Statistics Material N
Valid
Kadar
100
100
0
0
Mean
2.50
310.7232
Median
2.50
311.3150
1a
313.86
Std. Deviation
1.124
2.70838
Variance
1.263
7.335
Skewness
.000
-.425
Std. Error of Skewness
.241
.241
-1.368
-.965
.478
.478
Range
3
10.76
Minimum
1
304.00
Maximum
4
314.76
250
31072.32
10
1.00
306.8600
25
1.25
308.0100
50
2.50
311.3150
75
3.75
313.1525
90
4.00
313.8600
Missing
Mode
Kurtosis Std. Error of Kurtosis
Sum Percentiles
a. Multiple modes exist. The smallest value is shown
Material Cumulative Frequency Valid
Percent
Valid Percent
Percent
Diorit
25
25.0
25.0
25.0
Ultrabasa
25
25.0
25.0
50.0
Dasit
25
25.0
25.0
75.0
Dunit
25
25.0
25.0
100.0
Total
100
100.0
100.0
Kadar Cumulative Frequency Valid
Percent
Valid Percent
Percent
304.00
1
1.0
1.0
1.0
304.62
1
1.0
1.0
2.0
305.64
1
1.0
1.0
3.0
305.92
1
1.0
1.0
4.0
306.54
1
1.0
1.0
5.0
306.62
1
1.0
1.0
6.0
306.65
1
1.0
1.0
7.0
306.76
1
1.0
1.0
8.0
306.84
1
1.0
1.0
9.0
306.86
2
2.0
2.0
11.0
307.28
2
2.0
2.0
13.0
307.34
1
1.0
1.0
14.0
307.44
1
1.0
1.0
15.0
307.48
1
1.0
1.0
16.0
307.54
1
1.0
1.0
17.0
307.65
2
2.0
2.0
19.0
307.72
2
2.0
2.0
21.0
307.83
1
1.0
1.0
22.0
307.84
1
1.0
1.0
23.0
307.86
1
1.0
1.0
24.0
307.92
1
1.0
1.0
25.0
308.28
1
1.0
1.0
26.0
308.34
1
1.0
1.0
27.0
308.64
1
1.0
1.0
28.0
308.65
1
1.0
1.0
29.0
308.84
1
1.0
1.0
30.0
308.89
1
1.0
1.0
31.0
309.30
1
1.0
1.0
32.0
309.34
1
1.0
1.0
33.0
309.48
1
1.0
1.0
34.0
309.63
1
1.0
1.0
35.0
309.78
1
1.0
1.0
36.0
309.86
1
1.0
1.0
37.0
309.89
1
1.0
1.0
38.0
309.97
1
1.0
1.0
39.0
310.28
1
1.0
1.0
40.0
310.30
1
1.0
1.0
41.0
310.34
1
1.0
1.0
42.0
310.44
1
1.0
1.0
43.0
310.63
1
1.0
1.0
44.0
310.72
2
2.0
2.0
46.0
310.83
1
1.0
1.0
47.0
310.84
1
1.0
1.0
48.0
310.97
1
1.0
1.0
49.0
311.28
1
1.0
1.0
50.0
311.35
1
1.0
1.0
51.0
311.54
1
1.0
1.0
52.0
311.68
1
1.0
1.0
53.0
311.76
2
2.0
2.0
55.0
311.82
2
2.0
2.0
57.0
311.84
1
1.0
1.0
58.0
311.90
1
1.0
1.0
59.0
312.06
1
1.0
1.0
60.0
312.10
1
1.0
1.0
61.0
312.29
1
1.0
1.0
62.0
312.35
1
1.0
1.0
63.0
312.36
1
1.0
1.0
64.0
312.45
1
1.0
1.0
65.0
312.48
2
2.0
2.0
67.0
312.56
1
1.0
1.0
68.0
312.72
2
2.0
2.0
70.0
312.76
1
1.0
1.0
71.0
312.86
1
1.0
1.0
72.0
312.90
1
1.0
1.0
73.0
313.06
1
1.0
1.0
74.0
313.10
1
1.0
1.0
75.0
313.17
1
1.0
1.0
76.0
313.29
1
1.0
1.0
77.0
313.35
2
2.0
2.0
79.0
313.36
1
1.0
1.0
80.0
313.48
1
1.0
1.0
81.0
313.54
1
1.0
1.0
82.0
313.56
1
1.0
1.0
83.0
313.68
1
1.0
1.0
84.0
313.72
2
2.0
2.0
86.0
313.82
2
2.0
2.0
88.0
313.84
1
1.0
1.0
89.0
313.86
3
3.0
3.0
92.0
314.06
2
2.0
2.0
94.0
314.12
2
2.0
2.0
96.0
314.17
1
1.0
1.0
97.0
314.45
1
1.0
1.0
98.0
314.48
1
1.0
1.0
99.0
314.76
1
1.0
1.0
100.0
100
100.0
100.0
Total
Model Description Model Name Series or Sequence
MOD_1 1
Transformation
Kadar Natural logarithm
Non-Seasonal Differencing
0
Seasonal Differencing
0
Length of Seasonal Period
No periodicity
Standardization
Applied
Distribution
Type
Normal
Location
estimated
Scale
estimated
Fractional Rank Estimation Method
Blom's
Rank Assigned to Ties
Mean rank of tied values
Applying the model specifications from MOD_1
Case Processing Summary Kadar Series or Sequence Length
100
Number of Missing Values in Negative or Zero Before Log the Plot
Transform User-Missing
0
System-Missing
0
The cases are unweighted.
Estimated Distribution Parameters Kadar Normal Distribution
0
Location Scale
The cases are unweighted.
.0000 1.00000
Case Processing Summary Cases Valid N Material * Kadar
Missing Percent
100
100.0%
Material Kadar Crosstabulation ?
N
Total
Percent 0
0.0%
N
Percent 100
100.0%
Chi-Square Tests Asymptotic Significance (2Value Pearson Chi-Square Likelihood Ratio
df
sided)
266.667a
249
.211
254.032
249
.400
15.527
1
.000
Linear-by-Linear Association N of Valid Cases
100
a. 336 cells (100.0%) have expected count less than 5. The minimum expected count is .25.
Symmetric Measures Asymptotic Value
Standard
Errora
Approximate Approximate
Tb
Significance
Interval by Interval
Pearson's R
.396
.077
4.270
.000c
Ordinal by Ordinal
Spearman Correlation
.422
.089
4.613
.000c
N of Valid Cases
100
a. Not assuming the null hypothesis. b. Using the asymptotic standard error assuming the null hypothesis. c. Based on normal approximation.