ (0, 2] x ∈ (2, 3]

⇒ ⇒ ⇒

(1 + x) ∈ [1, 2] (1 + x) ∈ (2, 3] (3 – x) ∈ [0, 1)

Hence

⎧ f (1 + x ) for 0 ≤ x ≤ 1 ⇒ 1 ≤ x + 1 ≤ 2 ⎪ g(x) = ⎨ f (1 + x ) for 1 < x ≤ 2 ⇒ 2 < x + 1 ≤ 3 ⎪f (3 − x ) for 2 < x ≤ 3 ⇒ 0 ≤ 3 − x < 1 ⎩ Now if (1 + x) ∈ [1, 2], then f(1 + x) = 1 + (1 + x) = 2 + x [from the original definition of f(x)] Similarly if (1 + x) ∈ (2, 3), then f(1 + x) = 3 – (1 + x) = 2 – 2 .............(ii) If (3 – x) ∈ (0, 1), then f(3 – x) = 1 + (3 + x) = 4 – x .............(iii)

...........(i)

⎧2 + x ; 0 ≤ x ≤ 1 ⎪ Using (i), (ii) and (iii), we get g(x) = ⎨2 − x ; 1 < x ≤ 2 ⎪4 − x ; 2 < x ≤ 3 ⎩ Now we will check the continuity of g(x) at x = 1, 2 At x = 1 L.H.L. = xlim g(x) = xlim (2 + x) = 3 →1− →1− R.H.L. = xlim g(x) = xlim (2 – x) = 1 →1+ →1+ As L.H.L., g(x) is discontinuous at x = 1 At x = 2 L.H.L. = xlim g(x) = xlim (2 – x) = 0 →2 + →2 − R.H.L. = xlim g(x) = xlim (4 – x) = 2 →2 + →2 + As L.H.L. ≠ R.H.L., g(x) is discontinuous at x = 2 Example : 16 ⎧ e1/ x − 1 ⎪ ; x≠0 1/ x Discuss the continuity of f(x) = ⎨ e + 1 at the point x = 0 ⎪ 0 ; x=0 ⎩

Solution

LHL = xlim →0 −

1 ex

−1

1 ex

+1

t lim e − 1 = 0 − 1 = – 1 = t→ −∞ e t + 1 0 +1

Page # 9.

1

RHL = xlim →0 +

ex −1 1

ex +1

−t et − 1 lim 1 − e = tlim = →∞ e t + 1 t →∞ 1 + e − t

1− 0 =1 1+ 0



R.H.L. =



L.H.L. ≠ R.H.L. ⇒

f(x) is discontinuous at x = 0

Example : 17 Discuss the continuity of the function g(x) = [x] + [–x] at integral values of x. Solution Let us simplify the definition of the function (i) If x is an integer : [x] = x and [–x] = – x ⇒ g(x) = x – x = 0 (ii) If x is not integer : let x = n + f where n is an integer and f ∈ (0, 1) ⇒ [x] = [n + f] = n and [–x] = [–n – f] = [(–n – 1) + (1 – f)] = – n – 1 (because 0 < f < 1 ⇒ 0 , (1 – f) < 1) Hence g(x) = [x] + [–x] = n + (–n – 1) = – 1 So we get :

if x is an int eger ⎧0 , g(x) = ⎨ ⎩− 1 , if x is not an int eger

Let us discuss the continuity of g(x) at a point x = a where a ∈ Ι g(x) = – 1 L.H.L. = xlim →a − as x → a– , x is not an integer

Q

R.H.L. = xlim g(x) = – 1 →a + as x → a+ , x is not an integer but g(a) = 0 because a is an integer Hence g(x) has a removable discontinuity at integral values of x. Example : 18 Which of the following functions are even/odd? (a)

f(x) =

x

(b)

⎛ 1+ x ⎞ ⎟ f(x) = x log ⎜ ⎝ 1− x ⎠

(c)

f(x) = |x|

(d)

2 ⎛ ⎞ f(x) = log ⎜ x + x + 1 ⎟ ⎝ ⎠

ax − 1 a +1

Solution a −x − 1

= – f(x) ⇒ f(x) is odd

f(–x) =

(b)

⎛ 1− x ⎞ ⎛ 1− x ⎞ ⎟ = x log ⎜ ⎟ f(–x) = – x log ⎜ ⎝ 1+ x ⎠ ⎝ 1+ x ⎠

(c)

⇒ f(x) is even f(–x) = |–x| = |x| = f(x) ⇒ f(x) is even

a−x + 1

=

1− ax

(a)

1+ ax

−1

⎛ 1+ x ⎞ ⎟ = f(x) = x log ⎜ ⎝ 1− x ⎠

Page # 10.

(d)

⎛ 1+ x2 − x2 ⎜ ⎛ − x + 1+ x2 ⎞ ⎟ = log ⎜ f(–x) = log ⎜ 2 ⎝ ⎠ ⎝ x + 1+ x



⎞ ⎟ ⎟ = – log ⎠

⎛ x + x 2 + 1⎞ ⎜ ⎟ = – f(x) ⎝ ⎠

f(x) is odd.

Example : 19 Which of the following functions are periodic ? Give reasons (a)

f(x) = x + sin x

(b)

cos

x 2

(c) f(x) = x – [x] (d) cos x Solution If a function f(x) is periodic, then there should exist some positive value of constant a for which f(x + a) = f(x) is an identity (i.e. true for all x) The smallest value of a satisfying the above condition is known as the period of the function (a) Assume that f(x + a) = f(x) ⇒ x + a + sin (x + a) = x + sin x ⇒ sin x – sin (x + a) = a

(b)



a⎞ ⎛ a 2 cos ⎜ x + ⎟ sin =–a 2⎠ ⎝ 2



a⎞ ⎛ a 2 cos ⎜ x + ⎟ sin = – a 2⎠ ⎝ 2

This cannot be true for all values of x. Hence f(x) is non-periodic Assume that f(x + a) = f(x) ⇒

(c)

(d)

cos

x + a = cos



x + a = 2np ±



x+a ±



2x + a ± 2



2x ± 2

x x

x = 2nπ 2 2 x 2 + ax = 4n π

2 2 x 2 + ax = 4n π – a

As this equation cannot be an identity, 3 f(x) is non-periodic Assume that f(x + a) = f(x) ⇒ x + a – [x + a] = x – [x] ⇒ [x + a] – [x] = a This equation is true for all values of x if a is an integer hence f(x) is periodic Period = smallest positive value of a = 1 Let f(x + a) = f(x) ⇒ cos2 (x + a) = cos2x ⇒ cos2 (x + a) – cos2x = 0 ⇒ sin (2x + a) sin (a) = 0 this equation is true for all values of x if a is an integral multiple of π Hence f(x) is periodic. Period = smallest positive value of a = π

Example : 20 n

Find the natural number a for which

∑ f (a + k ) = 16(2

n

– 1) where the function f satisfies the relation

k =1

f(x + y) = f(x) f(y) for all natural numbers x, y and further f(1) = 2. Solution Since the function f satisfies the relation f(x + y) = f(x) f(y) It must be an exponential function.

Page # 11.

Let the base of this exponential function be a. Thus f(x) = ax It is given that f(1) = 2. So we can make ⇒ a=2 f(1) = a1 = 2 Hence, the function is f(x) = 2x ..........(i) [Alternatively, we have f(x) = f(x – 1 + 1) = f(x – 1) f(1) = f(x – 2 + 1) f(1) = f(x – 2) [f(1)]2 = .............. = [f(1)]x = 2x] Using equation (i), the given expression reduces to : n

∑2

a+k

k =1

= 16 (2n – 1)

n



∑2

a

k =1

. 2k = 16 (2n – 1)

n

∑2

k



2



2a (2 + 4 + 8 + 16 + ..............+ 2n) = 16 (2n – 1)



⎡ 2(2n − 1) ⎤ 2 ⎢ 2 − 1 ⎥ = 16 (2n – 1) ⎢⎣ ⎥⎦

⇒ ⇒

2a+1 = 16 a+1=4

a

k =1

= 16 (2n – 1)

a

⇒ ⇒

2a+1 = 24 a=3

Example : 21 Evaluate the following limits :

(i)

x 3− x − 12 lim 3 + 3 3− x x/2 x →2 3 −3

(ii)

lim

x→π / 3

tan3 x − 3 tan x π⎞ ⎛ cos⎜ x + ⎟ 6⎠ ⎝

(iii)

lim

x → −∞

1 + x2 x 1+ | x 3 |

x 4 sin

Solution (i)

3 x + 3 3 − x − 12 lim Let L = x →2 3 3− x − 3 x / 2

3x + ⇒

L = xlim →2



L = xlim →2



L = xlim →0



L = xlim →2



L=

27 − 12 3x

27 − 3x / 2 3x 3 2 x − 12.3 x + 27 (3 x / 2 )3 − 3 3 (3 x − 9)(3 x − 3) (3 x / 2 − 3)(3 x + 9 + 3.3 x / 2 ) (3 x / 2 + 3)(3 x − 3) ( 3 x + 3. 3 x / 2 + 9 )

6 .6 4 36 = = 9 + 3 .3 + 9 3 27

Page # 12.

(ii)

lim Let L = L = x→ π/3



(iii)

tan3 x − 3 tan x π⎞ ⎛ cos⎜ x + ⎟ 6 ⎝ ⎠

and

x–

π =t 3

π⎞ π⎞ ⎛ ⎛ tan3 ⎜1 + ⎟ − 3 tan⎜ t + ⎟ 3 3 ⎝ ⎠ ⎝ ⎠ L = tlim π ⎛ ⎞ →0 cos⎜ t + ⎟ ⎝ 2⎠



⎡ π⎞ ⎤ ⎛ tan(3t + π) ⎢3 tan 2 ⎜1 + ⎟ − 1⎥ ⎝ 3⎠ ⎦ ⎣ L = tlim →0 − sin t



− tan( 3t ) lim ⎡3 tan 2 ⎛ t + π ⎞ − 1⎤ ⎜ ⎟ ⎥ L = tlim . t →0 ⎢ →0 − sin t ⎝ 3⎠ ⎦ ⎣



⎡ π⎞ ⎤ tan( 3t ) 1 2⎛ ⎢3 tan ⎜1 + ⎟ − 1⎥ L = 3 tlim × tlim × tlim →0 → 0 → 0 3⎠ ⎦ 3t sin t ⎝ ⎣



L = 3 × 1 × 1 × 8 = 24

Let

L = xlim →−∞

1 + x2 x 1 + | x3 |

x 4 sin

Divided Numerator and Denominator by x3 to get

L = xlim →−∞



1 sin 1 x +1 2 x sin + x 1/ x x x = 1 ( − x )3 1 3 +|x| + x3 x3 x3

L = xlim →−∞

(Q

for x < 0, |x3| = – x3)

→ (1)+ → (0) =–1 → (0) + ( −1)

Example : 22

⎧ π a /|sin x| ; <x<0 ⎪(1+ | sin x | 6 ⎪ b ; x=0 Let f(x) = ⎨ tan 2 x ⎪ π ⎪ e tan 3 x ; 0<x< 6 ⎩ Determine a and b such that f(x) is continuous at x = 0 Solution Left hand limit at x = 0 a ⎤ ⎡ lim ( ) + 1 | sin x | |sin x| ⎥ L.H.L. = xlim f(x) = ⎢ →0 − x →0 − ⎣ ⎦



L.H.L. = hlim f(0 – h) →0



a ⎤ ⎡ ( 1+ | sinh |)|sinh| ⎥ = ex L.H.L. = hlim ⎢ →0 ⎣ ⎦

1 ⎡ ⎤ ⎢u sin g : lim(1 + t ) t = e⎥ t →0 ⎢⎣ ⎥⎦

Page # 13.

Right hand limit x = 0 tan 2 x

tan 3 x R.H.L. = xlim f(x) = xlim →0 + →0 + e



R.H.L. = hlim f(0 + h) →0



tan 3h R.H.L. = hlim →0 e



3⎝ R.H.L. = hlim →0 e

tan 2h

2 ⎛ tan 2h 3h ⎞ . ⎜ ⎟ 2h tan 3h ⎠

2

= e3

for continuity L.H.L. = R.H.L. = f(0) 2



ex = e 3 = b



a=

2 , b = e2/3 3

Example : 23 πx ⎞ ⎛ ⎜ sin ⎟ Discuss the continuity of f(x) in [0, 2] where f(x) = nlim →∞ 2 ⎠ ⎝

2n

Solution ⎧0 ; | x | < 1 Since nlim x2n = ⎨ →∞ ⎩1 ; | x | = 1



πx ⎞ ⎛ ⎜ sin ⎟ f(x) = nlim →∞ 2 ⎠ ⎝

⎧ ⎪0 ; ⎪ = ⎨ ⎪1 ; ⎪⎩

2n

πx <1 2 πx =1 sin 2 sin

Thus f(x) is continuous for all x, except for those values of x for which sin

πx =1 2

i.e. x is an odd integer ⇒ x = (2n + 1) where x ∈ Ι Check continuity at x = (2n + 1) : L.H.L. =

lim

x →2n +1

f(x) = 0

............(i)

and f(2n + 1) = 1 ............(ii) from (i) and (ii), we get : L.H.L. ≠ f(2n + 1), ⇒ f(x) is discontinuous at x = 2n + 1 (i.e. at odd integers) Hence f(x) is discontinuous at x = (2n + 1).

Page # 14.

Example : 24 ⎧ ⎪ 1 − cos 4 x ; x<0 2 ⎪ x ⎪ a ; x=0 Let f (x) = ⎨ ⎪ x ; x>0 ⎪ ⎩⎪ 16 + x − 4

Determine the value of a, if possible, so that the function is continuous at x = 0. Solution ⎧ ⎪ 1 − cos 4 x ; x<0 2 ⎪ x ⎪ a ; x=0 It is given that f(x) = ⎨ ⎪ x ; x>0 ⎪ ⎩⎪ 16 + x − 4

is continuous at x = 0. So we can take :

lim f(x) = f(0) = lim+ f(x) x →0

x →0 −

Left hand limit at x = 0 1− cos 4 x f(x) = tlim L.H.L. = tlim →0 − →0 − x2

Now,

L.H.L. = hlim f(0 – h) →0



2 1− cos 4h lim 2 sin 2h = 8 L.H.L. = hlim = →0 h→0 h2 h2

sin t ⎤ ⎡ = 1⎥ ⎢u sin g : tlim → 0 t ⎦ ⎣

Right hand limit at x = 0 R.H.L. = tlim f(x) = tlim →0 + →0 +

x 16 + x − 4

Now,

R.H.L. = hlim f(0 + h) →0



R.H.L. = hlim →0

h 16 + h − 4

Rationalising denominator to get : ⇒

R.H.L. = hlim →0

h ⎛ ⎞ ⎜ 16 + h + 4 ⎟ = 8 ⎠ h ⎝

For function f(x) to be continuous at x = 0, L.H.L. = R.H.L. = f(0) ⇒ 8=8=a ⇒ a=8 Example : 25 Ler {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]. Solution We can write x as : x = integral part + fractional part ⇒ x = [x] + {x} The given equation is 4{x} = x + [x]

Page # 15.

⇒ 4{x} = [x] + {x} + [x] ⇒ 3{x} = 2[x] .............(i) ⇒ 3{x} is an even integer But we have 0 ≤ {x} < 1 ⇒ 0 ≤ 3 {x} < 3 ⇒ 3{x} = 0, 2 [become 3{x} is even} ⇒

{x} = 0,

⇒ ⇒

2 3

3 2

and

[x] =

{x} = 0, 1

x=0+0

or

x=

2 +1 3

x=0

or

x=

5 3

........... (using i)

Example : 26 ; x ≤1 ⎧ [cos πx ] Discuss the continuity of f(x) in [0, 2] where f(x) = ⎨ ⎩| 2x − 3 | [ x − 2] ; x > 1

where [ ] : represents the greatest integer function. Solution First of all find critical points where f(x) may be discontinuous Consider x – [0, 1] : f(x) = [cos πx] [f(x)] is discontinuous where f(x) ∈ Ι ⇒ cos πx = Ι In [0, 1], cos πx is an integer at x = 0, x =

1 and x = 1 2

1 and x = 1 are critical points 2 Consider x – (1, 2] : f(x) = [x – 2] |2x – 3| In x ∈ (1, 2) [x – 2] = – 1 and for x = 2 ; [x – 2] = 0



x = 0, x =



Also |2x – 3| = 0 ⇒

x=

x=

............(i)

3 2

3 and x = 2 are critical points 2

............(i)

1 3 , 1, , 2 2 2 On dividing f(x) about the 5 critical points, we get

combining (i) and (ii), critical points are 0,

1 ⎧ ⎪ 0 ⎪ ⎪ ⎪ −1 ⎪ f(x) = ⎨ ⎪− 1(3 − 2x ) ⎪ ⎪ ⎪− 1(2 x − 3) ⎪ 0 ⎩

; ; ; ; ; ;

x=0

cos( π0 ) = 1 Q 1 0<x≤ 0 ≤ cos πx < 0 ⇒ [cos πx] = 0 Q 2 1 < x ≤ 1 Q − 1 ≤ cos πx < 0 ⇒ [cos πx ] = −1 2 3 1< x ≤ Q | 2x − 3 | = 3 − 2x and [ x − 2] = −1 2 3 < x < 2 Q | 2x − 3 | = 2x − 3 and [ x − 2] = −1 2 Q 2 [ x − 2] = 0

Page # 16.

Checking continuity at x = 0 : R.H.L. = xlim (0) = 0 →0 +

and

f(0) = 1

As, R.H.L. ≠ f(x) ⇒ f(x) is discontinuous at x = 0 Checking continuity at a + x = 1/2 L.H.L. = lim − f(x) = 0 x→

1 2

R.H.L. = lim f(x) = – 1 − x→

1 2

As L.H.L. ≠ R.H.L., 1 . 2 Checking continuity at x = 1 :

f(x) is discontinuous at x =

L.H.L. = xlim f(x) = – 1 →1− R.H.L. = xlim f(x) = – 1 = xlim (2x – 3) = – 1 →1+ →1+ and f(1) = – 1 As L.H.L = R.H.L. = f(1) f(x) is continuous at x = 1 Checking continuity at x = 3/2 : L.H.L. = lim − (2x – 3) = 0 x→

3 2

R.H.L. = lim + (3 – 2x) = 0 x→

As

and

⎛3⎞ f ⎜ ⎟ =0 ⎝2⎠

and

f(2) = 0

3 2

⎛3⎞ L.H.L. = R.H.L. = f ⎜ ⎟ , ⎝2⎠

f(x) is continuous at x = 3/2 Checking continuity at x = 2 : L.H.L. = xlim (3 – 2x) = – 1 →2 − As L.H.L. ≠ f(2), f(x) is discontinuous at x = 2 Example : 27 If f(x) =

sin 2 x + A sin x + B cos x x3

is continuous at x = 0, find the values of A and B. Also find f(0).

Solution As f(x) is continuous at x = 0 f(0) = xlim f(x) and both f(0) and xlim f(x) = are finite →a →a 2 sin 2x + A sin x + B cos x f(0) = xlim →0 x3 As denominator → 0 as x → 0, ∴ Numerator should also → 0 as x → 0. Which is possible only if (for f(0) to be finite) sin 2(0) + A sin (0) + B cos 0 = 0 ⇒ B=0



Page # 17.



sin 2x + A sin x f(0) = xlim →0 x2



⎛ sin x ⎞ ⎛ 2 cos x + A ⎞ ⎛ 2 cos x + A ⎞ ⎜ ⎟ ⎜ ⎟ = lim ⎜ ⎟ f(0) = xlim 2 →0 ⎝ x ⎠ ⎝ x →0 ⎝ x x2 ⎠ ⎠

Again we can see that Denominator → 0 as x → 0 ∴ Numerator should also approach 0 as x → 0 ⇒ 2+A=0 ⇒ A=–2



(for f(0) to be finite)

⎞ ⎛ ⎛ 2 x ⎞ ⎜ − sin 2 x ⎟ ⎟ ⎜ − 4 sin 2⎟ ⎜ 2⎟ ⎛ 2 cos x − 2 ⎞ ⎜ lim ⎜ 2 ⎜ ⎟ = lim ⎜ 2 ⎟ =–1 f(0) = xlim = ⎟ 2 x x →0 ⎝ x →0 x ⎠ ⎜ ⎟ x →0 ⎜ ⎟ ⎠ ⎝ 4 ⎠ ⎝

So we get A = – 2, B = 0 and f(0) = – 1 Example : 28 Evaluate xlim →0

64 x − 32 x − 16 x + 4 x + 2 x − 1

( 3 + cos x − 2)sin x

Solution Let L = xlim →0

64 x − 32 x − 16 x + 4 x + 2 x − 1

( 3 + cos x − 2)sin x

On rationalising the denominated, we get L = xlim →0

2 6 x − 25 x − 2 4 x + 22 x + 2 x − 1 (cos x − 1) sin x

( 3 + cos x + 2)

On factorising the numerator, we get (2 x − 1)[2 5 x − 2 5 x (2 x − 1) + 1 L = xlim × xlim →0 →0 (cos x − 1) sin x

( 3 + cos x + 2)



( 2 x − 1)[(2 5 x − 2 3 x ) − ( 2 2 x − 1)] L = xlim ×4 →0 (cos x − 1) sin x



( 2 x − 1)( 2 2 x − 1)(2 3 x − 1) L = xlim ×4 →0 (cos x − 1) sin x



⎛ 2 x − 1⎞ ⎛ 22x − 1 ⎞ ⎜ ⎟ ⎟ lim ⎜ L = 4 xlim × 2 ×3 ⎟ →0 ⎜ x →0 ⎜ 2x ⎟ ⎝ x ⎠ ⎝ ⎠ ⎛ 23 x − 1 ⎞ ⎛ ⎞ x2 ⎛ x ⎞ ⎜ ⎟ ⎟ lim ⎜ lim lim ⎜ ⎟ × × 2 ⎜ ⎜ ⎟ ⎟ x →0 x →0 x →0 ⎝ sin x ⎠ ⎝ 3x ⎠ ⎝ − 2 sin ( x / 2) ⎠

⇒ Example : 29 (i)

L = 4 (ln 2) = 2 (ln 2) × 3 (ln 2) × (–2)



L = – 48 (ln 2)3

If f is an even function defined on the interval (–5, 5), then find the four real values of x satisfying ⎛ x +1⎞ ⎟. the equation f(x) = f ⎜ ⎝ x + 2⎠

(ii)

⎛ 1 + 5x 2 ⎜ Evaluate : xlim 2 →0 ⎜ ⎝ 1 + 3x

1

⎞ x2 ⎟ . ⎟ ⎠

Page # 18.

(iii)

π⎞ π⎞ ⎛ ⎛ ⎛5⎞ If f(x) = sin2x + sin2 ⎜ x + ⎟ = cos x cos ⎜ x + ⎟ and g ⎜ ⎟ = 1, then find g [f(x)]. 3⎠ 3⎠ ⎝ ⎝ ⎝4⎠

(iv)

Let f(x) = [x] sin

( π) where [ ] denotes the greater integer function. Find the domain of f(x) and [ x + 1]

the points of discontinuity of f(x) in the domain. Solution (i)

⎛ x +1⎞ ⎟ It is given that f(x) = f ⎜ ⎝ x + 2⎠



⎛ x +1⎞ ⎟ x= ⎜ ⎝ x + 2⎠



x=



x2 + x – 1 = 0

− 1± 5 2

...........(i)

As f(x) is even, f(x) = f(–x) ⎛ x +1⎞ ⎟ –x= ⎜ ⎝ x + 2⎠



x2 + 3x + 1 = 0 ⇒

x=

−3± 5 2

...........(ii)

One combining (i) and (ii), we get : x=

(ii)

− 1± 5 −3± 5 and x = . 2 2

⎛ 1 + 5x 2 ⎜ Let L = xlim 2 →0 ⎜ ⎝ 1 + 3x

1

⎞ x2 ⎟ ⎟ ⎠ 1



⎛ 1 + 5x 2 ⎞ x2 ⎜1 + ⎟ − 1 L = xlim 2 →0 ⎜ ⎟ ⎝ 1 + 3x ⎠



2 ⎛ ⎜1 + 2x L = xlim 2 →0 ⎜ ⎝ 1 + 3x



⎜ 1 + 3x ⎝ L = xlim →0 e

⎛ ⎜

(iii)

2

2

⎞ ⎟ ⎟ ⎠

1

⎞ x2 ⎟ ⎟ ⎠

2

=e

1 ⎡ ⎤ ⎢u sin g : lim(1 + t ) t = e⎥ t →0 ⎢⎣ ⎥⎦

π⎞ π⎞ ⎛ ⎛ It is given that f(x) = 1 – cos2x + sin2 ⎜ x + ⎟ + cos x cos ⎜ x + ⎟ 3⎠ 3⎠ ⎝ ⎝

⎡ π ⎞⎤ 2 2⎛ 1 ⎡2 cos x cos⎛⎜ x + π ⎞⎟⎤ ⎢ ⎥ = 1 – ⎢cos x − sin ⎜ x + 3 ⎟⎥ + 3 ⎠⎦ ⎝ ⎠⎦ ⎝ 2 ⎣ ⎣

π⎞ ⎛ π = 1 – cos ⎜ 2x + ⎟ cos + 3 3 ⎝ ⎠

π⎞ ⎛ π⎞ ⎛ π⎞ ⎛ cos⎜ ⎟ cos⎜ ⎟ cos⎜ 2x + ⎟ 3⎠ 5 ⎝3⎠ ⎝3⎠ ⎝ + =1+ = 2 2 2 4

Page # 19.



For all values of x, f(x) =

5 . (constant function) 4

⎛5⎞ Hence, g[f(x)] = g ⎜ ⎟ ⎝4⎠ ⎛5⎞ But g ⎜ ⎟ = 1 ⇒ ⎝4⎠

g [(f(x)] = 1

Hence, g[f(x)] = 1 for all values of x

(iv)

Let f(x) = [x] sin

( π) [ x + 1]

Domain of f(x) is x ∈ R excluding the point where [x + 1] = 0 (Q denominator cannot be zero) Find values of x which satisfy [x + 1] = 0 [x + 1] = 0 ⇒ 0≤x+1<1 ⇒ –1≤x<0 i.e. for all x ∈ [–1, 0), denominator is zero. So, domain is x ∈ R [–1, 0) ⇒ Domain is x ∈ (–∞, –1) ∪ [0, ∞) Point of Discontinuity As greatest integer function is discontinuous at integer points, f(x) is continuous for all non-integer points. Checking continuity at x = a (where a – 1) ⎛ ⎞ π ⎜⎜ ⎟⎟ L.H.L. = hlim [a – h] sin →0 ⎝ [a + 1 − h ] ⎠



⎛π⎞ L.H.L. = (a – 1) sin ⎜ ⎟ ⎝a⎠

............(i)

⎛ ⎞ π ⎜⎜ ⎟⎟ R.H.L. = hlim [a + h] sin →0 ⎝ [a + 1 + h] ⎠



⎛ π ⎞ ⎟ L.H.L. = a sin ⎜ ⎝ a + 1⎠

From (i) and (ii), L.H.L. ≠ R.H.L. ⇒ f(x) is discontinuous at x = a So, points of discontinuity are x ∈ Ι ∩ D. ⇒ x ∈ Ι – {–1}.

............(ii)

(i.e. at integer values of x) (i.e. integers lying in the set of domain)

Page # 20.

Related Documents