(h) [Y (1) + Z(3) + Y (5)]2 + [Y (2) − Y (3)]2
LAB MATH 003
(i) Y (1) − Z(0) + Y (5) + [Z(7)]2
Prof. Rensso Chung
4. Si
[email protected]
¯ ¯ a b ¯ ¯ c d
Trujillo-Per´ u-Enero 2009 1. Si (a, b) · (c, d) = (a × c) + (b × d); entonces calcular:
entonces ¯ ¯ 2 (a) ¯¯ 1 ¯ ¯ 4 (b) ¯¯ 2 ¯ ¯ 1 (c) ¯¯ 1 ¯ ¯ 2 (d) ¯¯ 1 ¯ ¯ 2 (e) ¯¯ 1 ¯ ¯ 2 (f) ¯¯ 4 ¯ ¯ 3 (g) ¯¯ 0 ¯ ¯ 2 (h) ¯¯ 1
(a) (2, 3) · (1, 2) (b) (−1, 3) · (2, −2) (c) (1, 3) · (2, 2) (d) (−2, 3) · (−5, 2) (e) (5, 3) · (−4, 2) (f) (−2, −4) · (−5, −2) (g) (−10, 3) · (15, 2) 2. Si F (x) = (2 × x) + 4 y G(x) = (2 × x) − 1; entonces calcular: (a) F (2) + G(3) (b) [F (9) − G(2)]/2 (c) G(1) + G(3) + F (−9) (d) [F (5)]2 − [G(−4)]2 (e) F (8) + G(−8) + 1
calcular: ¯ 2 ¯¯ 5 ¯ ¯ 2 ¯¯ −5 ¯ ¯ ¯ 2 ¯¯ ¯¯ + −5 ¯ ¯ ¯ ¯ −6 ¯¯ ¯¯ − −5 ¯ ¯ ¯ ¯ 7 ¯¯ ¯¯ + −5 ¯ ¯ ¯ ¯ 5 ¯¯ ¯¯ × −5 ¯ ¯ ¯ ¯ 2 ¯¯ ¯¯ × −5 ¯ ¯ ¯ 7 ¯¯ −5 ¯
2 1 1 1 2 1 2 1 4 5
¯ 1 ¯¯ −5 ¯ ¯ 3 ¯¯ −1 ¯ ¯ ¯ 3 ¯¯ ¯¯ + −5 ¯ ¯ ¯ ¯ 6 ¯¯ ¯¯ × −5 ¯ ¯ ¯ −2 ¯¯ −6 ¯
3 1 0 1
¯ 2 ¯¯ −5 ¯ ¯ 1 ¯¯ −2 ¯
5. Si
(f) G(1) + F (0) + [F (1) + G(2)]/2 (g) [F (2) + G(2)]3 +
¯ ¯ ¯ = (a × d) − (b × c); ¯
x + 1 si x es par, x − 1 si x es impar, T (x) = 1 si x es cero.
2 3
(h) [F (1) + G(0)] × G(2) (i) [F (0) + G(1) + F (2) + F (3) + G(5)]/2
Calcular:
3. Si Y (x) = x2 + 1 y Z(x) = x2 − 1; entonces calcular:
1. T (3) + T (8) + T (0) 2. [T (2) + T (5) + T (0)]2
(a) Y (2) + Z(1)
3. [T (1) + T (0)]2 + [T (9) + T (5)]/3
(b) Y (0) − Z(0)
4. T [T (4) × T (0) × T (5)]
(c) Y (1) + Y (2) + Y (3) + Z(1) + Z(2) + Z(3)
5. [2 × T (1) + T (3) × T (0)]2 + [4 × T (9) + T (5)]3
(d) [Y (2) + Z(3)]/2
6. [T (11) × T (0) × T (10)] + [T (9) + T (0)]2
(e) [Y (1) + Z(5)]2
7. [T (0) × T (1) × T (5) + 1] − [T (9) × T (7)]
(f) [Y (1) + Z(3) + Y (5)]2 + [Y (2) − Y (3)]2
8. [T (2) × T (6) × T (5)] + T [6 + T (0)]
(g) [Y (1) + Z(1)]3 + [Y (2) − Y (1)]3 1