Lat Logaritma1 - Matx - S Gnjl Smu Aloy (07 - 08)

  • Uploaded by: Vincentius Haryanto
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Lat Logaritma1 - Matx - S Gnjl Smu Aloy (07 - 08) as PDF for free.

More details

  • Words: 736
  • Pages: 1
LOGARITMA SMU Sifat – sifat Logaritma :

LOGARITMA 1.

p

log (a.b) =

() a b

p

3.

p p p log an = n log a ; log pn = n

4.

p log a =

5b.

p log a =

6.

p p log a − log b

n p log an = log a m

5a.

h.

16

mloga mlog p

5c. alog a = 1

1 alog p

5d.

i.

3

8. p

k.

5 log 10 0,2 log10

l.

9

9. log 2 /9

b.

8

log 64

n.

4/5

log 1 9/16

c.

3

log 243

o.

2/3

log 3 3/8

d.

2

log 128

p.

0,8

log 1,25

e.

5

log1

q.

0,6

log 1 2/3

f.

2

1

log /8

r.

2

log(3√2 + √2)

g.

3

log 1/27

s.

2

log (√72 + √8)

h.

2

t.

0.5

i.

5

u.

1/3

j.

1/6

k.

2/5

log /25

l.

4/7

log 16/49

log 0,25 log 0,2

1

log ( /8 √2) 1

log ( /9 √3)

log 1/36

f.

k.

3.

Jika 3log 4 = a dan 3log 5 = b, maka nyatakan 3log 50 dalam a dan b

l.

4.

Hitung nilai x dari :

Jika

27

log4 = a, maka nyatakan 4log 9 dalam a !

8

2

6.

Jika log 25 = b, nyatakan log 5 dalam b !

7.

Hitunglah : a.

2

log 40 – 2log 10

b.

5

log 0,5 – 5log 50

c.

−2 log 5 – log 4

d. ½ 2log 81 – 3 2log 3 + 2log 48 e. log 28 – log 7 – log 3 + log 75 f.

4

log 2 + 4log √8

27

15

log 5 = p, tentukanlah :

log 25 + log4 2log 3

3 − log5 − log2 + log 9

3 log 9 3

h. 2

Jika 2log 3 = a dan 2log 5 = b, maka nyatakan 2log 5,4 dalam a dan b

5.

8 log 49

25log 9

−5

5log 1 + 4log 4 +2 5 2log 5 +log 4

+ log2 + log50

2 log 3

j. (log 2) (2log 10)

5 log (x −375)2 + 6

6 3 log 2

3 5log 16 x 2 9log 5 x 4log 3

g. 2

i.

=2 b. 5 log(x −375)2 − 1

5 log

a. 3log 5 b. 9log 5 c. 243log (1/5) 11. Hitunglah ! a. 10 log 5 + 2 log 5 + log 2 + log 12 – log 20 – log 3 b. 4log 0,24 c. 5log √ 27 x 9log 125 + 16log 32 d. . 3log 24 – 3log 2√3 + 2 3log 1/9 + 3log 2 ¼ e. 2 2log 49 x 3 7log 8

4

2 log (x +1)3 + 27 =3 2 log (x +1) 4

5

Jika 8log 5 = a, tentukanlah √5log 4 dalam a !

2.

a.



1 1 + log −1 25 + 1 2. 2log 5 4 log 25

10. Jika m.

2 log3

log

o.

7

+ 4

log 9 3 + log 5 5 + log 5

n.

3/5

3 log 2

( 2 2)

m.

p log 1 = 0

= a

2 log 5

3

p pn 7. log a = log an

Latihan : 1. Hitunglah : a. 4log 16

log √8 x 2og 27 + 9log √3

2

p p log a x alog b = log b

p log a

log 4 x 4log 125 log 27 x 3log 4

log a + log b

p log

pm

5

j.

p

2.

=

g.

g log 8 g log 2 2

2log 5

r.

5 5

5log

9log 4 5 7 + log 1 −3 2log 12 −2log3

n. (3log 4) (16log 27)

g log 125 g log 25

o.

m.

3

5log 3

p. s.

g log x g log x3

2 2

8log 10

q.

g y log x g log x2

t.

9

3 3 log 5

12. Jika glog x = k, glog y = l, glog z = m, nyatakan logaritma berikut dalam k, l, m ! a. glog (x -1y2z)

b.

  

d.

c.

g

log

x y3 g2z

  

 x2   3  y z  3 x2z  g log    3 y2z −2  g

log

Selamat Berlatih

Related Documents

Aloy
May 2020 4
Smu
May 2020 20
Lat
November 2019 52
01-07-08 To 07-07-08
November 2019 14

More Documents from "Vincentius Haryanto"