Example : 1 Find the domain and the range of the following functions (a) Solution (a)
y=
(b)
1− x 2
(c)
(c)
y=
1 x−2
1 – x2 ≥ 0 ⇒ x2 ≤ 1 ⇒ –1≤x≤1 Hence the domain is x set [–1, 1]. For range : As –1≤x≤1 ⇒ 0 ≤ x2 ≤ 1 ⇒ 0 ≤ 1 – x2 ≤ 1
For domain :
⇒
(b)
y = 2 sin x
0≤
1− x 2 ≤ 1 ⇒ 0≤y≤1 Hence the range is set [0, 1] y = 2 sin x For domain : x ∈ R i.e. x (–∞, ∞) For range : – 1 ≤ sin x ≤ 1 – 2 ≤ 2 sin x ≤ 2 –2≤y≤2 Hence the range is y ∈ [–2, 2] As denominator cannot be zero, x can not be equal to 2 domain is x ∈ R – {2} i.e. x ∈ (–∞ , 2) (2, ∞) Range : As y can never become zero, the range is y ∈ R – {0} i.e. y ∈ (–∞, 0) (0, ∞)
Example : 2 Find the domain of the following functions : (a)
1 3 − x + log x 10
(b)
1 x+ | x |
(c)
1 − log10 x
Solution (a)
3 − x is defined if 3 – x ≥ 0 ⇒
x≤3
............(i)
1 log10 x is defined if x > 0 and x ≠ 1
(b)
(c)
⇒ x > 0 – {1} ............(ii) Combining (i) and (ii), set of domain is : x ∈ (0, 1) ∪ (1, 3] f(x) is defined if : x + |x| ≠ 0 ⇒ |x| ≠ – x ⇒ x>0 Hence domain is x ∈ (0, ∞) f(x) is defined if 1 – log10x ≥ 0 and x>0 ⇒ log10x ≤ 1 and x>0 ⇒ x ≤ 10 and x>0 ⇒ domain is x ∈ (0, 10]
Example : 3 (Using factorisation) Evaluate the following limits : (a)
3 lim x − 2 x − 4 x →2 x 2 − 3 x + 2
(b)
3 3 lim x − a x →a x 2 − ax
(c)
4 lim x − 625 x →5 x 3 − 125
Page # 1.
Solution (a)
2 3 2 lim x − 2 x − 4 = lim ( x − 2)( x + 2x + 2) = lim x + 2x + 2 = 10 x →2 x 2 − 3 x + 2 x →2 x →2 ( x − 2)( x − 1) x −1
(b)
2 2 3 3 2 2 lim x − a = lim ( x − a)( x + ax + a ) = lim x + ax + a = 3a x →a x 2 − ax x →a x →a x( x − a ) x
(c)
x 4 − 54 4 4 .5 3 20 x−5 lim x − 625 = lim = = 3 3 3 x →5 x − 125 x →5 x − 5 3 3 .5 2 x−5
[using section 2.2 (ix)]
Example : 4 (Using rationalisation) Evaluate the following limits : (a)
3x + 7 − 4
lim
x →3
(b)
x +1− 2
lim
x →a
a + 2x − 3 x 3a + x − 2 x
(c)
lim
x →1
3
x −1
x2 − 1
Solution (a)
3x + 7 − 4
lim
x →3
x +1− 2
Rationalising the numerator and denominator, 3 x + 7 − 16 = xlim →3 x + 1− 4 3( x − 3 ) = xlim →3 x−3
= 3 xlim →3 (b)
⎛ x +1+ 2 ⎞ ⎟ ⎜ ⎜ 3x + 7 + 4 ⎟ ⎠ ⎝
⎛2+2⎞ 3 ⎟ = =3 ⎜ 4 + 4 ⎝ ⎠ 2 3x + 7 + 4
x +1 + 2
Rationalising numerator and denominator we get, a + 2x − 3 x = xlim →a 3a + x − 4 x
= xlim →a
(c)
⎛ x +1+ 2 ⎞ ⎟ ⎜ ⎜ 3x + 7 + 4 ⎟ ⎠ ⎝
a−x 3(a − x )
⎛ 3a + x + 2 x ⎞ ⎟ ⎜ ⎜ a + 2x + 3 x ⎟ ⎠ ⎝
⎛ 3a + x + 2 x ⎞ 1 ⎟ ⎜ ⎜ a + 2x + 3 x ⎟ = 3 ⎠ ⎝
⎛2 a +2 a ⎞ 2 ⎟ ⎜ ⎜ 3a + 3a ⎟ = 3 3 ⎠ ⎝
1 ⎛ 1 ⎞⎛ 2 ⎞ ⎜ x 3 − 1⎟⎜ x 3 + x 3 + 1⎟ 1 ⎜ ⎟⎜ ⎟ ⎠⎝ ⎠ lim x 3 − 1 = lim ⎝ x →1 x →1 2 1 2 ⎛ ⎞ x −1 ( x 2 − 1)⎜ x 3 + x 3 + 1⎟ ⎜ ⎟ ⎝ ⎠
lim
x →1
( x − 1) 1 = 2 1 ⎛ ⎞ 6 ( x − 1)( x + 1)⎜ x 3 + x 3 + 1⎟ ⎜ ⎟ ⎝ ⎠
Page # 2.
Example : 5 (x → ∞ type problems) Evaluate the following limits : (a)
3 2 lim x − 2x + 3 x + 1 x →∞ 5 x 3 + 7x + 2
(b)
2 2 2 2 lim 1 + 2 + 3 + ........ + n n→ ∞ n3
(c)
lim
x →∞
x 2 + 3 x + 1 + 5x 1 + 4x
Solution In these type of problems, divide numerator and denominator by highest power of x. (a) Dividing numerator and denominator by x3
2 3 1 + 2 + 3 x x x 1 = 7 2 5 5+ 2 + 3 x x
1− = xlim →∞
[because as x → ∞,
(b)
2 2 2 2 lim 1 + 2 + 3 + ........ + n n→ ∞ n3
= nlim →∞
(c)
1 1 1 , , ......... → 0] x x2 x3
n(n + 1)(2n + 1) 6n3
=
1⎞ ⎛ 1⎞ 1 lim ⎛ ⎜1 + ⎟ ⎜ 2 + ⎟ n → ∞ n⎠ 6 ⎝ n⎠ ⎝
=
1 1 (1 + 0) (2 + 0) = 6 3
The highest power of x is 1. Hence divide the numerator and denominator by x. x 2 + 3 x + 1 + 5x 1 + 4x
lim
x →∞
1+ = xlim →∞
3 1 + +5 x x2 1+5 3 = = 1 0+4 2 +4 x
Example : 6 (∞ – ∞ form) Evaluate the following limits :
lim (a)
x→
π 2
(sec x – tan x)
(b)
lim
x →∞
( ( x + 2a)(2x + a) − x 2 )
(c)
lim ⎛⎜ x − x 2 + x ⎞⎟ ⎝ ⎠
x →∞
Solution
lim
(a)
π x→ 2
lim x→
(b)
π 2
lim
x →∞
(sec x – tan x) =
lim sec 2 x − tan 2 x π x→ 2 sec x + tan x
1 =0 sec x + tan x
( ( x + 2a)(2x + a) − x 2 )
Rationalising the expression, we get
lim
x →∞
( x + 2a)(2x + a) − 2x 2
( (x + 2a)(2x + a) + x 2 ) Page # 3.
5ax + 2a 2
= xlim →∞
2x 2 + 5ax + 2a 2 + x 2
Dividing numerator and denominator by x, we get 5a +
= xlim →∞
(c)
2+
2a 2 x
5a
2
5a 2a + 2 + 2 x x
=
2 2
lim ⎛⎜ x − x 2 + x ⎞⎟ ⎝ ⎠
x →∞
On rationalising the expression, we get x 2 − (x 2 + x)
= xlim →∞
= xlim →∞
x + x2 + x
−x x + x2 + x
Divide by the highest power of x i.e. x1
−1
= xlim →∞
=
1 1+ 1+ x
−1 1 =– 1+ 1 2
Example : 7 sin x ⎛ ⎞ = 1⎟ Evaluate the following limits : ⎜ u sin g lim x →0 x ⎝ ⎠
lim tan x − 3 π
(a)
x→
(c)
x →a
3
9x − π 2
2
lim cos x − cos a x−a
lim sin(cos x ) cos x π 2 sin x − cos ecx
(b)
x→
(d)
x →a
lim
a sin x − x sin a ax 2 − a 2 x
Solution
(a)
lim tan x − 3 π
x→
3
9x 2 − π2
Using tan A – tan B =
lim x→
(b)
π 3
π 3 9x 2 − π2
lim tan x −
=
π x→ 3
sin( A − B) we get, cos A cos B
π⎞ ⎛ sin⎜ x − ⎟ sin θ 1 ⎛ ⎞ 1 2 3 ⎝ ⎠ = 1⎟ = ⎜ u sin g lim = θ → 0 π π θ π 3 cos cos ( π + π) ⎝ 3π ⎠ cos x cos (3x − π)(3x + π) 3 3 3
lim sin(cos x ) cos x lim sin(cos x ) π = x→ π cos x 2 sin x − cos ecx 2
x→
lim
π x→ 2
lim cos 2 x sin x cos 2 x = 1 × x→ π 2 sin x − cos ecx sin 2 x − 1
sin θ ⎛ ⎞ = 1⎟ ⎜ u sin g lim θ → 0 θ ⎝ ⎠
lim =–
x→
π 2
(sin x) = – 1
Page # 4.
(c)
⎛ x+a⎞ ⎛x−a⎞ − 2 sin⎜ ⎟ sin⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ lim cos x − cos a lim x →a x →a x−a ⎛x−a⎞ 2×⎜ ⎟ ⎝ 2 ⎠ ⎛ x−a⎞ sin⎜ ⎟ ⎝ 2 ⎠ ⎛x+a⎞ ⎟ lim ⎛ x − a ⎞ = – sin a = – xlim sin ⎜ →a ⎝ 2 ⎠ x →a ⎜ ⎟ ⎝ 2 ⎠
(d)
lim
a sin x − x sin a
x →a
ax 2 − a 2 x
= xlim →a
a sin x − x sin x + x sin x − x sin a (a − x ) sin x + x(sin x − sin a) = xlim →a ax( x − a) ax( x − a)
⎛x+a⎞ 2 cos⎜ ⎟ (a − x ) sin x sin x − sin a sin a ⎝ 2 ⎠ lim lim = xlim + = – + →a x →a x →a ax( x − a) a( x − a) 2a a2
=
sin a a2
+
( x − a) ⎤ ⎡ ⎢ sin 2 ⎥ ⎢ ⎥ ⎢ ( x − a) ⎥ 2 ⎣⎢ ⎦⎥
cos a a
Example : 8 x ⎛ ⎞ ⎜ u sin g lim a − 1 = log a ⎟ ⎜ ⎟ Evaluate the following limits : x →0 x ⎝ ⎠
−e x−a
(a)
x lim 2 − 2 x →1 x −1
(b)
x →a
(c)
x x x lim 6 − 2 − 3 + 1 x →0 sin 2 x
(d)
x x lim 3 − 5 x →0 x
lim e
x
a
Solution (a)
(b)
x x −1 lim 2 − 2 = 2 lim 2 − 1 = 2 log 2 x →1 x →1 x −1 x −1
lim e
x →a
= e
a
= e
a
−e x−a
x
a
lim e
x →a
(1) xlim →a
e
= xlim →a
a⎛
x− a
− 1 lim x − a x →a
⎜ e x − a − 1⎞⎟ ⎝ ⎠ x −a x− a x−a
( x − a) ( x − a)
(
x+ a
)
=
e
a
2 a
Page # 5.
(c)
x x x lim 6 − 2 − 3 + 1 x →0 sin 2 x
x2 (2 x − 1)3 x − 1) lim = x →0 sin2 x x2 2
2 x − 1 lim 3 x − 1 lim ⎛ x ⎞ ⎜ ⎟ = loge2 loge2 = xlim →0 x →0 x →0 ⎝ sin x ⎠ x x
(d)
⎡ 3 x − 1 5 x − 1⎤ x x 3 lim 3 − 5 = lim ⎢ − ⎥ = log 3 – log 5 = log x →0 x →0 ⎢ x x 5 x ⎣ ⎦⎥
Example : 9 1 ⎡ ⎤ ⎢u sin g lim (1 + x ) x = e⎥ Evaluate the following limits : x →0 ⎢⎣ ⎥⎦
(a)
lim
1
x →0
lim xcotπx
(b)
(1 − 2x ) x
x →1
Solution
(a)
(b)
1 lim x →0 (1 − 2x ) x
lim xcotπx
x →1
= e
−1 ⎞ ⎛ ⎜ (1 − 2x ) 2 x ⎟ lim = x →0 ⎜ ⎟ ⎝ ⎠
1 ⎤ ⎡ x −1 ⎥ ⎢ lim 1 x 1 ) + − = x →1 ⎢⎣ ⎥⎦
lim ( x −1) cot πx
x →1
lim
= e
x →1
1− x tan( π − πx )
−2
( x −1) cot πx
lim
= e
x →1
1 π − πx π tan( π − πx )
=
1 π e
tan θ ⎛ ⎞ = 1⎟ ⎜ u sin g lim θ → 0 θ ⎝ ⎠
Example : 10 Show that the limit of : ⎧2 x − 1 ; x ≤ 1 f(x) = ⎨ ; x >1 ⎩ x
at x = 1 exists
Solution f(x) = xlim (2x – 1) = 2 – 1 = 1 Left hand limit = xlim →1− →1− (we use f(x) = 2x – 1
Q while calculating limit at x = 1, we approach x = 1 from LHS i.e. x < 1)
Right hand limit = xlim f(x) = xlim (x) = 1 →1+ →1+ ⇒
L.H.L. = R.H.L. = 1. Hence limit exists
Page # 6.
Example : 11 Find whether the following limits exist or not : (a)
lim sin 1 x
x →0
(b)
lim x sin 1 x
x →0
Solution (a)
1 →∞. x As the angle θ approaches ∞ , sin θ oscillates by taking values between – 1 and + 1.
As x → 0,
1 Hence xlim sin is not a well defined finite number. →0 x ⇒ limit does not exist
(b)
lim x sin 1 = lim x lim sin 1 x →0 x →0 x x = 0 × (some quantity between – 1 and + 1) = 0 x →0
1 1 It can be easily seen that xlim x sin = xlim x sin =0 →0 + →0 − x x Hence the limit exists and is equal to zero (0)
Example : 12 Comment on the following limits : (a)
lim [x – 3]
x →1
(b)
lim | x | x
x →0
Solution (a)
Right Hand limit = xlim [x – 3] →1+ = hlim [1 + h – 3] = hlim [h – 2] →0 →0 = – 2 (because h – 2 is between – 1 and – 2) Left hand limit = xlim [x – 3] →1− = hlim [1 – h – 3] = hlim [–2 – h] →0 →0 = – 3 (because – h – 2 is between – 2 and – 3) Hence R.H.L. ≠ L.H.L. ⇒ limit does not exist.
(b)
|x| −x Left hand limit = xlim = xlim =–1 →0 − →0 − x x |x| x Right hand limit = xlim = xlim =+1 →0 + →0 + x x Hence R.H.L. ≠ L.H.L. ⇒ limit does not exist
Example : 13 Find a and b so that the function :
π ⎧ ; 0≤x< ⎪ x + a 2 sin x 4 ⎪⎪ π π ; ≤x≤ f(x) = ⎨ 2x cot x + b 4 2 ⎪ ⎪a cos 2x − b sin x ; π < x ≤ π 2 ⎩⎪
Page # 7.
is continuous for x ∈ [0, π] Solution At x = π/4 Left hand limit = lim− f(x) = lim− (x + a 2 sin x) =
π +a 4
Right hand limit = lim+ f(x) = lim+ (2x cot x + b) =
π +b 2
π x→ 4
x→
π x→ 4
π 4
x→
π 4
⎛π⎞ ⎛π⎞ π π f ⎜ ⎟ = 2 ⎜ ⎟ cot +b= +b 4 4 ⎝ ⎠ ⎝ ⎠ 4 2
for continuity, these three must be equal π π +a= +b ⇒ 4 2 At x = π/2
⇒
a–b=
π 4
.............(i)
Left hand limit = lim− (2x cot x + b) = 0 + b = b x→
π 2
Right hand limit = lim+ (a cos 2x – b sin x) = – a – b x→
π 2
⎛π⎞ f ⎜ ⎟ =0+b ⎝2⎠
for continuity, b = – a – b ⇒ a + 2b = 0
............(ii)
Solving (i) and (ii) for a and b, we get : b = –
π π ,a= 6 12
Example : 14 A function f(x) satisfies the following property f(x + y) = f(x) f(y). Show that the function is continuous for all values of x if it is continuous at x = 1 Solution As the function is continuous at x = 1, we have
lim f(x) = lim− f(x) = f(1) x →1
x →1−
⇒
lim f(1 – h) = lim f(1 + h) = f(1) h→0
h→0
using f(x + y) = f(x) f(y), we get
lim f(1) f(–h) = lim f(1) f(h) = f(1) h→0
⇒
h→0
⇒
h→0
lim f(–h) = lim f(h) = 1 h→0
..............(i)
Now consider some arbitrary point x = a Left hand limit = hlim f(a – h) = hlim f(a) f(–h) →0 →0 = f(a) hlim f(–h) = f(a) →0
............. using (i)
Right hand limit = hlim f(a + h) = hlim f(a) f(h) →0 →0 = f(a) hlim f(h) = f(a) →0
............. using (i)
Hence at any arbitrary point (x = a) L.H.L. = R.H.L. = f(a) ⇒ function is continuous for all values of x.
Page # 8.
Example : 15 ⎧1 + x ; 0 ≤ x ≤ 2 f(x) = ⎨ ⎩3 − x ; 2 < x ≤ 3
Determine the form of g(x) = f(f(x)) and hence find the point of discontinuity of g, if any Solution
⎧ f (1 + x ) ; 0 ≤ x ≤ 1 ⎧1 + x ; 0 ≤ x ≤ 2 ⎪ g(x) = f(f(x)) = ⎨ = ⎨ f (1 + x ) ; 1 < x ≤ 2 3 − x ; 2 < x ≤ 3 ⎩ ⎪f ( 3 − x ) ; 2 < x ≤ 3 ⎩ Now
x ∈ [0, 1] x ∈ (0, 2] x ∈ (2, 3]
⇒ ⇒ ⇒
(1 + x) ∈ [1, 2] (1 + x) ∈ (2, 3] (3 – x) ∈ [0, 1)
Hence
⎧ f (1 + x ) for 0 ≤ x ≤ 1 ⇒ 1 ≤ x + 1 ≤ 2 ⎪ g(x) = ⎨ f (1 + x ) for 1 < x ≤ 2 ⇒ 2 < x + 1 ≤ 3 ⎪f (3 − x ) for 2 < x ≤ 3 ⇒ 0 ≤ 3 − x < 1 ⎩ Now if (1 + x) ∈ [1, 2], then f(1 + x) = 1 + (1 + x) = 2 + x [from the original definition of f(x)] Similarly if (1 + x) ∈ (2, 3), then f(1 + x) = 3 – (1 + x) = 2 – 2 .............(ii) If (3 – x) ∈ (0, 1), then f(3 – x) = 1 + (3 + x) = 4 – x .............(iii)
...........(i)
⎧2 + x ; 0 ≤ x ≤ 1 ⎪ Using (i), (ii) and (iii), we get g(x) = ⎨2 − x ; 1 < x ≤ 2 ⎪4 − x ; 2 < x ≤ 3 ⎩ Now we will check the continuity of g(x) at x = 1, 2 At x = 1 L.H.L. = xlim g(x) = xlim (2 + x) = 3 →1− →1− R.H.L. = xlim g(x) = xlim (2 – x) = 1 →1+ →1+ As L.H.L., g(x) is discontinuous at x = 1 At x = 2 L.H.L. = xlim g(x) = xlim (2 – x) = 0 →2 + →2 − R.H.L. = xlim g(x) = xlim (4 – x) = 2 →2 + →2 + As L.H.L. ≠ R.H.L., g(x) is discontinuous at x = 2 Example : 16 ⎧ e1/ x − 1 ⎪ ; x≠0 1/ x Discuss the continuity of f(x) = ⎨ e + 1 at the point x = 0 ⎪ 0 ; x=0 ⎩
Solution
LHL = xlim →0 −
1 ex
−1
1 ex
+1
t lim e − 1 = 0 − 1 = – 1 = t→ −∞ e t + 1 0 +1
Page # 9.
1
RHL = xlim →0 +
ex −1 1
ex +1
−t et − 1 lim 1 − e = tlim = →∞ e t + 1 t →∞ 1 + e − t
1− 0 =1 1+ 0
⇒
R.H.L. =
⇒
L.H.L. ≠ R.H.L. ⇒
f(x) is discontinuous at x = 0
Example : 17 Discuss the continuity of the function g(x) = [x] + [–x] at integral values of x. Solution Let us simplify the definition of the function (i) If x is an integer : [x] = x and [–x] = – x ⇒ g(x) = x – x = 0 (ii) If x is not integer : let x = n + f where n is an integer and f ∈ (0, 1) ⇒ [x] = [n + f] = n and [–x] = [–n – f] = [(–n – 1) + (1 – f)] = – n – 1 (because 0 < f < 1 ⇒ 0 , (1 – f) < 1) Hence g(x) = [x] + [–x] = n + (–n – 1) = – 1 So we get :
if x is an int eger ⎧0 , g(x) = ⎨ ⎩− 1 , if x is not an int eger
Let us discuss the continuity of g(x) at a point x = a where a ∈ Ι g(x) = – 1 L.H.L. = xlim →a − as x → a– , x is not an integer
Q
R.H.L. = xlim g(x) = – 1 →a + as x → a+ , x is not an integer but g(a) = 0 because a is an integer Hence g(x) has a removable discontinuity at integral values of x. Example : 18 Which of the following functions are even/odd? (a)
f(x) =
x
(b)
⎛ 1+ x ⎞ ⎟ f(x) = x log ⎜ ⎝ 1− x ⎠
(c)
f(x) = |x|
(d)
2 ⎛ ⎞ f(x) = log ⎜ x + x + 1 ⎟ ⎝ ⎠
ax − 1 a +1
Solution a −x − 1
= – f(x) ⇒ f(x) is odd
f(–x) =
(b)
⎛ 1− x ⎞ ⎛ 1− x ⎞ ⎟ = x log ⎜ ⎟ f(–x) = – x log ⎜ ⎝ 1+ x ⎠ ⎝ 1+ x ⎠
(c)
⇒ f(x) is even f(–x) = |–x| = |x| = f(x) ⇒ f(x) is even
a−x + 1
=
1− ax
(a)
1+ ax
−1
⎛ 1+ x ⎞ ⎟ = f(x) = x log ⎜ ⎝ 1− x ⎠
Page # 10.
(d)
⎛ 1+ x2 − x2 ⎜ ⎛ − x + 1+ x2 ⎞ ⎟ = log ⎜ f(–x) = log ⎜ 2 ⎝ ⎠ ⎝ x + 1+ x
⇒
⎞ ⎟ ⎟ = – log ⎠
⎛ x + x 2 + 1⎞ ⎜ ⎟ = – f(x) ⎝ ⎠
f(x) is odd.
Example : 19 Which of the following functions are periodic ? Give reasons (a)
f(x) = x + sin x
(b)
cos
x 2
(c) f(x) = x – [x] (d) cos x Solution If a function f(x) is periodic, then there should exist some positive value of constant a for which f(x + a) = f(x) is an identity (i.e. true for all x) The smallest value of a satisfying the above condition is known as the period of the function (a) Assume that f(x + a) = f(x) ⇒ x + a + sin (x + a) = x + sin x ⇒ sin x – sin (x + a) = a
(b)
⇒
a⎞ ⎛ a 2 cos ⎜ x + ⎟ sin =–a 2⎠ ⎝ 2
⇒
a⎞ ⎛ a 2 cos ⎜ x + ⎟ sin = – a 2⎠ ⎝ 2
This cannot be true for all values of x. Hence f(x) is non-periodic Assume that f(x + a) = f(x) ⇒
(c)
(d)
cos
x + a = cos
⇒
x + a = 2np ±
⇒
x+a ±
⇒
2x + a ± 2
⇒
2x ± 2
x x
x = 2nπ 2 2 x 2 + ax = 4n π
2 2 x 2 + ax = 4n π – a
As this equation cannot be an identity, 3 f(x) is non-periodic Assume that f(x + a) = f(x) ⇒ x + a – [x + a] = x – [x] ⇒ [x + a] – [x] = a This equation is true for all values of x if a is an integer hence f(x) is periodic Period = smallest positive value of a = 1 Let f(x + a) = f(x) ⇒ cos2 (x + a) = cos2x ⇒ cos2 (x + a) – cos2x = 0 ⇒ sin (2x + a) sin (a) = 0 this equation is true for all values of x if a is an integral multiple of π Hence f(x) is periodic. Period = smallest positive value of a = π
Example : 20 n
Find the natural number a for which
∑ f (a + k ) = 16(2
n
– 1) where the function f satisfies the relation
k =1
f(x + y) = f(x) f(y) for all natural numbers x, y and further f(1) = 2. Solution Since the function f satisfies the relation f(x + y) = f(x) f(y) It must be an exponential function.
Page # 11.
Let the base of this exponential function be a. Thus f(x) = ax It is given that f(1) = 2. So we can make ⇒ a=2 f(1) = a1 = 2 Hence, the function is f(x) = 2x ..........(i) [Alternatively, we have f(x) = f(x – 1 + 1) = f(x – 1) f(1) = f(x – 2 + 1) f(1) = f(x – 2) [f(1)]2 = .............. = [f(1)]x = 2x] Using equation (i), the given expression reduces to : n
∑2
a+k
k =1
= 16 (2n – 1)
n
⇒
∑2
a
k =1
. 2k = 16 (2n – 1)
n
∑2
k
⇒
2
⇒
2a (2 + 4 + 8 + 16 + ..............+ 2n) = 16 (2n – 1)
⇒
⎡ 2(2n − 1) ⎤ 2 ⎢ 2 − 1 ⎥ = 16 (2n – 1) ⎢⎣ ⎥⎦
⇒ ⇒
2a+1 = 16 a+1=4
a
k =1
= 16 (2n – 1)
a
⇒ ⇒
2a+1 = 24 a=3
Example : 21 Evaluate the following limits :
(i)
x 3− x − 12 lim 3 + 3 3− x x/2 x →2 3 −3
(ii)
lim
x→π / 3
tan3 x − 3 tan x π⎞ ⎛ cos⎜ x + ⎟ 6⎠ ⎝
(iii)
lim
x → −∞
1 + x2 x 1+ | x 3 |
x 4 sin
Solution (i)
3 x + 3 3 − x − 12 lim Let L = x →2 3 3− x − 3 x / 2
3x + ⇒
L = xlim →2
⇒
L = xlim →2
⇒
L = xlim →0
⇒
L = xlim →2
⇒
L=
27 − 12 3x
27 − 3x / 2 3x 3 2 x − 12.3 x + 27 (3 x / 2 )3 − 3 3 (3 x − 9)(3 x − 3) (3 x / 2 − 3)(3 x + 9 + 3.3 x / 2 ) (3 x / 2 + 3)(3 x − 3) ( 3 x + 3. 3 x / 2 + 9 )
6 .6 4 36 = = 9 + 3 .3 + 9 3 27
Page # 12.
(ii)
lim Let L = L = x→ π/3
⇒
(iii)
tan3 x − 3 tan x π⎞ ⎛ cos⎜ x + ⎟ 6 ⎝ ⎠
and
x–
π =t 3
π⎞ π⎞ ⎛ ⎛ tan3 ⎜1 + ⎟ − 3 tan⎜ t + ⎟ 3 3 ⎝ ⎠ ⎝ ⎠ L = tlim π ⎛ ⎞ →0 cos⎜ t + ⎟ ⎝ 2⎠
⇒
⎡ π⎞ ⎤ ⎛ tan(3t + π) ⎢3 tan 2 ⎜1 + ⎟ − 1⎥ ⎝ 3⎠ ⎦ ⎣ L = tlim →0 − sin t
⇒
− tan( 3t ) lim ⎡3 tan 2 ⎛ t + π ⎞ − 1⎤ ⎜ ⎟ ⎥ L = tlim . t →0 ⎢ →0 − sin t ⎝ 3⎠ ⎦ ⎣
⇒
⎡ π⎞ ⎤ tan( 3t ) 1 2⎛ ⎢3 tan ⎜1 + ⎟ − 1⎥ L = 3 tlim × tlim × tlim →0 → 0 → 0 3⎠ ⎦ 3t sin t ⎝ ⎣
⇒
L = 3 × 1 × 1 × 8 = 24
Let
L = xlim →−∞
1 + x2 x 1 + | x3 |
x 4 sin
Divided Numerator and Denominator by x3 to get
L = xlim →−∞
⇒
1 sin 1 x +1 2 x sin + x 1/ x x x = 1 ( − x )3 1 3 +|x| + x3 x3 x3
L = xlim →−∞
(Q
for x < 0, |x3| = – x3)
→ (1)+ → (0) =–1 → (0) + ( −1)
Example : 22
⎧ π a /|sin x| ; <x<0 ⎪(1+ | sin x | 6 ⎪ b ; x=0 Let f(x) = ⎨ tan 2 x ⎪ π ⎪ e tan 3 x ; 0<x< 6 ⎩ Determine a and b such that f(x) is continuous at x = 0 Solution Left hand limit at x = 0 a ⎤ ⎡ lim ( ) + 1 | sin x | |sin x| ⎥ L.H.L. = xlim f(x) = ⎢ →0 − x →0 − ⎣ ⎦
⇒
L.H.L. = hlim f(0 – h) →0
⇒
a ⎤ ⎡ ( 1+ | sinh |)|sinh| ⎥ = ex L.H.L. = hlim ⎢ →0 ⎣ ⎦
1 ⎡ ⎤ ⎢u sin g : lim(1 + t ) t = e⎥ t →0 ⎢⎣ ⎥⎦
Page # 13.
Right hand limit x = 0 tan 2 x
tan 3 x R.H.L. = xlim f(x) = xlim →0 + →0 + e
⇒
R.H.L. = hlim f(0 + h) →0
⇒
tan 3h R.H.L. = hlim →0 e
⇒
3⎝ R.H.L. = hlim →0 e
tan 2h
2 ⎛ tan 2h 3h ⎞ . ⎜ ⎟ 2h tan 3h ⎠
2
= e3
for continuity L.H.L. = R.H.L. = f(0) 2
⇒
ex = e 3 = b
⇒
a=
2 , b = e2/3 3
Example : 23 πx ⎞ ⎛ ⎜ sin ⎟ Discuss the continuity of f(x) in [0, 2] where f(x) = nlim →∞ 2 ⎠ ⎝
2n
Solution ⎧0 ; | x | < 1 Since nlim x2n = ⎨ →∞ ⎩1 ; | x | = 1
∴
πx ⎞ ⎛ ⎜ sin ⎟ f(x) = nlim →∞ 2 ⎠ ⎝
⎧ ⎪0 ; ⎪ = ⎨ ⎪1 ; ⎪⎩
2n
πx <1 2 πx =1 sin 2 sin
Thus f(x) is continuous for all x, except for those values of x for which sin
πx =1 2
i.e. x is an odd integer ⇒ x = (2n + 1) where x ∈ Ι Check continuity at x = (2n + 1) : L.H.L. =
lim
x →2n +1
f(x) = 0
............(i)
and f(2n + 1) = 1 ............(ii) from (i) and (ii), we get : L.H.L. ≠ f(2n + 1), ⇒ f(x) is discontinuous at x = 2n + 1 (i.e. at odd integers) Hence f(x) is discontinuous at x = (2n + 1).
Page # 14.
Example : 24 ⎧ ⎪ 1 − cos 4 x ; x<0 2 ⎪ x ⎪ a ; x=0 Let f (x) = ⎨ ⎪ x ; x>0 ⎪ ⎩⎪ 16 + x − 4
Determine the value of a, if possible, so that the function is continuous at x = 0. Solution ⎧ ⎪ 1 − cos 4 x ; x<0 2 ⎪ x ⎪ a ; x=0 It is given that f(x) = ⎨ ⎪ x ; x>0 ⎪ ⎩⎪ 16 + x − 4
is continuous at x = 0. So we can take :
lim f(x) = f(0) = lim+ f(x) x →0
x →0 −
Left hand limit at x = 0 1− cos 4 x f(x) = tlim L.H.L. = tlim →0 − →0 − x2
Now,
L.H.L. = hlim f(0 – h) →0
⇒
2 1− cos 4h lim 2 sin 2h = 8 L.H.L. = hlim = →0 h→0 h2 h2
sin t ⎤ ⎡ = 1⎥ ⎢u sin g : tlim → 0 t ⎦ ⎣
Right hand limit at x = 0 R.H.L. = tlim f(x) = tlim →0 + →0 +
x 16 + x − 4
Now,
R.H.L. = hlim f(0 + h) →0
⇒
R.H.L. = hlim →0
h 16 + h − 4
Rationalising denominator to get : ⇒
R.H.L. = hlim →0
h ⎛ ⎞ ⎜ 16 + h + 4 ⎟ = 8 ⎠ h ⎝
For function f(x) to be continuous at x = 0, L.H.L. = R.H.L. = f(0) ⇒ 8=8=a ⇒ a=8 Example : 25 Ler {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]. Solution We can write x as : x = integral part + fractional part ⇒ x = [x] + {x} The given equation is 4{x} = x + [x]
Page # 15.
⇒ 4{x} = [x] + {x} + [x] ⇒ 3{x} = 2[x] .............(i) ⇒ 3{x} is an even integer But we have 0 ≤ {x} < 1 ⇒ 0 ≤ 3 {x} < 3 ⇒ 3{x} = 0, 2 [become 3{x} is even} ⇒
{x} = 0,
⇒ ⇒
2 3
3 2
and
[x] =
{x} = 0, 1
x=0+0
or
x=
2 +1 3
x=0
or
x=
5 3
........... (using i)
Example : 26 ; x ≤1 ⎧ [cos πx ] Discuss the continuity of f(x) in [0, 2] where f(x) = ⎨ ⎩| 2x − 3 | [ x − 2] ; x > 1
where [ ] : represents the greatest integer function. Solution First of all find critical points where f(x) may be discontinuous Consider x – [0, 1] : f(x) = [cos πx] [f(x)] is discontinuous where f(x) ∈ Ι ⇒ cos πx = Ι In [0, 1], cos πx is an integer at x = 0, x =
1 and x = 1 2
1 and x = 1 are critical points 2 Consider x – (1, 2] : f(x) = [x – 2] |2x – 3| In x ∈ (1, 2) [x – 2] = – 1 and for x = 2 ; [x – 2] = 0
⇒
x = 0, x =
⇒
Also |2x – 3| = 0 ⇒
x=
x=
............(i)
3 2
3 and x = 2 are critical points 2
............(i)
1 3 , 1, , 2 2 2 On dividing f(x) about the 5 critical points, we get
combining (i) and (ii), critical points are 0,
1 ⎧ ⎪ 0 ⎪ ⎪ ⎪ −1 ⎪ f(x) = ⎨ ⎪− 1(3 − 2x ) ⎪ ⎪ ⎪− 1(2 x − 3) ⎪ 0 ⎩
; ; ; ; ; ;
x=0
cos( π0 ) = 1 Q 1 0<x≤ 0 ≤ cos πx < 0 ⇒ [cos πx] = 0 Q 2 1 < x ≤ 1 Q − 1 ≤ cos πx < 0 ⇒ [cos πx ] = −1 2 3 1< x ≤ Q | 2x − 3 | = 3 − 2x and [ x − 2] = −1 2 3 < x < 2 Q | 2x − 3 | = 2x − 3 and [ x − 2] = −1 2 Q 2 [ x − 2] = 0
Page # 16.
Checking continuity at x = 0 : R.H.L. = xlim (0) = 0 →0 +
and
f(0) = 1
As, R.H.L. ≠ f(x) ⇒ f(x) is discontinuous at x = 0 Checking continuity at a + x = 1/2 L.H.L. = lim − f(x) = 0 x→
1 2
R.H.L. = lim f(x) = – 1 − x→
1 2
As L.H.L. ≠ R.H.L., 1 . 2 Checking continuity at x = 1 :
f(x) is discontinuous at x =
L.H.L. = xlim f(x) = – 1 →1− R.H.L. = xlim f(x) = – 1 = xlim (2x – 3) = – 1 →1+ →1+ and f(1) = – 1 As L.H.L = R.H.L. = f(1) f(x) is continuous at x = 1 Checking continuity at x = 3/2 : L.H.L. = lim − (2x – 3) = 0 x→
3 2
R.H.L. = lim + (3 – 2x) = 0 x→
As
and
⎛3⎞ f ⎜ ⎟ =0 ⎝2⎠
and
f(2) = 0
3 2
⎛3⎞ L.H.L. = R.H.L. = f ⎜ ⎟ , ⎝2⎠
f(x) is continuous at x = 3/2 Checking continuity at x = 2 : L.H.L. = xlim (3 – 2x) = – 1 →2 − As L.H.L. ≠ f(2), f(x) is discontinuous at x = 2 Example : 27 If f(x) =
sin 2 x + A sin x + B cos x x3
is continuous at x = 0, find the values of A and B. Also find f(0).
Solution As f(x) is continuous at x = 0 f(0) = xlim f(x) and both f(0) and xlim f(x) = are finite →a →a 2 sin 2x + A sin x + B cos x f(0) = xlim →0 x3 As denominator → 0 as x → 0, ∴ Numerator should also → 0 as x → 0. Which is possible only if (for f(0) to be finite) sin 2(0) + A sin (0) + B cos 0 = 0 ⇒ B=0
⇒
Page # 17.
∴
sin 2x + A sin x f(0) = xlim →0 x2
⇒
⎛ sin x ⎞ ⎛ 2 cos x + A ⎞ ⎛ 2 cos x + A ⎞ ⎜ ⎟ ⎜ ⎟ = lim ⎜ ⎟ f(0) = xlim 2 →0 ⎝ x ⎠ ⎝ x →0 ⎝ x x2 ⎠ ⎠
Again we can see that Denominator → 0 as x → 0 ∴ Numerator should also approach 0 as x → 0 ⇒ 2+A=0 ⇒ A=–2
⇒
(for f(0) to be finite)
⎞ ⎛ ⎛ 2 x ⎞ ⎜ − sin 2 x ⎟ ⎟ ⎜ − 4 sin 2⎟ ⎜ 2⎟ ⎛ 2 cos x − 2 ⎞ ⎜ lim ⎜ 2 ⎜ ⎟ = lim ⎜ 2 ⎟ =–1 f(0) = xlim = ⎟ 2 x x →0 ⎝ x →0 x ⎠ ⎜ ⎟ x →0 ⎜ ⎟ ⎠ ⎝ 4 ⎠ ⎝
So we get A = – 2, B = 0 and f(0) = – 1 Example : 28 Evaluate xlim →0
64 x − 32 x − 16 x + 4 x + 2 x − 1
( 3 + cos x − 2)sin x
Solution Let L = xlim →0
64 x − 32 x − 16 x + 4 x + 2 x − 1
( 3 + cos x − 2)sin x
On rationalising the denominated, we get L = xlim →0
2 6 x − 25 x − 2 4 x + 22 x + 2 x − 1 (cos x − 1) sin x
( 3 + cos x + 2)
On factorising the numerator, we get (2 x − 1)[2 5 x − 2 5 x (2 x − 1) + 1 L = xlim × xlim →0 →0 (cos x − 1) sin x
( 3 + cos x + 2)
⇒
( 2 x − 1)[(2 5 x − 2 3 x ) − ( 2 2 x − 1)] L = xlim ×4 →0 (cos x − 1) sin x
⇒
( 2 x − 1)( 2 2 x − 1)(2 3 x − 1) L = xlim ×4 →0 (cos x − 1) sin x
⇒
⎛ 2 x − 1⎞ ⎛ 22x − 1 ⎞ ⎜ ⎟ ⎟ lim ⎜ L = 4 xlim × 2 ×3 ⎟ →0 ⎜ x →0 ⎜ 2x ⎟ ⎝ x ⎠ ⎝ ⎠ ⎛ 23 x − 1 ⎞ ⎛ ⎞ x2 ⎛ x ⎞ ⎜ ⎟ ⎟ lim ⎜ lim lim ⎜ ⎟ × × 2 ⎜ ⎜ ⎟ ⎟ x →0 x →0 x →0 ⎝ sin x ⎠ ⎝ 3x ⎠ ⎝ − 2 sin ( x / 2) ⎠
⇒ Example : 29 (i)
L = 4 (ln 2) = 2 (ln 2) × 3 (ln 2) × (–2)
⇒
L = – 48 (ln 2)3
If f is an even function defined on the interval (–5, 5), then find the four real values of x satisfying ⎛ x +1⎞ ⎟. the equation f(x) = f ⎜ ⎝ x + 2⎠
(ii)
⎛ 1 + 5x 2 ⎜ Evaluate : xlim 2 →0 ⎜ ⎝ 1 + 3x
1
⎞ x2 ⎟ . ⎟ ⎠
Page # 18.
(iii)
π⎞ π⎞ ⎛ ⎛ ⎛5⎞ If f(x) = sin2x + sin2 ⎜ x + ⎟ = cos x cos ⎜ x + ⎟ and g ⎜ ⎟ = 1, then find g [f(x)]. 3⎠ 3⎠ ⎝ ⎝ ⎝4⎠
(iv)
Let f(x) = [x] sin
( π) where [ ] denotes the greater integer function. Find the domain of f(x) and [ x + 1]
the points of discontinuity of f(x) in the domain. Solution (i)
⎛ x +1⎞ ⎟ It is given that f(x) = f ⎜ ⎝ x + 2⎠
⇒
⎛ x +1⎞ ⎟ x= ⎜ ⎝ x + 2⎠
⇒
x=
⇒
x2 + x – 1 = 0
− 1± 5 2
...........(i)
As f(x) is even, f(x) = f(–x) ⎛ x +1⎞ ⎟ –x= ⎜ ⎝ x + 2⎠
⇒
x2 + 3x + 1 = 0 ⇒
x=
−3± 5 2
...........(ii)
One combining (i) and (ii), we get : x=
(ii)
− 1± 5 −3± 5 and x = . 2 2
⎛ 1 + 5x 2 ⎜ Let L = xlim 2 →0 ⎜ ⎝ 1 + 3x
1
⎞ x2 ⎟ ⎟ ⎠ 1
⇒
⎛ 1 + 5x 2 ⎞ x2 ⎜1 + ⎟ − 1 L = xlim 2 →0 ⎜ ⎟ ⎝ 1 + 3x ⎠
⇒
2 ⎛ ⎜1 + 2x L = xlim 2 →0 ⎜ ⎝ 1 + 3x
⇒
⎜ 1 + 3x ⎝ L = xlim →0 e
⎛ ⎜
(iii)
2
2
⎞ ⎟ ⎟ ⎠
1
⎞ x2 ⎟ ⎟ ⎠
2
=e
1 ⎡ ⎤ ⎢u sin g : lim(1 + t ) t = e⎥ t →0 ⎢⎣ ⎥⎦
π⎞ π⎞ ⎛ ⎛ It is given that f(x) = 1 – cos2x + sin2 ⎜ x + ⎟ + cos x cos ⎜ x + ⎟ 3⎠ 3⎠ ⎝ ⎝
⎡ π ⎞⎤ 2 2⎛ 1 ⎡2 cos x cos⎛⎜ x + π ⎞⎟⎤ ⎢ ⎥ = 1 – ⎢cos x − sin ⎜ x + 3 ⎟⎥ + 3 ⎠⎦ ⎝ ⎠⎦ ⎝ 2 ⎣ ⎣
π⎞ ⎛ π = 1 – cos ⎜ 2x + ⎟ cos + 3 3 ⎝ ⎠
π⎞ ⎛ π⎞ ⎛ π⎞ ⎛ cos⎜ ⎟ cos⎜ ⎟ cos⎜ 2x + ⎟ 3⎠ 5 ⎝3⎠ ⎝3⎠ ⎝ + =1+ = 2 2 2 4
Page # 19.
⇒
For all values of x, f(x) =
5 . (constant function) 4
⎛5⎞ Hence, g[f(x)] = g ⎜ ⎟ ⎝4⎠ ⎛5⎞ But g ⎜ ⎟ = 1 ⇒ ⎝4⎠
g [(f(x)] = 1
Hence, g[f(x)] = 1 for all values of x
(iv)
Let f(x) = [x] sin
( π) [ x + 1]
Domain of f(x) is x ∈ R excluding the point where [x + 1] = 0 (Q denominator cannot be zero) Find values of x which satisfy [x + 1] = 0 [x + 1] = 0 ⇒ 0≤x+1<1 ⇒ –1≤x<0 i.e. for all x ∈ [–1, 0), denominator is zero. So, domain is x ∈ R [–1, 0) ⇒ Domain is x ∈ (–∞, –1) ∪ [0, ∞) Point of Discontinuity As greatest integer function is discontinuous at integer points, f(x) is continuous for all non-integer points. Checking continuity at x = a (where a – 1) ⎛ ⎞ π ⎜⎜ ⎟⎟ L.H.L. = hlim [a – h] sin →0 ⎝ [a + 1 − h ] ⎠
⇒
⎛π⎞ L.H.L. = (a – 1) sin ⎜ ⎟ ⎝a⎠
............(i)
⎛ ⎞ π ⎜⎜ ⎟⎟ R.H.L. = hlim [a + h] sin →0 ⎝ [a + 1 + h] ⎠
⇒
⎛ π ⎞ ⎟ L.H.L. = a sin ⎜ ⎝ a + 1⎠
From (i) and (ii), L.H.L. ≠ R.H.L. ⇒ f(x) is discontinuous at x = a So, points of discontinuity are x ∈ Ι ∩ D. ⇒ x ∈ Ι – {–1}.
............(ii)
(i.e. at integer values of x) (i.e. integers lying in the set of domain)
Page # 20.